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Abstract: Gastric cancer is the third most common cause of death from cancer in the world and
infection with Helicobacter pylori (H. pylori) is the main cause of gastric cancer. In addition to Heli-
cobacter infection, the overall stomach microbiota has recently emerged as a potential factor in gastric
cancer progression. Previously we had established that mice deficient in myeloid differentiation
primary response gene 88 (MyD88, Myd88−/−) rapidly progressed to neoplasia when infected with
H. felis. Thus, in order to assess the role of the microbiota in this fast-progressing gastric cancer model
we investigated changes of the gastric microbiome in mice with different genotypic backgrounds:
wild type (WT), MyD88-deficient (Myd88−/−), mice deficient in the Toll/interleukin-1 receptor (TIR)
domain-containing adaptor-inducing interferon-β (TRIF, Trif Lps2), and MyD88- and TRIF-deficient
(Myd88−/−/Trif Lps2, double knockout (DKO)) mice. We compared changes in alpha diversity, beta
diversity, relative abundance, and log-fold differential of relative abundance ratios in uninfected and
Helicobacter infected mice and studied their correlations with disease progression to gastric cancer
in situ. We observed an overall reduction in microbial diversity post-infection with H. felis across
all genotypes. Campylobacterales were observed in all infected mice, with marked reduction in
abundance at 3 and 6 months in Myd88−/− mice. A sharp increase in Lactobacillales in infected
Myd88−/− and DKO mice at 3 and 6 months was observed as compared to Trif Lps2 and WT mice,
hinting at a possible role of these bacteria in gastric cancer progression. This was further reinforced
upon comparison of Lactobacillales log-fold differentials with histological data, indicating that Lac-
tobacillales are closely associated with Helicobacter infection and gastric cancer progression. Our
study suggests that differences in genotypes could influence the stomach microbiome and make
it more susceptible to the development of gastric cancer upon Helicobacter infection. Additionally,
increase in Lactobacillales could contribute to faster development of gastric cancer and might serve
as a potential biomarker for the fast progressing form of gastric cancer.

Keywords: Helicobacter; microbiome; gastric cancer; MyD88; Lactobacillales; TRIF

1. Introduction

Gastric cancer is the sixth most common cancer and third most common cause of cancer
mortality in the world [1]. By far the largest risk factor for gastric cancer development is the
presence of the carcinogenic microbe Helicobacter pylori [2]. Infection with H. pylori leads
to development of premalignant lesions that progress from gastric atrophy to metaplasia,
dysplasia, and finally to gastric adenocarcinoma. While H. pylori infects almost 50% of
the global population, only 1–3% of the infected individuals develop gastric cancer [3].
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Several other factors contribute to gastric cancer progression, such as Helicobacter strains,
environmental factors, external factors like alcohol consumption [4] and host immune
response. In addition, the microbiota of the stomach may also influence final disease
outcome [3]. Recently, studies have revealed that thrombosis also can be one of the reasons
for fatality in gastric cancer patients [5].

The stomach had been traditionally considered a sterile organ due to its highly acidic
environment and digestive juices. It was only after the discovery of H. pylori in 1982, and its
ability to survive in such harsh conditions, that this led to the idea of a gastric microbiome,
similar to microbial communities inhabiting other parts of the human host. Advancement
in DNA sequencing strategies and computational methods have uncovered a complex
microbiome of the stomach [3]. The gastric microbial density is estimated to be 102–104

colony forming units (CFU)/mL, a much lower density than other body sites, such as the
colon, which often reaches 1010–1012 CFU/mL [6]. Early characterization of the gastric
microbiota relied on culturing techniques but the advancement of sequencing techniques
has led to the identification of different species falling into five predominant phyla—
Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes and Fusobacteria, indicating a
distinct microbiome of the stomach [6,7]. Thus, with the presence of such complex microbial
diversity in the stomach, interactions between Helicobacter and other gut bacteria could
potentially play a role in deciding the fate of gastric cancer progression, or may act as an
aide along with other factors in driving the disease.

