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Abstract: Ixodes ricinus is the most common hard tick species in Europe and an important vector
of pathogens of human and animal health concerns. The rise of high-throughput sequencing has
facilitated the identification of many tick-borne pathogens and, more globally, of various microbiota
members depending on the scale of concern. In this study, we aimed to assess the bacterial diversity
of individual I. ricinus questing nymphs collected in France using high-throughput 16S gene metabar-
coding. From 180 dragging-collected nymphs, we identified more than 700 bacterial genera, of which
about 20 are abundantly represented (>1% of total reads). Together with 136 other genera assigned,
they constitute a core internal microbiota in this study. We also identified 20 individuals carrying
Borreliella. The most abundant species is B. afzelii, known to be one of the bacteria responsible for
Lyme disease in Europe. Co-detection of up to four Borreliella genospecies within the same individual
has also been retrieved. The detection and co-detection rate of Borreliella in I. ricinus nymphs is high
and raises the question of interactions between these bacteria and the communities constituting the
internal microbiota.

Keywords: Borrelia; questing ticks; metabarcoding; microbiota; Ixodes; Borreliella

1. Introduction

Ticks are blood-sucking arthropods known worldwide to be vectors of many pathogens
for humans, as well as for domestic and wild animals [1]. Ticks ingestion of blood is
completed by biting at each developmental stage to induce the moult [2]. During these
meals, ticks can take up pathogens by feeding on an infected host or by co-feeding [3,4].
While feeding, an infected tick can also transmit pathogens with its saliva to a new host.
Tick-borne pathogens (TBPs) are an integral part of the tick microbiome, along with
commensals and symbiotic viruses, archaea, bacteria and eukaryotes [5]. However, until
the beginning of 2011, this microbiome was largely unknown [6]. Over the last decade,
many studies have focused on its description in several tick species throughout the world,
at different stages of the life cycle, during questing or during interactions with various
hosts [7–14]. The increasing amount of available data allows us to gain a clearer insight
into the different microbial communities associated with ticks. However, a current lack
of harmonization at the level of collection and/or analysis conditions still limits our
understanding of both the composition of these communities and the relationships between
these microorganisms [15].

The role played by the microbiome in the establishment and transmission of pathogens,
as well as on tick biology, has received increasing attention in recent years [16,17]. Numer-
ous maternally inherited bacteria have been described in ticks, although their functional
roles are largely unknown [18]. Nonetheless, one (Francisella F-Om) has been shown to
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supply B vitamins and cofactors, counterbalancing the deficiency induced by a blood-only
diet [19]. As obligate endosymbionts in most tick species, Coxiella-like are also suspected
to be nutritional symbionts of ticks [20]. TBPs include viruses, bacteria and parasites
responsible for several infections. Their presence may impact their host microbiome in the
same way as others factors such as temperature [21], tick species, developmental stage,
geographical origin [13,22], anatomical region and sex [23–25]. Although less studied, mul-
tiple and complex interactions between microorganisms take place, influencing the ability
of TBPs to colonize the gut and their ability to be transmitted to a new host [26–29]. The
composition of the microbiome is also a driver of gene expression and proteins production
in ticks. It promotes the establishment of certain microorganisms such as the Lyme disease
(LD)-causing spirochete Borreliella burgdorferi [30]. Interestingly, differences in the relative
abundance of certain taxa were linked to the presence/absence of B. burgdorferi, whereas the
spirochete load seems poorly affected by the internal bacterial composition [11]. Further-
more, DNA of several TBPs have regularly been detected within the same tick suggesting
their possible coexistence and, in some cases, a proven co-infection [31–35]. These studies
highlight the complexity of interactions among microbial populations within ticks that do
not only involve pathogenic members. To date, the impact of those interactions between
TBPs on human infections remains poorly understood [36,37]. Numerous factors modulate
these interactions, one of those factors being the impact of co-infections in human health,
raising difficulties to perform a diagnosis and to offer therapeutic solutions [38,39].

