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Abstract: To support the deployment of serology assays for population screening during the COVID-
19 pandemic, we compared the performance of three fully automated SARS-CoV-2 IgG assays:
Mindray CL-900i® (target: spike [S] and nucleocapsid [N]), BioMérieux VIDAS®3 (target: receptor-
binding domain [RBD]) and Diasorin LIAISON®XL (target: S1 and S2 subunits). A total of 111 SARS-
CoV-2 RT-PCR- positive samples collected at ≥21 days post symptom onset, and 127 pre-pandemic
control samples were included. Diagnostic performance was assessed in correlation to RT-PCR and a
surrogate virus-neutralizing test (sVNT). Moreover, cross-reactivity with other viral antibodies was
investigated. Compared to RT-PCR, LIAISON®XL showed the highest overall specificity (100%),
followed by VIDAS®3 (98.4%) and CL-900i® (95.3%). The highest sensitivity was demonstrated
by CL-900i® (90.1%), followed by VIDAS®3 (88.3%) and LIAISON®XL (85.6%). The sensitivity of
all assays was higher in symptomatic patients (91.1–98.2%) compared to asymptomatic patients
(78.4–80.4%). In correlation to sVNT, all assays showed excellent sensitivities (92.2–96.1%). In addition,
VIDAS®3 demonstrated the best correlation (r = 0.75) with the sVNT. The present study provides
insights on the performance of three fully automated assays, which could help diagnostic laboratories
in the choice of a particular assay according to the intended use.
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1. Introduction

The COVID-19 pandemic, caused by the severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2) [1,2] was first reported in December 2019 in Wuhan, China [3,4].
The virus has rapidly spread and become a major public health concern, resulting in a total
of 80,818,467 confirmed cases and 1,766,847 deaths, as of 27 December 2020 [5].

Although molecular detection techniques have played an important role in testing and
contact tracing efforts, virus elimination is perhaps no longer feasible due to the extensive
and insidious spread of the virus. Thus, further diagnostic methods are needed to guide
the most efficient use of public health measures. The gradual lifting of restrictions and
control measures will require active surveillance to allow early detection of new cases or
clusters, along with retrospective contact tracing and quarantine, most likely combined
with physical distancing measures and augmented protection of those at higher risk. Serol-
ogy testing is ideally suited for this purpose as it can inform the need for contact tracing,
investigation of asymptomatic and other undocumented infections, accurate determination
of the infection fatality rate, assessment of herd immunity, and the level and duration of
protective immunity in the population at large and in specific groups [6], which remains a
key knowledge gap in COVID-19 research.

Laboratories and companies are racing to produce reliable and versatile serological
tests that can detect SARS-CoV-2 infection with sufficient specificity and sensitivity [6].
The required performance of a serological test will depend on the purpose of testing.
Numerous commercial serological tests have been developed and introduced into the
market [7,8]. However, due to the need for their rapid development and implementation,
in many countries, the normally stringent regulatory criteria have not been applied to
many of them [6]. Thus, persistent concerns remain regarding the accuracy and reliability
of the currently available SARS-CoV-2 immunoassays.

Serological tests typically detect antibodies against spike protein (S) and/or nucleopro-
tein (N) since these are the most immunogenic proteins of SARS-CoV- 2 [9]. Recently, it has
been shown that antibodies directed against the S1 subunit of the SARS-CoV-2 S protein,
specifically against the receptor-binding domain (RBD), strongly correlate with virus neu-
tralization [9]. Thus, the likelihood of predicting protective antibody responses increases
when using either the S1 antigens or the RBD in the assay. The specificity of antibody
tests in detecting antibodies against SARS CoV-2 might be hampered by the presence of
antibodies against other circulating coronaviruses in the population [10], and thus, testing
for cross-reactivity is crucial. When selecting an appropriate antibody test for a specific
aim, it is necessary to develop a broad understanding of antibody specificities, kinetics,
and functions [11]. The lack of knowledge of antibody kinetics in emerging viral infections
during an outbreak is always a challenge for validation of serological tests. Recent studies
on have shown that seroconversion rates have reached as high as 100% after 10–14 days,
and that antibody levels correlate with clinical severity [9,12,13]. This is in concordance
with reports on the Middle East Respiratory Syndrome coronavirus (MERS-CoV) infection,
in which antibody response varies according to disease severity, with mild and asymp-
tomatic infections resulting in weaker immune responses [12]. Thus, sufficient samples
from persons with mild and asymptomatic disease should be included in validation studies
for useful interpretation and extrapolation of results to population screening.

In the present study, we aimed to evaluate the performance of three commercially
available automated analyzers for the detection of anti-SARS-CoV-2 IgG antibodies using
confirmed RT-PCR samples that were collected from symptomatic and asymptomatic RT-
PCR confirmed cases. In addition, for the first time, we assessed the performance of the
three commercial automated assays in correlation to a surrogate virus neutralization test
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(sVNT). The CL-900i® detects anti-S and anti-N antibodies, LIAISON®XL-Diasorin detects
anti-S1 and anti-S2 antibodies, and VIDAS®3- bioMérieux detects antibodies directed
against the RBD of the S1 subunit. We assessed the sensitivity, specificity, Cohen’s Kappa,
and estimated the positive and negative agreement values of the three automated assays in
correlation to the gold standard RT-PCR, and the sVNT. We also performed concordance
assessment among the assays. The strength of this study lies in the diversity of the sample
population characteristics, with ~89% of the total population of Qatar being expatriates
from over 150 countries [13–16].