H. felis is a close relative of human gastric pathogen H. pylori and studies have shown
that H. felis infection leads to the development of high-grade dysplastic lesions in C57BL/6
mice as compared to H. pylori, mimicking gastric carcinogenesis as seen in human [8–11].
Moreover, we have previously shown that Myeloid differentiation primary response gene
88 (MyD88) regulates Helicobacter induced gastric cancer progression, where MyD88 de-
ficient mice (Myd88−/−) infected with H. felis showed fast progression to gastric can-
cer in situ as compared to wild-type (WT) mice proving it to be a better Helicobacter
model in rodents [8]. Furthermore, we also observed that cells from mice deficient in
MyD88 showed increased secretion of interferon (IFN)-α after H. pylori infection suggesting
MyD88-independent induction of type I IFNs, suggesting role of Toll/IL-1R (TIR) domain-
containing adaptor-inducing interferon-β (TRIF)-dependent pathway [12]. This prompted
us to study the microbial diversity of the stomach in mice with different genotypic back-
grounds: Wild type (WT), MyD88 deficient (Myd88−/−), TRIF (Trif Lps2), and MyD88 and
TRIF deficient (Myd88−/−/Trif Lps2, double knockout (DKO)) mice.

Given the potential connection between the gastric microbiome and cancer progres-
sion, we hypothesized that the fast-progressing Myd88−/− cancer model would show
distinct gastric microbiome changes compared to the other genotypes. Gastric micro-
biome diversity and composition was, therefore, studied both in uninfected and H. felis
infected mice of all four genotypes. In addition, we also investigated whether the gastric
microbiome changed over time in response to infection and studied the correlation of
these changes with gastric cancer progression. Therefore, this study would aid in iden-
tifying microbial species whose abundance or scarcity may contribute to progression of
Helicobacter-induced lesions and towards adenocarcinoma. Ultimately, identification of
other contributing factors would open new avenues of research in gastric cancer disease
progression.

2. Material and Methods
2.1. Animals

Six- to 10-week-old wild-type (WT) (n = 42), MyD88 deficient (Myd88−/−) (n = 47),
TRIF deficient (Trif Lps2) (n = 46), and double knockout (Myd88−/−/Trif Lps2, DKO) (n = 37)
mice in the C57BL/6 background were used in this study. WT mice were purchased from
The Jackson Laboratory (Bar Harbor, ME, USA). Myd88−/−, Trif Lps2, and DKO mice were
from our breeding colony originally provided by Dr. Akira (Osaka University, Japan) and
backcrossed 10 times onto a C57BL/6 background, bred, and maintained at University of
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California, San Diego (UCSD). All mice were housed together before infection with H. felis
and for the duration of the study for each genotype. The institutional Animal Care and
Use Committee at the University of California, San Diego, approved all animal procedures
and they were performed using accepted veterinary standards.

2.2. Bacterial Growth Conditions

Helicobacter felis, strain CS1 (ATCC 49179) was purchased from the American Type
Culture Collection (Manassas, VA, USA). H. felis was routinely maintained on solid medium,
Columbia agar (Becton Dickinson, MD, USA) supplemented with 5% laked blood under
microaerophilic conditions (5% O2, 10% CO2, 85% N2) at 37 ◦C and passaged every 2–3 days
as described previously [8,12,13]. Prior to mouse infections, H. felis was cultured in liquid
medium, brain heart infusion broth (BHI, Becton Dickinson, MD, USA) supplemented with
10% fetal calf serum and incubated at 37 ◦C under microaerophilic conditions for 48 h.
Spiral bacteria were enumerated using a Petroff-Hausser chamber before infections.

2.3. Mouse Infections

This study used a well-characterized cancer mouse model, which involves infecting
C57BL/6 mice with H. felis (strain CS1), a close relative of the human gastric pathogen
H. pylori. Mice were inoculated with 109 organisms in 300 µL of BHI by oral gavage
three times at 2-day intervals as previously described [8,12]. Control mice received BHI
only. At 1 month, 3 months, and 6 months post-infection, mice were euthanized, and the
stomachs removed under aseptic conditions. The stomach was cut longitudinally and
tissue sections were processed for DNA extraction and histopathology.