Most TBPs are transmitted during feeding by the bite of ticks belonging to the Ixodidae
family [39]. Among the genera composing this family are the ticks of the genus Ixodes that
vectorize B. burgdorferi, the LD spirochete. In the Northern Hemisphere, LD is the most
common vector-borne disease, with approximately 30,000 cases reported to the Center
for Disease Control and Prevention (this number does not reflect all cases of LD; recent
estimates suggest that approximately 476,000 people may contract LD each year in the
United States) and around 200,000 new cases in Western Europe [40,41]. In the Eastern
United States, B. burgdorferi is primarily vectored by I. scapularis, while I. pacificus is the
prime vector to humans on the Western coast [42]. In Western Europe, the principal tick
vector is I. ricinus, while I. persulcatus predominates in the Eastern part of the continent
and in Asia [43]. Within the Borreliaceae family, species responsible for LD are referred to
as B. burgdorferi sensu lato and are not evenly distributed around the world. The global
distribution is mainly dependent on the considered continent [44,45]. The most pathogenic
species for humans in Northern America is B. burgdorferi sensu stricto (ss), whereas in Europe,
B. afzelii and B. garinii are the main pathogenic species, even though cases associated with
B. burgdorferi ss, B. spielmanii and B. bavariensis have been reported [45–48].

In this study, we aimed to unravel the bacterial diversity of individual I. ricinus. Quest-
ing nymphs were collected at four different sites in the former region Poitou-Charentes in
France. The bacterial microbiota of individual nymphs was assessed using high throughput
sequencing of the 16S rRNA coding gene sequence with a focus on TBPs, including Borre-
liella genospecies. We also investigated the existence of several pathogens in the microbiota
of each collected tick.

2. Materials and Methods
2.1. Tick Sampling and Processing

Questing nymphs of I. ricinus were collected in June 2019 at four locations in Poitou-
Charentes (France): Bignoux (46◦36′24′′ N, 0◦28′14′′ E), Lezay (46◦14′40′′ N, 0◦3′30′′ E),
Hiesse (46◦2′14′′ N, 0◦36′17′′ E) and Tonnay-Charente (15◦57′12′′ N, 0◦54′12′′ W). All sam-
pling sites are located within a radius of 67 km. Ticks were collected by a dragging protocol
with a 1 m2 piece of white linen attached to a stick connected to a rope. Dragging on
vegetation was carried out at each of the four sites on 20 transects of 10 m, each spaced
from 10 to 15 m. Approximately 100 individuals were collected at each site, brought back
to the laboratory in sterile 50 mL tubes and kept alive at room temperature. Each tick was
examined under a Wild Heerbrugg M3 (Leica, Wetzlar, Germany) stereomicroscope using



Microorganisms 2021, 9, 1526 3 of 18

morphological identification criteria [49] before washing. Cuticular fauna, including bacte-
ria and exogenous DNA, were eliminated following the bleach-based protocol described in
detail in another study [50]. Briefly, ticks were bathed individually for 30 s in a commercial
bleach solution diluted to a final concentration of 1%. Ticks were then rinsed three times
in successive DNA-free water baths for 1 min. Immediately after the last bath, ticks were
individually stored in sterile 1.5 mL tubes filled with 70% ethanol and stored at −20 ◦C
prior to DNA extraction.

2.2. DNA Extraction

Forty-five I. ricinus nymphs per sampling site were individually crushed in liquid
nitrogen using a mortar and pestle. To avoid cross-contamination between samples, the
mortar and pestle were sterilized by washing with commercial bleach. After crushing,
the tissues were transferred to sterile tubes for DNA extraction. The mortar and pestle
were then rinsed with the first buffer of the DNA extraction kit to limit the loss of tissues.
Negative crushing controls were carried out without ticks. DNA from all samples was then
extracted using the DNeasy® Blood&Tissue Kit (Qiagen, Hilden, Germany) following the
manufacturer’s instructions. Negative DNA extraction controls were carried out using
only kit reagents.