2. Materials and Methods
2.1. Study Design, Ethical Approval, and Clinical Samples

We evaluated the performance of three CE-marked fully automated analyzers: CL-
900i® (Mindray Bio-Medical Electronics Co., Shenzhen, China), VIDAS®3 (bioMérieux,
Marcy-l’Étoile, France) and LIAISON®XL (DiaSorin, Saluggia, Italy) for detecting anti-
SARS-CoV-2 IgG antibodies. This project was approved by Center for Disease Control
(CDC) at Hamad Medical Corporation (HMC), the Primary Health Care Corporation
(PHCC) and Qatar University (QU).

All specimens used in the study were in a hospital setting, or professional laboratory
acquisitioned for routine testing, and shipped on ice packs to our laboratory. According to
CDC recommendations, all samples were stored in a refrigerator at 4 ± 2 ◦C for up to 72 h
after collection if a delay in shipping or processing was expected. Samples were centrifuged
at 2500 rpm for 10 min to facilitate plasma/cell phase separation. The resulting upper
plasma layer was extracted, and tested fresh, or aliquoted to minimize future freeze-thaw
cycles, and stored at –80 ◦C for later analyses. Frozen samples were thawed on ice before
the analysis.

To determine the specificity of each automated analyzer and to investigate cross-
reactivity, we used a well-defined panel of pre-pandemic plasma samples collected from
blood donors before 2019 and used in previous studies [17–25]. The panel comprised
of 127 plasma samples seropositive for (a) other human coronaviruses (n = 18), (b) non-
CoV respiratory viruses (n = 38), (c) non-respiratory viruses (n = 65), and (d) antinuclear
antibodies (ANAs) (n = 6).

Sensitivity was determined using sera collected from 111 RT-PCR-confirmed SARS-
CoV-2 patients, with different COVID-19 clinical outcomes. Qiagen RNA extraction kit
was used to extract RNA from nasopharyngeal swab specimens. The extracted RNA was
tested for SARS-CoV-2 using the SuperscriptIII OneStep RT-PCR kit (Cat No. 12594100,
ThermoFisher, Waltham, MA, USA). Each sample was tested using three sets of primers:
one set targeting the E gene for screening and the other two sets targeting the RdRp gene for
confirmation as described in [26]. Cycle threshold (CT) values below 32 were considered
positive. All samples were collected ≥21 days of symptoms onset. Clinical records of
the patients were reviewed to determine the disease’s severity and were categorized into:
(a) symptomatic (n = 56), and (b) asymptomatic (n = 51). All specimens were stored at
−80 ◦C until use.

2.2. Automated-IgG Assays

Commercial automated analyzers from three different companies were used for the
detection of anti-SARS-CoV-2 IgG antibodies in the sera of COVID-19 patients and the
control group. These assays are: (i) CL-900i® SARS-CoV-2 IgG (Cat. No. SARS-CoV-
2 IgG121, Mindray, Shenzhen, China) [27,28] (ii) VIDAS®3 SARS-CoV-2 IgG (Cat. No.
423834, bioMérieux, Marcy-l’Étoile, France) [29,30], (iii) LIAISON®XL SARS-CoV-2 IgG
(Cat. No. 311450, Diasorin, Saluggia, Italy) [30,31]. All tests were carried out according
to the manufacturers’ instructions. The characteristics of the assays, including detection
method, targeted antigens, sample volume, result interpretation, and reported sensitivity
and specificity are summarized in Table 1.
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Table 1. Characteristics of the automated analyzers used for SARS-CoV-2 IgG antibodies detection.

Automated
Analyzer

Detection
Method

Targeted
Antigen(s) a Sample Volume Result

Interpretation
Reported

Sensitivity
Reported

Specificity Reference

VIDAS®3 ELFA S1 RBD 100 µL (including
the dead volume)

<1 AU/mL:
Negative

≥1 AU/mL:
Positive

100%
(≥15 days) 98.5% [29,30]

CL-900i® CLIA S and N
proteins

10 µL (this volume
does not include
the dead volume)

<10 AU/mL:
Negative

≥10 AU/mL:
Positive

100%
(≥15 days) 94.9% [27,28]

LIAISON®XL CLIA S1/S2

170 µL of specimen
(20 µL specimen

+150 µL dead
volume)

<12 AU/mL:
Negative

12–15 AU/mL:
Borderline

>15 AU/mL:
Positive

97.5%
(≥15 days) 98.2% [30,31]

ELFA, Enzyme Linked Fluorescent Assay; CLIA, chemiluminescence immunoassay; RBD, receptor-binding domain. a S1 and S2 are
subunits of the spike protein; the RBD is a domain within the S1 subunit; N is the nucleocapsid protein.