2.4. Histology

Longitudinal sections of stomach tissue from each mouse were fixed in neutral
buffered 10% formalin and embedded in paraffin, and 5 µm sections were stained with
hematoxylin and eosin (H&E). Gastric histopathology mucous metaplasia was scored by a
blinded comparative pathologist (Rickman) using criteria developed by Rogers et al. [14].
Scores ranging from 0 (no lesions) to 4 (severe lesions) were measured in increments of 0.5,
as previously described (9).

2.5. DNA Extraction

DNA was extracted from gastric tissue obtained from H. felis-infected and uninfected
WT, Myd88−/−, Trif Lps2, and DKO mice. Stomach tissue sections were analyzed at different
time points of 1 month, 3 months, and 6 months. DNA was extracted using DNAeasy
Blood and Tissue kit (Qiagen, MD, USA) following manufacturer’s instructions. The DNA
concentration was quantified using NanoDrop 1000 Spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA) before proceeding to DNA Sequencing.

2.6. 16. S rRNA Gene Sequencing

Purified DNA was amplified and processed according to Earth Microbiome Project
(EMP) standard protocols (https://www.earthmicrobiome.org/protocols-and-standards/
16s/) Amplicon polymerase chain reaction (PCR) was performed on the V4 region of the
16S rRNA gene using the primer pair 515F/806R with Golay error-correcting barcodes on
the reverse primer. 240 nanograms of each amplicon was pooled and purified with the
MoBio UltraClean PCR cleanup kit (Qiagen, MD, USA) and sequenced on the Illumina
MiSeq sequencing platform. Demultiplexed FASTQ files were processed using Quantitative
Insights into Microbial Ecology (QIIME2) version 2019.10 (https://qiime2.org) [15]. Se-
quences were denoised using Deblur (default settings, –p-trim-length 150) [16]. Taxonomy
was assigned using SATé-enabled phylogenetic placement (SEPP) fragment insertion with
a classifier trained on the Greengenes13_8 99% operational taxonomic units (OTUs) dataset,
with sequences trimmed to contain 150 bases from the region amplified in sequencing [17].
All reads assigned to the phylum Cyanobacteria were filtered from the counts table before

https://www.earthmicrobiome.org/protocols-and-standards/16s/
https://www.earthmicrobiome.org/protocols-and-standards/16s/
https://qiime2.org
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analysis, as this is considered a food contaminant in gut microbiome sequencing. A pseu-
docount of 1 was added to the final counts table in Songbird analysis to prevent samples
dropping out of the log fold-differential analysis due to inability to calculate the logarithm
of 0. FASTQ files can be found through the NCBI BioSample database (accession number
PRJNA685500). Code used to process sequencing and conduct bioinformatics processing
can be found on Github (https://github.com/jkccoker/Murine_gastric_microbiome).

2.7. Bioinformatics Processing

Taxonomy abundance plots were generated using the PhyloSeq package [18]. Tax-
onomy was collapsed to the order of interest in PhyloSeq. Alpha diversity plots were
generated in R using data exported from the QIIME2 analysis (–p-sampling-depth 2300).
Beta diversity principal component analysis plots were generated in QIIME2 with the DE-
ICODE plug-in [19]. Taxonomy abundance log-fold differentials were calculated through
QIIME2 using the Songbird plug-in (–p-formula “Genotype + Infection + Time”) [20],
with visualization through Qurro (intercept = “Infection: Yes”) [21]. Receiver operating
characteristic (ROC) curves were generated in Prism 7 (GraphPad Software, San Diego,
CA, USA) using log-fold differential values from the Songbird analysis.