2.3. PCR Amplification and High-Throughput Sequencing

A 464-bp fragment covering variable regions V3–V4 of the bacterial 16S rRNA gene
was PCR-amplified using the U341F (5′-CCTACGGGRSGCAGCAG-3′) [51] and Bakt_805R
(5′-GACTACHVGGGTATCTAATCC-3′) [52] primer pair. These primers were selected for
their high coverage on 16S rRNA gene sequences [53]. The PCR was performed using
Q5, high-fidelity DNA Polymerase (New England Biolabs, Evry, France) together with
Q5 reaction buffer (1X final), 0.5 µM of each primer, dNTP (0.2 mM each) and 5 µL of
DNA in a final volume of 40 µL. The amplification was carried out as follows: an initial
denaturation step at 98 ◦C for 5 min then denaturation at 98 ◦C for 30 s, annealing at 56 ◦C
for 30 s, elongation at 72 ◦C for 30 s for a total of 30 cycles, followed by a final elongation
step at 72 ◦C for 5 min. For each PCR run, negative (DNA-free water) and positive (DNA
extracted as previously described from an overnight culture of P. aeruginosa PA14 cultured
in LB medium at 37 ◦C with shaking at 180 rpm) template controls were included. The PCR
products were subjected to 1% agarose gel electrophoresis and further purified using the
NucleoSpin® Gel and PCR Clean-up kits (Macherey-Nagel, Bethlehem, PA, USA). Mock
purifications were carried out as negative controls for further analysis. DNA quantification
was carried out using a Qubit® 2.0 fluorometer (Invitrogen, Waltham, MA, USA). For
all PCR amplicons, the library was constructed and sequenced by the genotyping and
sequencing platform of the Paris Brain Institute (Paris, France; https://icm-institute.org/fr/
accessed on 30 November 2019) using Illumina MiSeq single-end 1 × 500-bp technology.
All raw data were deposited in the Sequence Read Archive of the NCBI under the BioProject
ID PRJNA727936.

2.4. Sequencing Data Processing

Sequencing results were analyzed using the QIIME 2 2017.4 software package [54].
The quality of reads was assessed and filtered using the DADA2 software implemented in
QIIME 2 [55]. To do this, 15 bp were removed at the 5′ side of all amplicons and truncated
at 400 bp. The final reads used for analysis were 385-bp long. Reads were grouped into
exact Amplicon Sequence Variants (ASVs) using DADA2. ASVs taxonomic affiliations were
determined using VSEARCH [56], along with the Silva 132 16S database (https://www.
arb-silva.de/ accessed on 10 February 2020) with a minimum similarity threshold of 90%.
Reads that failed to be classified within the bacteria kingdom were further characterized
by comparison with the nr/nt database, using the BLAST algorithm [57] with a maximum
e-value cutoff of 0.0001. Reads assigned to ticks or eukaryotic organisms were eliminated
from the dataset. To ensure efficient dealing with potential contaminant sequences, a
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two-step process was implemented. Firstly, sequences that likely originated from kit
contamination were filtered out using the decontam package in the R environment [58].
Then, filtered samples and all controls were clustered, along with all controls, using the
Bray–Curtis dissimilarity index (Supplementary Materials Figure S1). Samples grouping
with controls were completely excluded from all downstream analyses. The R software was
used for the map creation (sp [59], rnaturalearth and rnaturalearthdata [60], maps [61]),
relative abundance analysis (phyloseq [62], tidyverse [63]) and ranked abundance analysis
(vegan [64], BiodiversityR [65]), LDA analysis (MASS [66]). For figures generated in R, the
ggplot2 [67] package was used. Core microbiota graphical representations were achieved
using Krona [68], and Venn diagrams were drawn using InteractiVenn [69].

2.5. Borreliella Amplicon Sequence Variants Analysis

Amplicon Sequence Variants assigned to the Borreliella genus were individually com-
pared to the NCBI nr/nt database using megablast. 16S rRNA coding gene sequences from
Borreliella reference strains were selected and used to construct a phylogeny. Reads from
Ralstonia insidiosa CCBE 1007-18 and Treponema I8:G57 were also included as outgroups,
the latest being selected because Treponema belongs to the same family as Borreliella. All
reads were truncated to a final length of 335 nucleotides. Alignments were realized using
the MUSCLE algorithm implemented in MEGA-X software [70]. Model Finder [71], imple-
mented in the IQ-TREE software [72], was used to select the best phylogeny construction
model. According to the Bayesian Information Criterion, the best fit model was the Kimura
Two-Parameter substitution model allowing for a proportion of invariable sites (K2P+I).
The phylogenetic tree was generated using IQ-TREE, and the node robustness was assessed
using 1000 iterations of SH-like approximate likelihood ratio test [73] and 1000 iterations of
conventional bootstraps. Itol v4 [74] was used for tree representation and formatting.

3. Results
3.1. Collection of Questing Ticks

A total of 370 questing ticks were collected from four sites (Bignoux, Hiesse, Lezay
and Tonnay-Charente) using a dragging protocol (Figure 1). Out of these 370 ticks, 93.0%
(344/370) belonged to the species Ixodes ricinus, and 7.0% (26/370, only nymphs) belonged
to the genus Haemaphysalis sp. Only I. ricinus ticks were considered in this study. Out of
the 344 I. ricinus individuals, 315 were nymphs, and 29 were adults with 11 females and
18 males.