2.3. Neutralization Assay (sVNT)

The SARS-CoV-2 surrogate virus neutralization test (sVNT) was used as a reference
in this study (Cat. No. L00847, GenScript, NJ, USA) [32,33] for detecting neutralizing
antibodies. This assay was developed by GenScript® Biotech and is now available com-
mercially as 96-well microplates for large serological screening for neutralizing antibodies
targeting the RBD domain of the S1 subunit. Moreover, this assay demonstrated a high
correlation with the pseudovirus neutralization test (pVNT, R2 = 0.84) and the complete
virus-neutralization test (cVNT, R2 = 0.85) [33]. Validation of sVNT showed a specificity of
99.9% and a sensitivity of 95.0–100% [33]. In this study, all SARS-CoV-2 RT-PCR- positive
plasma samples were tested for neutralizing antibodies against the RBD protein using the
sVNT. According to the manufacturer’s instructions, a value result ≥20% signal inhibition
was considered positive (neutralizing antibodies were detected), and <20% signal inhibition
was considered negative (neutralizing antibodies were not detected).

2.4. Statistical Analysis

The diagnostic assessment of the three automated analyzers with RT-PCR for SARS-
CoV-2 resulted in three cross-tabulations for each COVID-19 patient group versus the
control group. Using RT-PCR as the reference standard, overall percent agreement, sensi-
tivity, specificity, and Cohen’s Kappa statistic were calculated to assess the performance of
each assay. Informed by literature, borderline results were considered positive [3,34].

Receiving operating characteristic (ROC) curves were conducted to study the diagnos-
tic performance of each assay. The area under the curve (AUC) was estimated. Statistically,
the larger the AUC, the more the accurate a tool can be considered in its overall perfor-
mance. An AUC of 0.9–1.0 is considered excellent, 0.8–0.9 very good, 0.7–0.8 good, 0.6–0.7
sufficient, 0.5–0.6 bad, and less than 0.5 considered not useful [35]. The cut-off values
for optimal sensitivity and specificity were determined by calculating Youden’s index J
(J = sensitivity + specificity − 1). The Youden index J represents the point on the curve in
which the distance to diagonal line (line of equality) is maximum [36].

Using the GenScript sVNT as the reference standard, the sensitivity for each automated
analyzer was also calculated. Concordance analysis between the three automated assays
along with the sVNT were conducted and resulted in 20 test combinations. These con-
cordance measures include overall, positive, and negative percent agreement, as well as
Cohen’s Kappa statistic. The latter measure is a standard and robust metric that estimates
the level of agreement (beyond chance) between two diagnostic tests. Ranging between
0 and 1, a Kappa value <0.40 denotes poor agreement, 0.40–0.59 denotes fair agreement,
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0.60–0.74 denotes good agreement, and ≥0.75 denotes excellent agreement [37]. The signif-
icance level was indicated at 5%, and a 95% confidence interval (CI) was reported for each
metric. Pearson correlation coefficient (r) was calculated. For absolute values of Pearson’s r,
0–0.19 is denoted as very weak, 0.2–0.39 as weak, 0.40–0.59 as moderate, 0.6–0.79 as strong
and 0.8–1 as very strong correlation [38]. All calculations were performed using GraphPad
Prism Version 8.2.1.

3. Results
3.1. Diagnostic Performance Using RT-PCR as a Reference Test

The overall diagnostic performance of each automated analyzer in comparison with
RT-PCR is summarized in Table 2 and Figure 1. The overall percent agreement with RT-PCR
was above 90% for all the three analyzers; VIDAS®3 93.7% (95% CI: 89.9–96.2%), CL-900i®

92.9% (95% CI: 88.9–95.5%), and LIAISON®XL 93.3% (95% CI: 89.4–95.8%) (Table 2A). The
highest sensitivity was estimated at 90.1% (95% CI: 83.1–94.4%) for CL-900i® as shown in
Figure 1. The highest specificity was estimated at 100% (95% CI: 97.1–100%) for LIAISON®XL
(Table 2A). The Cohen’s Kappa statistic denoted excellent agreement for all three automated
analyzers; VIDAS®3 at 0.87 (95% CI: 0.83–0.92); CL-900i® at 0.86 (95% CI: 0.81–0.90); and
LIAISON®XL at 0.86 (95% CI: 0.82–0.91) (Table 2A).
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Figure 1. Sensitivity of each assay in samples collected ≥ 21 days post symptom onset using RT-PCR
as a reference test. Data are presented for 111 RT-PCR confirmed SARS-CoV-2 samples categorized
into: symptomatic (n = 56); asymptomatic (n = 51); and unclassified (n = 4); run on each automated
assay; VIDAS®3, CL-900i®, LIAISON®XL. Chi-square test was used to detect the presence of a
statistically significant difference in the sensitivity of each assay between the symptomatic and
asymptomatic samples. * p < 0.05, *** p < 0.0001.

In symptomatic COVID-19 patients, the overall percent agreement with RT-PCR was
above 95% for all the three analyzers; VIDAS®3 97.8% (95% CI: 94.5–99.1%); CL-900i®

96.2% (95% CI: 92.3–98.1%), and LIAISON®XL 97.3% (95% CI: 93.8–98.8%) (Table 2B). The
highest sensitivity was estimated at 98.2% (95% CI: 90.6–99.7%) for CL-900i® as shown in
Figure 1. The highest specificity was estimated at 100% (95% CI: 97.1–100%) for LIAISON®XL
(Table 2B). The Cohen’s Kappa statistic denoted excellent agreement for all three automated
analyzers; VIDAS®3 at 0.95 (95% CI: 0.20–0.98); CL-900i® at 0.91 (95% CI: 0.87–0.95); and
LIAISON®XL at 0.93 (95% CI: 0.90–0.97) (Table 2B).