2.8. Statistics

Differences in alpha diversity and log-fold differentials were calculated in R using Stu-
dent’s t-test, analysis of variance (ANOVA) or the Kruskal-Wallis H test, where appropriate.
Data were checked for normal distribution before the Student’s t-test and ANOVA. Differ-
ences in beta diversity were assessed with permutational multivariate analysis of variance
(PERMANOVA) in QIIME2 with Benjamini-Hochberg false discovery rate (FDR) correc-
tion. Ordinal logistic regression was conducted in R using the polr command (formula =
histology_score ~ <log-fold differential>, Hess = T).

3. Results
3.1. Gastric Mucosal Microbial Diversity Varies with Infection Status and Genotype

To assess the diversity of the gastric microbial community in each mouse genotype,
we first determined alpha and beta diversity. The Shannon diversity index and Pielou’s
evenness score were calculated as metrics of alpha diversity. The Shannon diversity index
provides a metric of community diversity based on the number of taxa present and the
abundance of each species. Differences in genotype did not significantly affect Shannon
diversity index (Figure 1A). In general, infection with H. felis resulted in a decreased
diversity index (statistically significant for WT at 6 months (p < 0.05); Myd88−/− at 1 month
(p < 0.05) and 3 months (p < 0.01); Trif Lps2 at 3 months (p < 0.05); and DKO at 3 months
(p < 0.01). For the three knockout genotypes, diversity was decreased in infected samples
at 1 and 3 months but increased back to uninfected levels at 6 months. The opposite
was observed in the WT genotype. Using Pielou’s evenness, which assesses how evenly
distributed taxa are within a community, the evenness scores followed the same trends as
the Shannon diversity index, as expected (Figure 1B).

To assess the dissimilarity between the gastric microbial communities, we next an-
alyzed the robust Aitchison distance between communities as a metric of beta diversity
(Figure 1C). Aitchison distance is a compositional metric of the Euclidean distance between
samples after centered log-ratio transformation [22]. Robust Aitchison distance analysis
incorporates matrix completion to account for the large number of zeros in microbiome
data sets due to the absence of individual taxa in samples [19]. PERMANOVA analysis
of the robust Aitchison distance between samples showed significant separation between
communities by all genotype pairs (p < 0.001) except WT and Myd88−/− (p = 0.20). Pairwise
comparison (with Benjamini–Hochberg FDR correction) showed that infection groups
within each genotype were significantly different from other groups (p < 0.05), with the
exception of the following interesting pairs: WT uninfected/infected (p = 0.07); Myd88−/−

uninfected/infected (p = 0.07); WT infected/Myd88−/− infected (p = 0.15); Trif Lps2 in-

https://github.com/jkccoker/Murine_gastric_microbiome
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fected/DKO uninfected (p = 0.42); and Trif Lps2 infected/DKO infected (p = 0.05). Visual-
ization of principal coordinate analysis (PCA) displayed that WT/Myd88−/− genotypes
and Trif Lps2/DKO genotypes had more similar gastric communities, despite statistically
significant differences (Figure 1C). A biplot of the robust Aitchison PCA allowed us to
visualize the OTUs most heavily influencing community dissimilarity as vectors in the
PCA axes (Figure 1C, arrows). These vectors revealed that the operational taxonomic units
most heavily influencing the distance between samples were from the Helicobacter and
Lactobacillus genera.
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Figure 1. Changes in microbial diversity in the stomach across four different genotypes, with infection and time. Shannon
diversity index (A) and Pielou’s evenness (B) values for each gastric community, divided by genotype and month. Top and
bottom plots represent the same data, alpha diversity values, with lines on the bottom plots denoting average values for
infected and uninfected communities over time. Statistical significance on bottom plots refers to differences between infected
and uninfected, months 1–6 combined. (C) Principal component analysis of robust Aitchison distance values between
communities, months 1–6 combined. Biplot arrows indicate operational taxonomic units (OTUs) driving separation between
samples, with arrows labeled with the genus of the OTU. Arrows and genus labels are matched by color. All diversity
metrics were calculated using QIIME2. Statistical significance determined by Student’s t-test for alpha diversity and
permutational multivariate analysis of variance (PERMANOVA) with Benjamini-Hochberg FDR correction for beta diversity
(* p < 0.05, ** p < 0.01, *** p < 0.005).
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3.2. Variation in Abundance of Microbial Taxa in Different Genotypes over Time and after
H. felis Infections