3.2. Sequencing of the Internal Bacterial Microbiota of Ticks

Sequencing was carried out on 180 randomly selected bleach-treated nymphs of I. rici-
nus (45 per sampling area) and 12 negative controls (four crushing controls, four DNA
extraction controls and four purification controls). A total of 826,697 raw reads were gen-
erated, from which 370,095 high-quality reads were retained for further analyses. Out
of these, 60,149 reads were assigned to ticks or eukaryotic organisms and were further
discarded. As nymphal ticks are low biomass arthropods [75,76], the number of generated
reads may be low on average, and variations in the read numbers can thus exist among
samples. Moreover, such low biomass samples can be critically impacted by contamina-
tion originating from the various kits used to produce amplicons [77]. After potential
contaminants sequences exclusion, five samples were excluded from the dataset, leaving
203,857 reads distributed among 175 individual nymphs. Alpha rarefaction analyses sug-
gested that the sequencing effort was sufficient to capture most of the bacterial diversity
of individual nymphs’ microbiota (Supplementary Materials Figure S2). To estimate the
bacterial diversity present in the dataset, alpha diversity indexes (Shannon diversity index
and Shannon evenness index), as well as ASVs diversity, were calculated for each sampling
site (Table 1, Supplementary Materials Figure S3).
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Table 1. Diversity index calculated for each sampling site. Calculations were carried out after probable contaminant
reads removal. An uneven number of individuals is due to samples exclusion based on the Bray-Curtis dissimilarity
index calculation.

Sampling Site Number of
Individuals

Average Reads
per Tick

Shannon H Index
(±SD 1)

Shannon E Index
(±SD 1) Observed ASVs

Bignoux 45 1055 2.83 (±0.81) 0.77 (±0.15) 1079
Lezay 43 1167 3.25 (±0.71) 0.76 (±0.13) 1371
Hiesse 43 1043 2.90 (±0.78) 0.73 (±0.14) 1019

Tonnay-Charente 44 1394 3.21 (±0.80) 0.75 (±0.15) 1433
1 SD: Standard Deviation.

In terms of richness and diversity, the Shannon diversity index (H) highlighted the
presence of many taxa with well-balanced abundances for each sampling site. When com-
paring sampling sites, the H index did not differ drastically, indicating few discrepancies
in richness between samples retrieved from these sites. Concerning the bacterial taxa
repartition at each site, the Shannon evenness index (E) indicated a fairly even abundance
of all taxa rather than a strong dominance of certain taxa. The sampling site, therefore, had
little impact on the degree of bacterial diversity hosted by I. ricinus nymphs.

3.3. Taxonomic Diversity in Nymphs

For further analyses, all ASVs were grouped together according to their taxonomy.
All samples were also visualized according to their sampling site. The twenty most
abundant taxa found in the dataset were first selected. They represent 73.27% of all reads
(149,385/203,857 reads), and their abundance range from 13.17% for Ralstonia to 1.02% for
Methylobacterium (Supplementary Materials Table S1). Their relative abundance per site
was represented as a bar plot (Figure 2).
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Of these genera, the two most abundant were Ralstonia (26,761 reads) and Candida-
tus midichloria (20,638 reads). They were found in ticks from all sampling sites, although
their relative abundance varied slightly. Important differences can be observed for Spiro-
plasma, which was highly abundant in Bignoux and Lezay (7629 and 5991 reads, respec-
tively), but drastically reduced in Hiesse (1538 reads) and Tonnay-Charente (447 reads).
Psychrobacter was well represented in Bignoux and Tonnay-Charente but almost absent in
Hiesse and Lezay (350 and 10 reads, respectively). According to our data, the sampling
origin also impacted the relative abundance for Anoxybacillus and Wolbachia, which were
well represented in Bignoux and Hiesse but only yielded few reads in Lezay and Tonnay-
Charente. In contrast, Mycobacterium, Rickettsiella and Rhodococcus were present in Lezay
and Tonnay-Charente but only scarcely detected in Bignoux and Hiesse. Rickettsia (4.19%)
and Borreliella (1.76%), known to contain pathogenic species, were found at all sampling
sites, although in low abundance (Figure 2). In our dataset, 48/175 (27.43%) individuals
were positive for Rickettsia. The reads grouped in the category “other” represent between
20.70% (Bignoux) and 24.80% (Lezay) of all reads for each sampling site. This category
includes 584 bacterial genera unambiguously assigned but detected in low abundance
compared to the most present genera (Supplementary Materials Table S1). Among those,
the dataset was enriched by the phylum Proteobacteria (33.90%) followed by Actinobacteria
(19.80%) and Firmicutes (18.30%). On a geographical scale, significant variations in the
abundance of bacterial genera have been highlighted, indicating that the location of the
ticks influences their internal microbiota.