In asymptomatic COVID-19 patients, the overall percent agreement with RT-PCR was
above 90% for all the three analyzers; VIDAS®3 92.7% (95% CI: 89.8–96.2%); CL-900i® 91.1%
(95% CI: 85.9–94.4%), and LIAISON®XL 93.8% (95% CI: 89.3–96.5%)
(Table 2C). The highest sensitivity was estimated at 80.4% (95% CI: 67.5–89.0%) for CL-900i®

as shown in Figure 1. The highest specificity was estimated at 100% (95% CI: 97.1–100%)
for LIAISON®XL (Table 2C). The Cohen’s Kappa statistic denoted excellent agreement for
all three automated analyzers; VIDAS®3 0.81 (95% CI: 0.75–0.87); CL-900i® 0.77 (95% CI:
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0.71–0.84); and LIAISON®XL 0.84 (95% CI: 0.78–0.90) (Table 2C). Furthermore, most tested
performance parameters, particularly sensitivity, were greater in symptomatic samples
than the asymptomatic (Figure 1).

Table 2. Diagnostic assessment of the three automated analyzers for SARS-CoV-2 IgG detection using RT-PCR as a reference
test for the (A) overall sample, (B) symptomatic patient group, and (C) asymptomatic patient group.

RT-PCR Overall Percent
Agreement Sensitivity Specificity Cohen’s Kappa

Statistic

Positive Negative Total % (95% CI) % (95% CI) % (95% CI) k (95% CI)

(A)

Negative 11 121 132
Total 111 127 238

VIDAS®3
assay

Positive 98 2 100
93.7 (89.9–96.2)

88.3
(81.0–93.0)

98.4
(94.5–99.6) 0.87 (0.83–0.92)Negative 13 125 138

Total 111 127 238

CL-900i®

assay

Positive 100 6 106
92.9 (88.9–95.5)

90.1
(83.1–94.4)

95.3
(90.1–97.8) 0.86 (0.81–0.90)Negative 11 121 132

Total 111 127 238

LIAISON®XL
assay

Positive 95 0 95
93.3 (89.4–95.8)

85.6
(77.9–90.9)

100
(97.1–100) 0.86 (0.82–0.91)Negative 16 127 143

Total 111 127 238

(B)

VIDAS®3
assay

Positive 54 2 56
97.8 (94.5–99.1)

96.4
(87.9–99.0)

98.4
(94.5–99.6) 0.95 (0.92–0.98)Negative 2 125 127

Total 56 127 183

CL-900i®

assay

Positive 55 6 61
96.2 (92.3–98.1)

98.2
(90.6–99.7)

95.3
(90.1–97.8) 0.91 (0.87–0.95)Negative 1 121 122

Total 56 127 183

LIAISON®XL
assay

Positive 51 0 51
97.3 (93.8–98.8)

91.1
(80.7–96.1)

100
(97.1–100) 0.93 (0.90–0.97)Negative 5 127 132

Total 56 127 183

(C)

Negative 10 121 131
Total 51 127 178

VIDAS®3
assay

Positive 40 2 42
92.7 (89.8–96.2)

78.4
(64.7–88.7)

98.4
(94.5–99.6) 0.81 (0.75–0.87)Negative 11 125 136

Total 56 127 178

CL-900i®

assay

Positive 41 6 47
91.0 (85.9–94.4)

80.4
(67.5–89.0)

95.3
(90.1–97.8) 0.77 (0.71–0.84)Negative 10 121 131

Total 51 127 178

LIAISON®XL
assay

Positive 40 0 40
93.8 (89.3–96.5)

78.4
(65.4–87.5)

100
(97.1–100) 0.84 (0.78–0.90)Negative 11 121 131

Total 51 127 178

The overall distribution of the values generated by each automated analyzer against
the cut-offs (dashed lines) is shown in Figure 2. As depicted in the figure, only CL-900i®

showed a significant difference between the symptomatic and asymptomatic samples
(p = 0.0063), suggesting that CL-900i® could be used in the future as a simi-quantitative
assay by performing an in-point titration curve.
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Figure 2. Distribution of numerical results obtained from each automated analyzer. Results are represented as dot plots
to review the scatter of values around the prespecified assay cut-off (shown as dashed lines). Data are presented for 111
RT-PCR confirmed SARS-CoV-2 samples (symptomatic, asymptomatic, and unclassified), and 127 pre-pandemic control
samples for each of the three automated assays. The dashed lines represent the cut-off values for the automated assays. The
continuous lines represent the median and confidence interval (CI) for each group. One-way analysis of variance (ANOVA)
was used to compare the differences between groups.