Given the differences in community diversity between genotypes and infection status,
we conducted taxonomic analysis of the 16S rRNA gene sequences in each sample. The
predominant phyla across all genotypes, irrespective of infection status and time included,
Bacteroidetes, Firmicutes and Proteobacteria (Figure 2). Bacteroidetes and Firmicutes were
present both in uninfected and infected samples with insignificant variations between
genotypes. Proteobacteria were observed in high abundance in infected samples as compared
to uninfected samples in all genotypes as expected (Figure S1). However, the levels of
Proteobacteria dropped significantly at 3 months and 6 months in infected Myd88−/− mice
and at 6 months for DKO mice in infected samples. In contrast, in Trif Lps2 and WT no
such drop was observed. Moreover, the levels of Proteobacteria in Trif Lps2 were similar at
1 month and 6 months, while peaking at 3 months (Figure S1).
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Myd88−/−, Trif Lps2, and double knockout (DKO) genotypes. The top eight phyla are shown in the legend. Samples are
grouped into Helicobacter-infected and non-Helicobacter-infected and divided by time point. Sequencing data were processed
in QIIME2, then plotted in PhyloSeq.

We observed predominance of five orders across all genotypes—Bacteroidales, Campy-
lobacterales, Clostridiales, Lactobacillales, Erysipelotrichales (Figure 3). The order Bac-
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teroidales were observed across all genotypes with no overall significant difference. Clostridi-
ales were present in all genotypes but less abundant in DKO mice. However, it was ob-
served that levels of Clostridiales dropped significantly in Myd88−/− post infection as
compared to uninfected samples especially at 3 months. Campylobacterales were observed
more predominantly in infected samples in all four genotypes, as expected since Helicobac-
ter is a member of the Campylobacterales order. However, the levels declined significantly
at 3 and 6 months in Myd88−/− mice and at 6 months in DKO mice although Campylobac-
terales can be seen throughout all time points in Trif Lps2 infected mice. Lactobacillales
were seen at highest relative abundance in Myd88−/− infected mice especially at 3 months
followed by DKO infected mice, WT infected mice, and to a lesser extent Trif Lps2 mice
(Figure 3). Erysipelotrichales were predominantly seen at 6 months in Trif Lps2 infected
mice as compared to other genotypes. Apart from these orders, Rickettsiales were observed
mainly in uninfected Myd88−/− and DKO mice as compared to Trif Lps2 and WT mice and
were almost lost upon infection with H. felis. In addition, the order Bacillales were observed
in uninfected samples of Trif Lps2, Myd88−/− and WT but not in DKO uninfected mice.
However, they were observed in DKO post infection in one sample both at 1 month and 3
months and in two samples in Trif Lps2 at 6 months post infection with H. felis.