3.4. Site-Dependent Intra-Tick Diversity

The differences in the relative abundance of genera found according to the sampling
sites raised the question of whether there is a significant difference or not when comparing
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the overall diversity. In an attempt to answer this question, a linear discriminant analysis
was performed, and the results are shown in Figure 3a.
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depict the best separation between sampling sites; (b) Venn diagram of all the taxa identified. Sampling sites Bignoux,
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Almost all individuals from each sampling site clustered together, indicating a ho-
mogenous bacterial diversity in our collection. Clusters are well separated, underlining a
difference in internal bacterial diversity depending on the sampling collection site. The
most important difference in intra-tick bacterial diversity is observed between samples
collected in Hiesse (green) and Lezay (blue), the two geographically closest sampling sites
(Figure 1). Clusters for Bignoux (black) and Tonnay-Charente (red), although geograph-
ically distant, are close to each other. This indicates only little variation in the overall
bacterial composition in nymphs from these two sites. Thus, the geographical distance
might not be the only parameter to consider when explaining intra-tick bacterial diversity.

3.5. Individual Nymph Internal Core Microbiota

In an attempt to determine how many taxa were present in all geographical sites and
to define a potential internal core microbiota, a Venn diagram was generated (Figure 3b).
A total of 156 taxa (including the twenty most abundant) were present in at least one
individual from each sampling site. These taxa represented almost all the reads, i.e., 94.47%
(192,585/203,857 reads). The taxa composing this core microbiota and their relative abun-
dance in the dataset are presented as a Krona chart (Supplementary Materials Figure S4).
To go further, a core microbiota at the individual level was defined using the core-features
function implemented in QIIME 2. The number of taxa present in 50–100% of the individu-
als was calculated (Figure 4a). Twenty-one taxa were present in at least 50% of nymphs
studied; this number dropped to eight taxa when considering 75% of nymphs, and only
one taxon (Ralstonia spp.) was present in at least 95% of the individuals. None of our taxa
were present in 100% of the collected nymphs. The twenty-one taxa present in 50% of the
nymphs accounted for 52.67% of all reads (107,369/203,857). Of these twenty-one taxa,
twelve were part of the twenty most abundant taxa (Figure 4b). Others (Anoxybacillus,
Borreliella, Mycobacterium, Rhodococcus, Rickettsia, Rickettsiella, Spiroplasma and Wolbachia)
were present in high abundance but not evenly represented among samples. This was due
to a high relative abundance of these bacteria in only some I. ricinus nymphs. These results
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highlighted the bacterial heterogeneity that can occur at the individual scale, especially
regarding genera containing pathogenic species (Borreliella and Rickettsia).
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3.6. Borreliella Prevalence and Diversity

Among what could be defined as a core internal microbiota in this study, some
bacterial genera containing TBPs were found. Out of the TBPs that can be transmitted by
the bite of I. ricinus nymphs, bacteria of the genus Borreliella remain the most monitored.
In our dataset, this genus was part of the most represented genera (see Figure 2), with
3582/203,857 (1.76%) reads obtained. The reads were recovered from ticks sampled at all
sites, and the total number of reads differed only slightly between sites (from 702 reads in
Lezay to 1094 reads in Hiesse). To further explore the taxonomic affiliation of Borreliella
ASV, a phylogenetic analysis was carried out to assess if ASVs could be assigned to a
single species. Four clusters, including one or two Borreliella genospecies, have emerged
(Figure 5). These clusters were composed of the following genospecies: B. spielmanii and
B. valaisiana (in blue), B. afzelii (in green), B. garinii and B. lusitaniae (in red), B. burgdorferi
and B. bissetti (in grey). Only B. garinii CIP103362 did not group correctly with other
B. garinii partial 16S sequences. Even if this method did not allow us to accurately predict
to which species an ASV belonged, differences were sufficient to assign our ASVs to one
of the four clusters previously described. Thus, assumptions can be made regarding the
presence and relative abundance of each Borreliella genospecies as well as co-detection
depending on the sampling site.
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Figure 5. Phylogenetic tree of the Borreliella assigned ASVs. The tree was generated using a Kimura
Two-Parameter substitution model, allowing for a proportion of invariable sites (K2P + I) model.
Arbitrary colors were added to separate the four clades generated from this analysis. Colored circles
indicate in which sampling sites each ASVs was found. Percentages indicate the results from the
SH-like approximate likelihood ratio test and bootstraps, respectively.



