
1

Supplementary Materials Collection: Simplified point-of-care full SARS-CoV-2 genome

sequencing using nanopore technology

Anton Pembaur1,*, Erwan Sallard2,*, Patrick Philipp Weil1, Jennifer Ortelt3, Parviz Ahmad-

Nejad3, Jan Postberg1,†

*both authors contributed equally

†corresponding author

1Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical

Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50,

58448 Witten, Germany

2Institute of Virology and Microbiology, Faculty of Health, Centre for Biomedical Education

& Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany

3HELIOS University Hospital Wuppertal, Institute of Medical Laboratory Diagnostics,

Centre for Clinical & Translational Research (CCTR), Witten/Herdecke University,

Heusnerstr. 40, 42283 Wuppertal, Germany

E-Mail addresses:

Anton Pembaur: anton.pembaur@uni-wh.de

Erwan Sallard: erwan.sallard@uni-wh.de

Patrick Philipp Weil: patrick.weil@uni-wh.de

Jennifer Ortelt: jennifer.ortelt@helios-gesundheit.de

Parviz Ahmad-Nejad: parviz.ahmad-nejad@helios-gesundheit.de

Jan Postberg: jan.postberg@uni-wh.de

2

Figure S1. Comparison of different isolation methods with respect to PCR
performance (A.) and nanopore sequencing outcome (B.): Silica columns (red
shaded), magnetic beads (yellow shaded) ore GITC (green shaded) were used
for RNA extraction. Four samples with different Ct-Values were used (1: Ct 19,
2: Ct 25, 3: Ct 19, 4: Ct 24). A.: Results of agarose gel electrophoresis after 1,200
bp amplicon generating multiplex PCR. The image shows the uncropped
agarose gel. After image acquisition the colors were inverted for better
visualization. Thereafter color shades were overlaid to facilitate sample group
identification. .

Figure S2. The influence of viral load on the amplification of 1,200 bp amplicon
was analysed by agarose gel electrophoresis using samples, where RNA was
serially diluted prior to cDNA synthesis and semiquantitative multiplex PCR
(A, B) or quantitative multiplex PCR (C, D). Multiplex primer pool 1 (A, C) and
pool 2 (B, D) were used in separate single tube reactions. (A-D.) From left to
right: Decreasing viral loads (dilution factors 20-2-10 plus no template control).
The uncropped image shows the results of agarose gel electrophoresis after

3

1,200 bp amplicon generating multiplex PCR. After image acquisition the colors
were inverted for better visualization.

Figure S3. Comparison of the phylogenetic distance, when data from the same specimen was
processed by 2 different bioinformatics pipelines Phylogenetic tree visualization was done using the
Nextstrain web app (https://clades.nextstrain.org) for pathogen genome data analyses
(Hadfield, Megill et al. 2018).

Supplementary Information 1: Python Code 1

#!/usr/bin/env python3

-*- coding: utf-8 -*-

"""

Created on Tue Jun 29 21:10:17 2021

@author: Erwan Sallard

"""

import sys

from Bio import Align

from Bio import SeqIO

4

medaka_consensus = sys.argv[1]

nanopolish_consensus = sys.argv[2]

output_folder = sys.argv[4]

coronavirus_reference_sequence = sys.argv[3]

output_suffix=medaka_consensus.split('/')[-1].split('.')[-3].split('_')[-1]

Merging the consensus sequences

when a sequence contains 'N's and the other solved the variant, we will take the solved

sequence.

In the very rare cases where both algorithms disagree and none of them give 'N's, we give

priority to nanopolish

perform the alignment

n_consensus = SeqIO.read(nanopolish_consensus,'fasta').seq

m_consensus = SeqIO.read(medaka_consensus,'fasta').seq

aligner = Align.PairwiseAligner()

aligner.mismatch_score = -1

aligner.target_open_gap_score = -1.53

aligner.target_extend_gap_score = -1

aligner.query_extend_gap_score = -1

aligner.query_open_gap_score = -1.53

alignment = str(next(aligner.align(n_consensus, m_consensus))).split('\n')

replace 'N's in the nanopolish consensus by the medaka sequence if it is solved

'''

gérer blocs modifiés, ex 'NN-' vs '--T'

'''

aligned_nanopolish=alignment[0]

aligned_medaka=alignment[2]

merged_consensus=''

position=0

alignment_length=len(aligned_nanopolish)

while position<alignment_length:

 if aligned_nanopolish[position]=='N':