3.3. Association of Lactobacillales with Infection and Mouse Genotype

Given the increase in Lactobacillales seen in infected mice by 16S rRNA amplicon
sequencing (Figure 3) and the identification of Lactobacillus as a genus driving commu-
nity dissimilarity (Figure 1C), we further investigated the relationship between changes
in Lactobacillales and disease progression. We used the Songbird [20] and Qurro [21]
tools to analyze changes in Lactobacillales between conditions. Songbird calculates log
ratios of relative abundance ratios between two taxonomic units for each sample, a com-
positional analysis that accounts for absolute microbial abundance differences between
samples [20]. Qurro can then be used to visualize and compare these differentials be-
tween samples [21]. This analysis revealed a highly significant increase in the log ratio
of Lactobacillales/Rickettsiales (L/R) in infected communities compared to uninfected
communities (Figure 4A). Analyzing this change within individual genotypes showed the
log (L/R) ratio was significantly increased in infected Myd88−/− and DKO mice compared
to uninfected (Figure 4B). The ratio was not significantly different between infected and
uninfected communities in Trif Lps2 and WT mice. To confirm this finding, we repeated the
analysis comparing Lactobacillales to other organisms present in all communities. Similar
results were observed for log (Lactobacillales/Bacteroidales) (Figure S2A,B). No significant
differences were seen in log ratios of the Clostridiales/Rickettsiales ratio (Figure 4C,D),
and Clostridiales/Bacteroidales (Figure S2C,D) indicating the specificity of this finding
to Lactobacillales. We therefore concluded that the order Lactobacillales is increased in
infected communities in Myd88−/− and DKO, but not in WT and Trif Lps2 genotypes.
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3.4. Lactobacillales Are Associated with Gastric Cancer Progression 

Figure 4. Log ratios between relevant orders across four genotypes. Log ratios of the Lactobacil-
lales/Rickettsiales (A,B) and Clostridiales/Rickettsiales (C,D) relative abundance ratios between
samples, months 1–6 combined. (A,C) show ratios by infection status, all genotypes combined. (B,D)
show ratios by genotype and infection status. Log ratios were calculated and processed using Song-
bird and Qurro. Statistical significance was determined by analysis of variance (ANOVA) ** p < 0.01,
*** p < 0.005).

3.4. Lactobacillales Are Associated with Gastric Cancer Progression

We next examined if there was an association between Lactobacillales levels and gastric
disease progression in our fast-progressing model. Histological analysis revealed that
Myd88−/− genotype displays the worst gastric disease following infection, followed by
the DKO genotype. H&E stained stomach sections (Figure S3) from each mouse of each
genotype (WT and Myd88−/−, Trif Lps2and DKO) were evaluated on basis of pathology and
scored on scale of 0–4 (Figure 5). Since these genotypes also possessed the highest levels of
Lactobacillales, we hypothesized higher Lactobacillales levels would be associated with
higher mucous histology scores. Analysis of the log(L/R) ratio and the mucous histology
score of each sample with ordinal logistic regression demonstrated that mice with a higher
gastric Lactobacillales level had a significantly higher likelihood of a higher histology
metaplasia score (Figure 6A). For the regression analysis, histology scores were grouped
into categories of 0, 1–2, and 3–4 to increase statistical power. No association between
Clostridiales levels and histology scores was observed (Figure 6B).

Given the association of Lactobacillales levels and mucous metaplasia, we exam-
ined the ability of Lactobacillales log ratios to predict if a mouse had been infected with
H. felis. We constructed receiver operator characteristic (ROC) curves for log ratios of the
orders Campylobacterales, Lactobacillales, and Clostridiales compared to Rickettsiales.
Log (Lactobacillales/Rickettsiales) ratios predicted mouse infection status at a rate sim-
ilar to log (Campylobacterales/Rickettsiales), the order containing Helicobacter and the
logical “gold standard” for infection prediction (Figure 6C,D). In comparison, log (Clostridi-
ales/Rickettsiales) ratios did not predict infection status at a rate better than random
(Figure 6E). Together, these data indicate Lactobacillales correlates strongly with Helicobac-
ter infection status and mucous histology score.
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Figure 5. Histopathological scoring for mucous metaplasia. Following infection with H. felis for 1 month (A), 3 months (B)
and 6 months (C), H&E-stained stomach sections from each mouse (WT and Myd88−/−, Trif Lps2and DKO) were evaluated
for indications of pathology. Mucous metaplasia was scored by a blinded comparative pathologist according to the criteria
described in Materials and Methods. A p value of 0.05 was considered statistically significant. (A) 1month post infection,
n = 14 for WT, n = 15 for Myd88−/−, n = 14 for Trif Lps2, and n = 12 for DKO mice; (B) 3 months post infection, n = 16 for
WT, n = 16 for Myd88−/−, n = 16 for TrifLps2, n = 13 for DKO mice; (C) 6 months post infection, n = 12 for WT, n = 16
for Myd88−/−, n = 16 for TrifLps2, n= 12 for DKO mice. Statistical significance was determined by Mann-Whitney test,
*** p < 0.005).
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 Figure 6. Predictive relationship between Lactobacillales and mucous metaplasia from Helicobacter infection. (A,B) Ordinal
logistic regression analysis of log ratios of Lactobacillales/Rickettsiales (A), and Clostridiales/Rickettsiales (B) Relative
abundance and gastric mucous histology score. The black circle marks the average of each category. Ordinal logistic
regression was calculated using the polr command in R (*** p < 0.001). (C–E) ROC curve for log ratios of Campylobacterales,
Lactobacillales, and Clostridiales to Rickettsiales. The blue line represents the performance of each ratio log fold-differential
in predicting Helicobacter infection. The red line represents the result expected for a metric with a 50% chance of predicting
infection. The area under the curve (AUC) value refers to the area under the blue line. Receiver operating characteristic
(ROC) plots were constructed in Prism7 using log fold-differentials from Songbird and Qurro.