Microorganisms 2021, 9, 1526 10 of 18

Overall, 11.4% (20/175) of the I. ricinus questing nymphs yielded 10 or more reads
assigned to Borreliella. The most prevalent genospecies detected in our dataset was B. afzelii,
with 15 infected nymphs and a total of 2140 reads (Figure 6a). Others genospecies clusters
had fewer read counts with 561, 593 and 515 reads for B. burgdorferi ss/B. bissetti, B. garinii/B.
lusitaniae and B. spielmanii/B. valaisiana, respectively.
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Borreliella genospecies for each sampling site. A sample was considered positive if at least 10 reads for a genospecies were
detected. Positive samples presented here can be co-infected by two or more genospecies; (b). Schematic representation of
the different Borrelellia clusters found within the same infected nymph.

As sequencing of individual nymph bacterial microbiota can yield several distinctive
Borreliella ASVs, the term co-detection will presently be used when ASVs from at least two
different genospecies were retrieved in a single individual. Out of the 20 nymphs positive
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for Borreliella, 11 exhibited a co-detection of at least two genospecies (Figure 6b). The most
frequent co-detection was between B. afzelii and B. garinii/B. lusitaniae (3/11) together
with B. burgdorferi ss/B. bissetti and B. garinii/B. lusitaniae (3/11). Other co-detections were
between B. afzelii and B. spielmanii/B. valaisiana (Bignoux), B. burgdorferi ss/B. bissetti and
B. spielmanii/B. valaisiana (Lezay) and B. afzelii and B. burgdorferi ss/B. bissetti (Tonnay-
Charente). One case of triple detection was identified in Lezay: B. spielmanii/B. valaisiana,
B. garinii/B. lusitaniae and B. burgdorferi ss/B. bissetti. Similarly, the four genospecies were
detected in a single individual in Hiesse (Figure 6b).

Two or more Borreliella genospecies were present in 55% of Borreliella positive samples,
and 6.3% of all the samples studied.

4. Discussion

Ticks are blood-sucking arthropods known to host a wide microbial diversity, in-
cluding symbionts and pathogens. In this study, a focus was made on I. ricinus, which
is the primary vector of Borreliella, the bacteria responsible for LD [40,43]. These bacteria
could be acquired through feeding on infected wild animals between each developmental
stage or through co-feeding [3,4]. They then integrate the internal microbiota composed of
commensals and symbiotic microorganisms as well as other pathogens potentially [5,17].

Almost all collected ticks were identified as I. ricinus, which is in good agreement
with previous studies conducted in France [32,34,78]. The number of adult ticks (n = 29)
represented 9.2% of our overall collection which was much lower than the number of
nymphs collected (n = 315). This is in line with other studies that have employed a
dragging protocol to collect questing ticks [78–80]. We chose to study I. ricinus nymphs
only for three main reasons. Firstly, when collecting questing ticks using dragging, which is
one of the most commonly used methods, the number of nymphs collected has always been
reported higher than the number of adults [78,81,82]. Secondly, even though depending
on many factors, researchers pointed that there are more chances to get bitten by I. ricinus
nymphs rather than by adults at recreational sites [83]. Finally, nymphs were also described
to be the principal vectors that transmit Borreliella to humans in Europe [84]. This analysis
was performed at the individual level to also determine the importance of inter-individual
variations and to investigate whether it is possible to define a core microbiota. Studies
regarding the total microbial composition in ticks are scarce. In particular, many studies
have focused on the detection of pathogens by molecular methods such as PCR and
qPCR [32,33,78,85]. These methods, while robust, do not detect total bacterial diversity
inside ticks. With the expansion and improvement of sequencing methods at lower costs,
systematic sequencing of samples might be an alternative to study the total microbiota
rather than focusing on pathogens only. This is especially important since numerous
microbial interactions have been proven to occur inside the tick gut [5,17].

To access the internal microbiota of these ticks by metabarcoding 16S, several elements
had to be taken into consideration. Intra-nymph microbiota analysis is challenging due
to the low biomass of the samples. In such samples, contaminants can account for a large
portion of all sequences if not treated carefully [86]. It is also necessary to get rid of the
contamination introduced by all the elements associated with the cuticle, such as external
flora and DNA. A recent bleach-based cuticular disinfection was shown to be efficient
in removing cuticular bacterial DNA without impacting the internal bacterial diversity
hosted by ticks [50]. The number of sequences for each sample is also drastically reduced
when compared to ethanol-based disinfection as only internal microbiota is kept. As
recently underlined, all this information raises questions about the real intra-tick bacterial
diversity [28,86].