3.2. Evaluation of Potential Cross-Reactivity with Other Viruses

The specificity of each automated analyzer in relation to sample cross-reactivity with
antibodies against various viruses is summarized in Table 3. Of the 127 pre-pandemic con-
trol samples, eight sera samples cross-reacted; two samples cross-reacted with VIDAS®3,
while the remaining six samples cross-reacted with CL-900i®. In the other-coronaviruses
subgroup, CL-900i® demonstrated the lowest specificity at 66.7% (95% CI: 43.8–83.7%)
compared to both VIDAS®3 and LIAISON®XL at 100% (95% CI: 82.4–100%). For non-CoV
respiratory viruses (influenza A and RSV), both CL-900i® and LIAISON®XL showed no
cross-reactivity at a specificity of 100% (95% CI: 90.8–100%) for both; whereas VIDAS®3
cross-reacted with one sample demonstrating the lowest specificity among the three au-
tomated analyzers at 97.4% (95% CI: 86.4–99.5%). For non-respiratory viruses, no cross-
reactivity was observed by the three automated analyzers, demonstrating a specificity of
100% (95% CI: 94.4–100%). For ANAs subgroup, both CL-900i® and LIAISON®XL showed
no cross-reactivity with a specificity of 100% (95% CI: 61.0–100%); whereas VIDAS®3
cross-reacted with one sample with a specificity of 83.3% (95% CI: 43.7–97.0%).

Table 3. The specificity of each automated analyzer according to the negative control subgroups (n = 127).

Subgroup with IgG/IgM
Antibodies Against: No. of Samples

VIDAS®3 CL-900i® LIAISON®XL

% (95% CI) % (95% CI) % (95% CI)

Other human CoVs
(SARS-CoV, MERS-CoV,

HCoV-229E, NL63, OC43, and
HKU1)

18 18/18;
100 (82.4–100)

12/18;
66.7 (43.8–83.7)

18/18;
100 (82.4–100)

Non-CoV respiratory viruses
(Influenza A and RSV) 38 37/38;

97.4 (86.5–99.5)
38/38;

100 (90.8–100)
38/38;

100 (90.8–100)
Non-respiratory viruses

(HEV, HGV, HCV, HBV, DENV,
WNV, CHIKV, B19, HSV-1, HSV-2,

EBV, HHV-6, and HHV-8)

65 65/65;
100 (94.4–100)

65/65;
100 (94.4–100)

65/65;
100 (94.4–100)

Antinuclear antibodies (ANAs) 6 5/6;
83.3 (43.7–97.0)

6/6;
100 (61.0–100)

6/6;
100 (61.0–100)

Overall specificity 127 125/127;
98.4 (94.5–99.6)

121/127;
95.3 (90.1–97.8)

127/127;
100 (97.1–100)
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3.3. Receiver Operating Characteristics (ROC) Curve Analysis

ROC curve analysis was performed. As depicted in Figure 3, a performance with
AUC > 0.90, denoted as excellent performance was observed for all three automated an-
alyzers; VIDAS®3: 0.97, CL-900i®: 0.97, LIAISON®XL: 0.96, with p < 0.0001. Based on
the ROC curves, the optimized cut-off indices were derived. We chose optimal decision
thresholds for cut-offs based on the Youden’s index (maximum sum of sensitivity and speci-
ficity). The cut-offs were >0.48, >6.83, and >4.78 for VIDAS®3, CL-900i® and LIAISON®XL,
respectively. The corresponding manufacturer’s suggested cut-offs were ≥1, >10, and
15, respectively. Applying these thresholds, the overall sensitivity of the VIDAS®3 assay
improved (93.7% vs. 88.3%), and the specificity was unaffected (98.4%). CL-900i® showed a
slightly improved sensitivity (91.9% vs. 90.1%), while the specificity was unaffected (95.3%).
Using the cut-off index for LIAISON®XL, the overall sensitivity improved significantly
(92.8% vs. 85.6%), and the specificity remained at 100%.
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Figure 3. Receiver Operating Characteristic (ROC) curves for each automated analyzer. An AUC of
0.9–1.0 is considered excellent, 0.8–0.9 very good, 0.7–0.8 good, 0.6–0.7 sufficient, 0.5–0.6 bad, and
less than 0.5 considered not useful [35].

3.4. Diagnostic Performance Using sVNT as the Reference Test

The sensitivities of the three automated analyzers, using GenScript sVNT as a reference
assay, are summarized in Figure 4. As depicted in the figure, all three assays showed a
sensitivity above 90%. The highest overall sensitivity was estimated at 96.1% (95% CI:
90.4–98.5%) for CL-900i®, followed by 95.1% (95% CI: 89.1–97.9%) for VIDAS®3 and 92.2%
(95% CI: 85.4–96.0%) for LIAISON®XL. In symptomatic COVID-19 patients, the highest
sensitivity was estimated at 100% (95% CI: 93.5–100%) for CL-900i®, followed by 98.2%
(95% CI: 90.4–99.7%) for VIDAS®3 and 92.7% (95% CI: 82.7–97.1%) for LIAISON®XL. In
asymptomatic COVID-19 patients, all three analyzers showed an equal performance, with a
sensitivity of 90.9% (95% CI: 78.8–96.4%).