 # there is an unsolved sequence in the nanopolish alignments

 # first step: identify the extent of the unsolved region ('N's and '-'s)

 unsolved_begin = position

 unsolved_end = position

 while (unsolved_begin>1) and (aligned_nanopolish[unsolved_begin-1] in ['N','-']):

 unsolved_begin-=1

5

 while (unsolved_end<alignment_length-1) and (aligned_nanopolish[unsolved_end+1] in

['N','-']):

 unsolved_end+=1

 # second step: see if medaka solved the region

 medaka_segment=aligned_medaka[unsolved_begin:unsolved_end+1]

 medaka_solved=''

 for base in medaka_segment:

 if base in ['A','G','C','T']:

 medaka_solved+=base

 # third step: if it exists, append the solved sequence to the merged consensus

 if medaka_solved!='':

 merged_consensus+=medaka_solved

 else:

 # medaka too didn't solve the sequence, so we keep nanopolish's sequence

 merged_consensus+=aligned_nanopolish[unsolved_begin:unsolved_end+1]

 position=unsolved_end+1

 else:

 merged_consensus+=aligned_nanopolish[position]

 position+=1

remove '-'

contiguous_sequences=merged_consensus.split('-')

merged_consensus=''

for segment in contiguous_sequences:

 merged_consensus+=segment

save the consensus sequence in fasta format

fasta = open(output_folder+'/merged_consensus_'+output_suffix+'.fa','w')

fasta.writelines('>Merged_consensus_from_nanopolish_and_medaka_'+output_suffix+'\n')

consensus_length = len(merged_consensus)

line_number = int(consensus_length/60)+1

for line in range(line_number-1):

 fasta.writelines(merged_consensus[60*line:60*(line+1)]+'\n')

fasta.writelines(merged_consensus[60*(line_number)-1:])

fasta.close()

Identifying all solved variants in the combined algorithms output

align the merged consensus with the reference SARS-CoV-2

reference = SeqIO.read(coronavirus_reference_sequence,'fasta').seq

consensus = SeqIO.read(output_folder+'/merged_consensus_'+output_suffix+'.fa','fasta').seq

alignment = str(next(aligner.align(consensus, reference))).split('\n')

aligned_consensus=alignment[0]

6

aligned_reference=alignment[2]

identify the solved variants in the consensus

variants_summary = []

this list will record for all variants their position in the reference genome,

and the reference and variant alleles

index, position = 0, 1

reference_length = len(reference)

alignment_length = len(aligned_reference)

while index < alignment_length:

 if aligned_reference[index]=='-' and aligned_consensus[index-1]!='N':

 # the consensus contains an insertion (and not an unsolved region)

 mismatch_end = index+1

 while mismatch_end<alignment_length and aligned_reference[mismatch_end]=='-':

 mismatch_end+=1

 variants_summary.append([position-1,aligned_reference[index-

1],aligned_consensus[index-1:mismatch_end]])

 index=mismatch_end

 elif aligned_consensus[index]=='-' and aligned_consensus[index-1]!='N':

 # the consensus contains an deletion (and not an unsolved region)

 mismatch_end = index+1

 while mismatch_end<alignment_length and aligned_consensus[mismatch_end]=='-':

 mismatch_end+=1

 variants_summary.append([position-1,aligned_reference[index-

1:mismatch_end],aligned_consensus[index-1]])

 position+=mismatch_end-index

 index=mismatch_end

 elif aligned_consensus[index]!=aligned_reference[index] and aligned_consensus[index]!='N'

and aligned_consensus[index-1]!='N':

 # the consensus contains a substitution (and not an unsolved region)

 mismatch_end = index+1

 while mismatch_end<alignment_length and

aligned_consensus[mismatch_end]!=aligned_reference[mismatch_end]:

 mismatch_end+=1

 reference_allele = aligned_reference[index:mismatch_end]

 while (reference_allele[-1]=='-'):

 # in case the substitution is followed by an insertion, there is no need to record

the '-' sign

 reference_allele = reference_allele[:-1]

 position-=1

 consensus_allele = aligned_consensus[index:mismatch_end]

 while (consensus_allele[-1]=='-'):

 consensus_allele = consensus_allele[:-1]

 variants_summary.append([position,reference_allele,consensus_allele])

7

 position+=mismatch_end-index

 index=mismatch_end

 else:

 index+=1

 position+=1

create a .vcf file to save the variants and write the header

output_vcf = output_folder+'/merged_variants_'+output_suffix+'.vcf'

variants=open(output_vcf,'w')

variants.writelines('##fileformat=VCFv4.2\n')

variants.writelines('#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\n')

fill the .vcf file

for variant in variants_summary:

 variants.writelines('SARS-CoV-

2_genome\t'+str(variant[0])+'\t.\t'+variant[1]+'\t'+variant[2]+'\t.\t.\t.\n')

variants.close()