From 826,697 reads from 180 individuals, we dropped to 203,857 (175 individuals)
after quality analysis, which is an average of 1165 reads per individual. It is important
to point out that ticks are arthropods harboring not only bacteria but also protists and
parasitoids that can themselves be infected by bacteria. It has been shown that genera such
as Wolbachia and Arsenophonus detected in ticks arise most likely from parasitoid infection
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rather than belonging to the tick microbiota itself [87,88]. In this study, reads assigned to
Wolbachia and Arsenophonus represent 1.40% and 0.76% of the total, respectively.

A core microbiota was defined at the sampling site scale. It was composed of 156 taxa
and accounted for 192,585/203,857 reads (94.47%). In this core microbiota, an important
number of reads (149,385) were assigned to only twenty taxa, of which the most abundant
is Ralstonia spp. The presence of Ralstonia spp. in ticks has already been documented but
remains scarce in literature [21,89,90]. This genus contains species omnipresent in soils and
humid environments [91]. Therefore, they can be in contact with ticks during their natural
cycle. However, it is surprising to find them at such a high abundance within our samples,
given that the bleach-based cuticle disinfection protocol allows the removal of external
bacteria and DNA. Candidatus Midichloria mitochondrii is the second most prevalent genera
identified in our samples. It has been described as an intramitochondrial endosymbiont
infecting I. ricinus females [92]. This bacterium is vertically transmitted to the offspring [93],
which explains the high abundance found in individual nymphs. The roles played by
this bacterium are still unknown, yet several hypotheses are considered [28,94]. In 2018, a
study highlighted the role of C. Midichloria mitochondrii in the growth of Rickettsia parkeri
(a pathogenic species of Rickettsia) in Amblyomma maculatum [95]. It must be noted that
C. Midichloria mitochondrii is not as prevalent in A. maculatum as it is in I. ricinus. Both
Ralstonia spp. and C. Midichloria mitochondrii are also members of the individual core
bacterial microbiota defined in this study. This internal core microbiota is composed of
twenty-one taxa present in at least 50% of nymphs. However, it is challenging to define a
universal core bacterial microbiota in ticks since its composition relies on numerous factors.

Among the sequences assigned to the most abundant genera, high percentages of
sequences were assigned to Borreliella (1.76%) and Rickettsia (4.19%), bacterial genera
known to contain pathogenic species. A total of 603 bacterial genera were unambiguously
identified in the dataset, indicating that the I. ricinus internal microbiota contains a few
abundant bacterial genera associated with a highly diverse but poorly represented bacterial
community. Interestingly, reads assigned to the genus Legionella were also retrieved in
low abundance (0.06%). Only a couple of studies have observed the presence of reads
belonging to this genus in tick samples. One is a metagenomic analysis of the pathobiome
of Haemaphysalis longicornis (adults, nymphs and larvae) collected on Staten Island in
the United States [96], and the other is a pyrosequencing analysis of the microbiota of
Hyalomma [97]. This is of interest since several species are known to be pathogenic to
humans [98]. Moreover, these bacteria and their natural vectors (phagotrophic protists)
are ubiquitous in humid soils and thus can share a common habitat with ticks that are
sensitive to desiccation and require an important hygrometry [99]. It is not yet possible
to tell whether ticks are able to vectorize the protist and/or Legionella or not. In our
study, 27.43% of individuals were positive for Rickettsia. Prevalence rates of Rickettsia
positive ticks reported in the literature are variable. Overall, the rate retrieved in our study
seems higher than the prevalence reported in other studies [100,101]. In general, Rickettsia
detection is carried out using specific molecular amplification by PCR and qPCR. Such
targeted methods can limit the detection of certain species of Rickettsia, resulting in a lower
prevalence rate. On the contrary, using global amplification as conducted in this study can
induce false positives (especially for individuals harboring few reads assigned to Rickettsia)
and thus overestimating the prevalence rate.