3.5. Concordance Assessment among the SARS-CoV-2 IgG Automated Assays and the GenScript
sVNT Test

The tests’ agreements were studied in a pairwise fashion applying inter-rater agreement
statistics; (Cohen’s Kappa statistic, k) (Table 4). The overall percent agreement ranged from
92.8% (95% CI: 86.4–96.3%) for sVNT/LIAISON®XL test combination, and 95.5% (95% CI:
89.9–98.1%) for sVNT/VIDAS®3, sVNT/CL-900i®, and VIDAS®3/LIAISON®XL test combi-
nations (Table 4). The positive percent agreement ranged from 92.2% (95% CI: 85.4–96.0%)
for LIAISON®XL vs. sVNT to 100% (95% CI: 96.1–100%) and 100% (95% CI: 92.3–100%) for
sVNT vs. LIAISON®XL and sVNT vs. VIDAS®3, respectively. The negative percent agree-
ment ranged from 50.0% (95% CI: 28.0–72.0%) for sVNT vs. LIAISON®XL to 100% (95%; CI:
676–100%) for VIDAS®3 vs. SVNT and LIAISON®XL vs. SVNT. Cohen’s Kappa statistic de-
noted good to excellent agreement and ranged between 0.63 (95% CI: 0.52–0.74); denoted as for
LIAISON®XL/sVNT test combination and 0.80 (95% CI: 0.72–0.88) for LIAISON®XL/VIDAS®3
test combination.
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Figure 4. Sensitivity for each assay on samples collected ≥ 21 days post symptom onset in patients
with SARS-CoV-2 RT-PCR-confirmed infection using the sVNT as a reference test. Data are pre-
sented for 111 RT-PCR confirmed SARS-CoV-2 positive samples categorized as: overall (n = 111),
symptomatic (n = 56); and asymptomatic (n = 51); run on each automated assay; VIDAS®3, CL-900i®

SARS-CoV-2, and LIAISON®XL. Chi-square test was used to detect the presence of a statistically
significant difference in the sensitivity of each assay between the symptomatic and asymptomatic
samples. * p < 0.05, ** p < 0.001.

Table 4. Concordance assessment between the sVNT, VIDAS®3, CL-900i®, and LIAISON®XL tests.

Test Compared to
Overall Percent

Agreement
Positive Percent

Agreement
Negative Percent

Agreement
Cohen’s Kappa

Statistic

% (95% CI) % (95% CI) % (95% CI) k (95% CI)

sVNT

VIDAS®3
106/111;

95.5 (89.9–98.1)
98/103;

95.1 (89.1–97.9)
8/8;

100 (67.6–100) 0.74 (0.65–0.83)

CL-900i®
106/111;

95.5 (89.9–98.1)
99/103;

96.1 (90.4–98.5)
7/8;

87.5 (52.9–97.8) 0.71 (0.62–0.81)

LIAISON®XL
103/111;

92.8 (86.4–96.3)
95/103;

92.2 (85.4–96.0)
8/8;

100 (67.6–100) 0.63 (0.52–0.74)

VIDAS®3

sVNT 106/111;
95.5 (89.9–98.1)

98/98;
100 (92.3–100)

8/13;
61.5 (35.5–82.3) 0.74 (0.65–0.83)

CL-900i®
105/111;

94.6 (88.7–97.5)
96/98;

98.0 (92.5–99.4)
9/13;

69.2 (42.4–87.3) 0.72 (0.62–0.82)

LIAISON®XL
106/111;

95.5 (89.9–98.1)
94/98;

95.9 (90.0–98.4)
12/13;

92.3 (66.7–98.6) 0.80 (0.72–0.88)

CL-900i®

sVNT 106/111;
95.5 (89.9–98.1)

99/100;
99.0 (94.6–99.8)

7/11;
63.6 (35.4–84.8) 0.71 (0.62–0.81)

VIDAS®3
105/111;

94.6 (88.7–97.5)
96/100;

96.0 (90.2–98.4)
9/11;

81.8 (52.3–94.9) 0.72 (0.62–0.82)

LIAISON®XL
104/111;

93.7 (87.6–96.9)
94/100;

94.0 (87.5–97.2)
10/11;

90.9 (62.3–98.4) 0.71 (0.61–0.80)

LIAISON®XL

sVNT 103/111;
92.8 (86.4–96.3)

95/95;
100 (96.1–100)

8/16;
50.0 (28.0–72.0) 0.63 (0.52–0.74)

CL-900i®
104/111;

93.7 (87.6–96.9)
94/95;

98.9 (94.3–99.8)
10/16;

62.5 (38.6–81.5) 0.71 (0.61–0.80)

VIDAS®3
106/111

95.5 (89.9–98.1)
94/95;

98.9 (94.3–99.8)
12/16;

75.0 (50.5–89.8) 0.80 (0.72–0.88)

A pairwise correlational analysis of the numerical values obtained by each automated
IgG assay against the percentage inhibition obtained by sVNT was performed. As depicted
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in the correlation plots (Figure 5), all automated assays showed a moderate to strong
correlation with the sVNT with Pearson’s r ranging from 0.5678 for CL-900i®/sVNT to
0.7535 for VIDAS®3/sVNT (Figure 5). Thus, VIDAS®3 demonstrated the best correlation
with sVNT among all three automated IgG assays (Figure 5).
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Figure 5. Pairwise correlational analysis of the assay numerical values obtained by each automated assay. Correlation
plots of each automated assay with the sVNT. Pearson correlation coefficient (r) and p-value are indicated. Pearson’s r
of 0–0.19 is regarded as very weak, 0.2–0.39 as weak, 0.40–0.59 as moderate, 0.6–0.79 as strong and 0.8–1 as very strong
correlation, but these are rather arbitrary limits, and the context of the results should be considered. Data are presented
for 111 RT-PCR confirmed SARS-CoV-2 positive samples and 127 known negative samples, run on each automated assay;
VIDAS®3, CL-900i® SARS-CoV-2, and LIAISON®XL.