4. Discussion

Advancement in research on the gut microbiome has uncovered the existence of a
diverse microbiome in the human gut in a delicate balance. These microbiota are vital for
maintenance of human health and play an important role in energy metabolism, nutrient
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absorption and defense against pathogens [3,23–25]. However, if this balance is altered
dysbiosis can lead to susceptibility to gastrointestinal pathogenesis and cancer [3]. The
acidic environment of the stomach supports a smaller number of bacteria as compared to
other parts of the gut, but dysbiosis due to various factors, such as genetic, environmental,
or pathogen invasion can lead to gastric cancer [3]. The association of Helicobacter with
gastric cancer has been well established, as it is characterized as a Type I carcinogen by the
World Health Organization (WHO) [2]. Previous studies in insulin-gastrin (INS-GAS) mice
have shown that H. pylori infections lead to an overall decrease in microbial density [26].
Our findings indicate there is also an overall decrease in microbiome diversity upon H. felis
infections across all genotypes.

In this study we sampled the mouse stomach mucosal tissue instead of fecal samples
to understand the changes specifically in the gastric microbiome in different genotypes,
with respect to time as well as infection status. Analyzing stomach mucosal tissue provides
a more accurate image of gastric microbial communities during gastric cancer progression
than fecal samples. Moreover, as previously described Myd88−/− mice serve as a fast-
progressing gastric cancer model, where gastric adenocarcinoma is reached within 6 months
of infection with Helicobacter [8]. Therefore, analyzing gastric mucosa for the periods of
1 month, 3 months, and 6 months provides a clear picture of microbial diversity and
composition fluctuations as disease progresses to gastric cancer.

In our study, Campylobacterales were observed in infected mice across all genotypes,
which is expected as Helicobacter belongs to the order Campylobacterales. However, in
Myd88−/−, our fast-progressing gastric cancer model, we observed a reduction in Campy-
lobacterales abundance at 3 months and 6 months. This could be attributed to the fact that
the advancement of gastric cancer lesions results in an increase in mucosal atrophy and
decrease in acid secretion, potentially hindering Helicobacter colonization and facilitating
an increase in abundance of other bacteria. In agreement with our study, patients with
advanced atrophic gastritis have been found to have hypo-chlorohydric stomach mucosa
and low abundance of H. pylori, with the gastric microbiome dominated by non-Helicobacter
species [27,28]. A separate study by Basir et al. [29] revealed that increase in H. pylori colo-
nization showed high correlation with severe chronic gastritis in human subjects. Similar
correlations were observed by other groups [30,31] in their respective studies in gastric
cancer patients. However, a study carried out on 273 human gastric biopsies revealed no
relationship between H pylori density and chronic gastritis [32]. Thus, conflicting results
have been observed when correlating Helicobacter density to severity of disease.