In this study, a specific focus was made on Borreliella since LD is the most widespread
vector-borne disease in the Northern Hemisphere. Here, 20 nymphs (11.4%) were positive
for Borreliella. A phylogenetic analysis, including all 16S rRNA coding gene reads from
reference strains of Borreliella, allowed the assignment of ASVs to one of the four clusters
consisting of one or two genospecies. The most prevalent genospecies found in this study
was B. afzelii, with 15 infected nymphs (8.57%). B. burgdorferi ss/B. bissetti, B. garinii/B.
lusitaniae and B. spielmanii/B. valaisiana were the others genospecies identified but in
lower abundance. Numerous studies about I. ricinus infected by Borreliella have been
carried out over the last decades, generating hundreds of scientific articles on the matter
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with thousands of ticks analyzed. Several meta-analysis studies have been published,
compiling published data over a 34 years period (1984–2017) [48,102–104]. It clearly
appears that the infection rate of ticks depends on the life stage considered. For nymphs,
the infection rate was between 10.8% [104] and 11.8% [48], which is consistent with the
infection rate found in our study. Our data are also in agreement with previous studies
highlighting a B. afzelii infection rate of around 9% in field-collected I. ricinus (both adults
and nymphs) [32,33]. Moreover, the most prevalent genospecies in Europe are B. afzelii,
B. garinii and B. valaisiana [102], three of the four genera retrieved in our dataset. Co-
infection of I. ricinus with several bacteria, whether they are pathogenic or not, is a field
of growing interest since the emergence of the pathobiome concept [105]. Ticks harbor
a wide diversity of microorganisms, legitimating the fact that they can vectorize several
pathogens at the same time. This could represent health concerns in the context of co-
transmissions to humans. Here, reads assigned to at least two different Borreliella clusters
were found in 11 individuals (11/20; 55%). B. afzelii and B. garinii/B. lusitaniae together
with B. burgdorferi ss/B. bissetti and B. garinii/B. lusitaniae were the most co-detected partners
(3/11 each). In addition, one case of triple co-detection and one case of quadruple co-
detection were observed. Few studies focusing on pathogens detection in I. ricinus have
found high rates of co-infection with at least two pathogens [32,33]. Among them, co-
infections with at least two species of Borreliella were the most prevalent, especially between
B. afzelii and B. garinii. It should be stressed that adult ticks were included in both studies,
so they have an extra blood meal and therefore more chances to carry pathogens. This
could be an explanation for the higher co-infection prevalence they describe. However,
co-detections of several Borreliella genospecies in nymphs are intriguing. Studies about
Borreliella infection in animals have previously highlighted preferential hosts depending
on the genospecies [106,107]. B. garinii is commonly found in birds, whereas B. afzelii is
more commonly detected in rodents. However, co-infections by two or more Borreliella
in nymphs are contradictory to these results. Since questing nymphs only had one blood
meal, if co-infections are detected at this life stage, they most likely arise from a co-infection
in the host on which the blood meal was taken or by co-feeding. The latest has been proven
to be a direct tick-to-tick mode of bacterial transmission [4]. If larvae feed alongside already
infected ticks, they can be infected with multiple pathogens during a single blood meal,
resulting in co-infections in the nymphal stage.

5. Conclusions

To conclude, this study, carried out on nearly 200 nymphs collected at different
locations, allowed us to describe the internal bacterial microbiota of each individual and
also to define a core microbiota of 156 taxa. The inter-individual variations observed
depend only slightly on the sampling site. Finally, one nymph out of ten collected carried
Borreliella sp. At least two Borreliella genospecies were also co-detected in 55% of infected
nymphs, which raises the question of interactions between these bacteria but also of their
potential co-transmission to a host. To go further, studies characterizing intra-tick tissue
tropism of the co-detected Borreliella strains should be carried out.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/microorganisms9071526/s1, Figure S1. Dendrogram drawn based on the Bray-Curtis dis-
similarity index. Bacterial diversity in samples written in red most likely arise from experimental
contaminants. These samples were removed from the dataset for further analysis; Figure S2. Rar-
efaction curves of all individuals based on (a) number of observed ASVs; (b) Shannon H index. All
samples are represented as a single bar and colored based on the sampling site. All curves reached
a plateau for sequencing depths higher than 2500 reads; Figure S3. Violin plot of alpha diversity
metrics. (a) Shannon H index; (b) Shannon evenness index; (c) Number of observed ASVs. All
individuals from each sampling site were included to generate the violin plots; Figure S4. Krona
chart of the core microbiota defined in this study. The diagram was generated using the 156 taxa
found at least once at each sampling site. The relative abundance of each taxa was calculated by
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dividing the number of reads affiliated to each taxon by the total number of reads (203,857) and are
presented as percentages.
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