4. Discussion

The present study evaluated and compared the performance of three fully automated
analyzers for the detection of SARS-CoV-2 IgG antibodies: CL-900i®, VIDAS®3, and
LIAISON®XL. The sensitivity was evaluated using 111 samples collected from SARS-CoV-2
RT-PCR-positive symptomatic and asymptomatic patients. The specificity was evaluated
using 127 pre-pandemic control samples. To assess the diagnostic performance of the
three automated assays, RT-PCR was used as a reference test, in addition, for the first
time, the performance of the three automated assays was assessed in correlation to a sVNT,
which has recently been shown to correlate well with conventional virus neutralization
test (cVNT), the current gold standard for the detection of neutralizing antibodies [39].
In this study, convalescent plasma samples (collected ≥21 days post symptom onset or
positive PCR test) were used for the evaluation. It has been shown in several studies
that most SARS-CoV-2 antibody assays exhibit variable performance during the early
phases infection, but the concordance improves after day 14 of symptoms onset where
IgG seroconversion rate reaches 90% [12,40,41]. According to recent data on COVID-19
serology testing, the performance of serological tests was found to stabilize ≥21 days after
symptom onset [42]. Moreover, previous studies have shown that convalescent COVID-19
patients have higher neutralization activity [40,43]. Hence, these convalescent samples are
expected to provide a more accurate evaluation of the selected assays.

In the present study, we observed variable performance for the three automated assays.
Among the three automated assays, CL-900i® demonstrated the best overall performance
in detecting SARS-CoV-2 IgG antibodies. The overall performance of the three assays
was comparable to other detection methods such as Abbott Architect and Roche Cobas
6800, which were reported to have sensitivities of 93.5% and 95.2%, respectively, after 21
days of symptom onset, similar to CL-900i® with showed the highest sensitivity (90.1%)
(Table 2). Tang et al. reported a sensitivity of 89.4% by Roche assay [41], which was
comparable to the sensitivity obtained by VIDAS®3 (88.3%). Another study on VIDAS®3
reported a sensitivity of 86.7% [30]; similar to our findings. Further, among the three
automated assays, LIAISON®XL demonstrated the lowest sensitivity (85.6%) and failed to
detect SARS-CoV-2 specific antibodies in three samples that were detected by both CL-900i®

and VIDAS®3.
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It is important to note that our COVID-19 cohort comprised both asymptomatic
and symptomatic patients, of which most of the symptomatic cases were mild and non-
hospitalized cases. Our study demonstrated that the sensitivity was higher in symptomatic
patients compared to the asymptomatic patients (Table 2), which is in concordance with
other studies reporting a stronger humoral immune response in severe COVID-19 pa-
tients compared to non-severe cases [43,44]. It is noteworthy to mention that among the
111 samples collected from SARS-CoV-2 RT-PCR-positive patients, nine were negative by
all three assays, of which eight were collected from asymptomatic patients, and one was
from a pauci-symptomatic patient. These patients may have developed a weak antibody
response that was below the detection limit of the assays; thus, further investigation is
needed by other highly sensitive assays. Also, a false positive PCR result or high CT-value
(above 30 cycles) are plausible explanations, if an RT-PCR-positive COVID-19 participant
had no detectable antibodies. It is noteworthy to mention that false positive PCR results
due cross-contamination, or the interference of pure technical artifacts have been regularly
documented even in the most highly regarded laboratories [45–47].

To assess the specificity of the automated assays, we have compiled pre-COVID-
19 pandemic plasma sample obtained before the first appearance of the SARS-CoV-2
virus. Among the three assays, LIAISON®XL showed the highest specificity (100%),
similar to a previous study from the United States that reported a 99.9% specificity [48].
However, the sensitivity of LIAISON®XL in our study using RT-PCR as the reference test
was much lower (85.6%) compared to the one reported by the aforementioned study (100%
by day 17 post symptoms onset) [48]. Overall, the specificity of all three analyzers was
excellent, ranging from 95.3–100%). This is similar to what has been reported for other
automated assys such as Abbot Architect™ i2000 (95.1%) and Elecsys® Anti-SARS-CoV-2
(99.98%) reported elsewhere [35,49,50]. This could be due to the fact that both assays
(Abbot Architect and Roche cobas™) are N protein-based which is conserved among
coronaviruses leading to cross-reactivity.