However, the low abundance of H. pylori appears to facilitate the dominance of other
organisms of the microbiome. We observed an increase in Lactobacillales in infected
Myd88−/− mice and DKO mice at 3 and 6 months. Previous studies on gastric cancer pa-
tients also showed increased abundance of Lactobacillales, supporting their possible role in
gastric cancer progression [27,33] and in our case in a fast-progressing form of gastric cancer.
Even though Lactobacillus species are utilized in probiotics and are commonly thought to be
beneficial for the host, high levels of lactic acid can be detrimental in case of gastric cancer.
Lactate can serve as a source of energy for tumor cells, which can lead to increased ATP
production and promotion of inflammation [34–38]. Previous studies in INS-GAS mice
have shown that mice harboring a complex microbiome develop gastric cancer in 7 months
post infection with H. pylori as compared to H. pylori infections in germ free mice where
development of gastric cancer is prolonged. In addition, supplementation of INS-GAS
germ-free mice with a simplified microbiome of Lactobacillus, Clostridium and Bacteroides
species was sufficient to promote development of gastric cancer [26]. This suggests the role
of certain species in the gut microbiota in promoting gastric cancer progression.

Comparison of the gastric microbiome from Myd88−/− mice to WT, Trif Lps2 and DKO
mice, we were able to intensively analyze how changes in Lactobacillales could be con-
nected to gastric cancer development and progression. Myd88−/− and DKO mice had
significantly higher levels of Lactobacillales upon infection with H. felis, while WT and
Trif Lp2 mice did not (Figure 4). Myd88−/− and DKO mice also had significantly worse
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disease development than WT and Trif Lp2, as demonstrated by mucous metaplasia scores
(Figure 5). These findings indicate a correlation between Lactobacillales levels and gastric
cancer development that holds across genotypes. Ordinal logistic regression analysis and
ROC curves (Figure 6) further demonstrate that the log-fold differential of Lactobacil-
lales/Rickettsiales relative abundance ratio allows prediction of the infection status of a
sample, irrespective of genotype. These data strongly indicate that Lactobacillales and
gastric cancer progression are linked in these mouse models. A study carried out on gastric
cancer patients from high-risk groups in Singapore and Malaysia revealed a high relative
abundance of lactic acid-producing bacteria such as Lactococcus and Lactobacillus, and as
well as oral cavity bacteria including Fusobacterium, Veillonella, Leptotrichia, Haemophilus,
and Campylobacter [34]. This is in agreement with our findings that show a potential con-
nection between gastric cancer and Lactobacillus, and further indicates that the Myd88−/−

model of fast-progressing gastric cancer recapitulates a gastric microbiome change noted
in human populations.

Recent studies in Taiwan, have reported that gastric cancer patients show increased
colonization of Clostridium and Fusobacterium [39]. Other studies have shown that INS-GAS
germ free mice develop gastric cancer when supplemented with Lactobacillus sp., Clostridium
sp., and Bacteroides sp. [25]. In contrast to this, in our study the levels of Clostridiales
significantly decreased in our fast progressing gastric cancer model as compared to other
genotypes, suggesting that even though Clostridiales may have previously been shown to
play a role in gastric cancer progression in other studies, it does not play a significant role
in our fast-progressing gastric cancer model.

5. Conclusions

Our study suggests that differences in genotypes help define the stomach microbiome
diversity as different genotypes have significantly dissimilar communities. However, the
correlation between Lactobacillales levels and Helicobacter-induced gastric cancer progres-
sion holds across multiple genotypes. This sustained connection indicates Lactobacillales
shares a close relationship with gastric cancer. The presence of Lactobacillales in the gas-
tric microbiome needs to be further investigated to understand their probable role in the
fast-progressing form of gastric cancer, as well as the stomach microbiome as a whole.
Moreover, future studies need to be carried to observe any further alterations in gastric
microbiome when cancer has fully developed helping us in understanding the role of the
microbiome on disease outcome.
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induced by H. felis infection in different genotypes.
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