The variability in assay performance does not seem to be dependent on the different
detection methods of each assay. CL-900i®, which is a CLIA-based assay, demonstrated
the best performance compared to LIAISON®XL, which is also a CLIA-based assay that
showed the lowest performance among all assays (Tables 1 and 2 and Figure 1). However,
this heterogenicity in assays performance is most likely dependent on the type of targeted
antigen. The three automated assays were all based on different antigen components
(Table 1). This is noteworthy, as antibody responses against each of these antigens may
develop with variable kinetics, which remains a subject for further investigation. Our study
showed higher specificities in assays targeting the S protein of SARS-CoV-2 (VIDAS®3 and
LIAISON®XL) compared to the one targeting both S and N proteins (CL-900i®). This is
because N protein is relatively small and more conserved than the S protein among human
coronaviruses, which could cause false-positive results through cross-reactivity [51,52].
Therefore, although targeting both S and N proteins improved the sensitivity of CL-900i®,
it decreased the specificity by causing cross-reaction with other coronaviruses.

To determine which assay best correlate with neutralizing antibodies, GenScript sVNT
test was used, a newly described VNT that has recently been shown to demonstrate an
excellent performance in correlation to cVNT, the current gold standard for detecting neu-
tralizing antibodies [33]. While cVNT provides the recognized benchmark, it is not practical
for large-scale implementation due to requirement of a live pathogen, high biosecurity
containment, and the need for highly trained personnel to perform the labor-intensive
procedures. sVNT on the other hand, was designed to detect total neutralizing anti-
bodies in an isotype- and species-independent manner without requiring a live virus or
high biosecurity containment, and thus making the test immediately accessible to the
global community [33]. In the present study, VIDAS®3 demonstrated the best correlation
with the sVNT in detecting IgG antibodies with neutralizing activity against SARS-CoV-2
(Figure 5), which was expected since both assays target the RBD of S1 protein. This suggests
that VIDAS®3 could be used for detecting IgG antibodies that correlate with protective
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immunity. Moreover, concordance assessment among the automated-IgG assays and the
sVNT showed a high overall percent agreement, nevertheless, a variation in the positive
and negative percent agreements was observed (Table 4).

In the present study, using sVNT as a reference test, all three automated assays
demonstrated a sensitivity above 90%, with the highest overall sensitivity estimated at
96.1% by CL-900i® (Figure 4). Recently, Abbott Architect was reported to have a sensitivity
of 80.5%, using microneutralization test (MNT) as a reference method [53]. It is noteworthy
to mention that the variation in sensitivity values reported in most studies on the currently
available commercial automated analyzers, could be in part due to the variation in the
time of sample collection. The sensitivity of serological tests is usually lower at early
stages of infection (<7 days), and the performance starts to stabilize ≥ 21 days after
symptom onset [8,42]. In correlation to the sVNT, LIAISON®XL had a 92.2% positive
percent agreement and 100% negative percent agreement (Table 4), this is in concordance
with another study reporting positive and negative percent agreements of 94.4% and 97.8%,
respectively, for LIAISON®XL using MNT as reference method [54].

In the present study, adaptation of lower cut-off values, as determined by the ROC
curve analysis (Figure 3), improved the sensitivities of all assays without affecting the
specificity. Thus, lower cut-off values may be used to improve the detection of SARS-CoV-2
IgG antibodies by the three assays. Other studies have also suggested using a lower cut-off
for LIAISON®XL (8.76 AU/mL and 9 AU/mL) [54,55]. The importance of using a cut-off
value that provides high sensitivity compared to one that provides low sensitivity, but high
specificity is affected by the disease prevalence. For screening purposes, higher thresholds
may be desirable, whereas for diagnosis purposes in high-prevalence settings, lower
thresholds are preferred. Therefore, it is recommended for each lab to establish its own
cut-off values to improve the clinical performance and avoid false-negative results.

Although serological assays do not replace molecular tests in diagnosing active infec-
tion, they serve as an essential tool to accurately estimate the seroprevalence of SARS-CoV-2
infection in the general population and to quantify the level of herd immunity [56]. This
could help ease the restrictions on human mobility and interactions without provoking
a significant resurgence of transmission and mortality. In addition, serological tests will
also help in assessing the potential effectiveness of vaccine trials and antibody-mediated
therapies [33,53].

Our study has several limitations. The RT-PCR-confirmed SARS-CoV-2 samples were
collected at ≥21 days post symptom onset. Thus, the results obtained for the diagnostic
efficiency could have been different if samples at different time points (<21 days) were
available. In addition, technical problems such as insufficient sample volume may have
affected the results. However, since all samples were drawn in duplicate, we were able to
continue the, notably by using multiple aliquotes that were kept in −80 ◦C for later use.

5. Conclusions

In conclusion, the three evaluated automated assays: CL-900i® SARS-CoV-2 IgG
(Mindray, China); VIDAS®3 SARS-CoV-2 IgG (bioMérieux, France); and LIAISON®XL
SARS-CoV-2 IgG (Diasorin, Italy), demonstrated high overall sensitivity and specificity for
the detection of IgG antibodies against SARS-CoV-2. Among the three automated assays,
CL-900i® demonstrated the best diagnostic performance. In addition, VIDAS®3 correlated
best with the neutralization test, and thus could serve as a tool for detecting protective IgG
threshold, particularly in vaccinated population.
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