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Abstract: Current information from conventional microbiological methods on the microbial diversity
of table olives is insufficient. Next-generation sequencing (NGS) technologies allow comprehensive
analysis of their microbial community, providing microbial identity of table olive varieties and their
designation of origin. The purpose of this study was to evaluate the bacterial and yeast diversity
of fermented olives of two main Greek varieties collected from different regions—green olives,
cv. Halkidiki, from Kavala and Halkidiki and black olives, cv. Konservolia, from Magnesia and
Fthiotida—via conventional microbiological methods and NGS. Total viable counts (TVC), lactic
acid bacteria (LAB), yeast and molds, and Enterobacteriaceae were enumerated. Microbial genomic
DNA was directly extracted from the olives’ surface and subjected to NGS for the identification of
bacteria and yeast communities. Lactobacillaceae was the most abundant family in all samples. In
relation to yeast diversity, Phaffomycetaceae was the most abundant yeast family in Konservolia olives
from the Magnesia region, while Pichiaceae dominated the yeast microbiota in Konservolia olives
from Fthiotida and in Halkidiki olives from both regions. Further analysis of the data employing
multivariate analysis allowed for the first time the discrimination of cv. Konservolia and cv. Halkidiki
table olives according to their geographical origin.

Keywords: table olives; Halkidiki olives; Konservolia olives; NGS; Greek-style fermentation;
Spanish-style fermentation; microbiological analysis; metagenomic analysis

1. Introduction

Table olives are an important fermented food in Mediterranean countries with great nutritional
and economic significance. Their content in bioactive compounds, vitamins, dietary fibers, unsaturated
fatty acids, minerals, and antioxidants with demonstrated positive effects on human health meets
the consumers’ needs toward natural or minimal processed foods that, beyond basic nutrition, offer
additional health benefits [1]. Raised awareness of the health benefits of olives may be partially the
driving force for the increased global table olive consumption that has doubled over the past three
decades and is expected to increase by 2.1 percent in 2020, as predicted by the International Olive
Council (IOC) [2].
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In Greece, the table olive industry has evolved in recent years into a dynamic sector of the national
economy. With an annual production of 215,000 tons, 85% of which is exported, Greece is the second
largest producer of olives in Europe after Spain. The most economically important varieties grown
in Greece for table olive processing are Halkidiki and Konservolia, and their final products are sold
under the names “green olives Halkidiki variety” and “Greek black olives”, respectively [3].

The Halkidiki variety is primarily grown in the prefecture of Halkidiki, but also in other regions
(e.g., Central and Eastern Macedonia). Green olives of the Halkidiki variety have a characteristically
large fruit, cylindrical–conical shape, a bright green or greenish-yellow color (it does not turn completely
black when it reaches maturity), and outstanding organoleptic characteristics that render the end
product a major export product [3]. After harvesting, these olives undergo the Spanish-style processing
method by treating the fruit with a diluted NaOH solution (2–3%) to reduce bitterness and also to
increase the permeability of olive pericarp. A water wash follows to remove the excess alkali, and
olives are then placed in brine (NaCl 8–12%) where the fermentation, driven by lactic acid bacteria,
takes place and lasts 3–7 months [4,5].

The Konservolia variety is primarily grown in Central Greece in the prefectures of Fthiotida,
Fokida, Magnesia, Aitoloakarnania, Arta, and Evia. Konservolia olives are round to oval in shape,
large in size with a high ratio of flesh to pit, and can be transformed into a range of different types
of table olives, though the most common type is natural black olives in brine [3]. For this type of
preparation, known as Greek-style, olives are immersed directly in a brine solution of about 6–10%
NaCl (w/v) where they undergo natural fermentation for 8–12 months, mainly promoted by yeasts and
LAB. The debittering is achieved through the enzymatic activities (mainly β-glucosidase and esterase)
of indigenous microorganisms [6,7].

Table olive fermentation processes are a complex microbial ecosystem in which the closely
related roles of the LAB and yeast populations are of fundamental importance to obtain high-quality
products [8,9]. Currently, two main approaches are adopted to investigate the microbial ecology of
table olive fermentations. The culture-dependent techniques that rely on the prior cultivation of
the microorganisms are usually applied for the characterization of microbiota present in a specific
food ecosystem, however the complete profile of the microbial diversity is underestimated, since
they fail to detect populations that are not culturable or in stressed/injured states [10,11]. Recently,
culture-independent methods have arisen to overcome the limitations of the classical culture-based
approach. The study of microbial diversity is achieved using NGS technologies after direct nucleic
acid extraction from the food matrix [12]. Regarding table olive fermentations, culture-independent
techniques have been extensively applied in the investigation of the microbial ecology of green
olives, belonging mainly to Italian and Spanish varieties, fermented naturally or using the Spanish
method [13–18]. Furthermore, these studies are usually performed with brines, not taking into
consideration the study of the microbial population adhered to olive surface, which is finally the food
intake by consumers [19]. However, information about the microbial diversity of natural black and
Spanish-style green olive fermentations for Greek table olive varieties is scarce. Recently, Kazou et
al. [20] performed 16S and internal transcribed spacer (ITS) metataxonomic analysis to unravel the
microbiota of natural black cv. Kalamata fermented olives on both olives and brines.

In the last few years, a large body of scientific research supports the claim that “environment selects”,
implying that different contemporary environments maintain distinctive microbial distributions [21].
The idea that free-living microbial taxa exhibit biogeographic patterns was confirmed recently by
Lucena-Padros and Ruiz Barba [22], who examined the biogeographic distribution of microorganisms
associated to Spanish-style green olive fermentations in the province of Seville. On the other hand,
recent studies dispute the idea that “everything is everywhere”, implying that microorganisms have
enormous dispersal capabilities that rapidly erase any ecological effects [21]. In this study, the
hypothesis that microbial distributions associated with table olive fermentations exhibit biogeographic
patterns and therefore differ in different locations was tested by studying table olives from different
cultivars originating from different geographical regions.
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The purpose of this study was to assess the microbial diversity of a) Greek-style fermented black
olives of Konservolia variety and b) Spanish-style fermented green olives of Halkidiki variety using
an NGS approach. The samples were fermented in industrial scale and originated from different
geographical regions for each olive variety. Black olives cv. Konservolia were collected from Magnesia
and Fthiotida regions and green olives cv. Halkidiki were collected from Halkidiki and Kavala
regions. To our knowledge, this is one of the first studies that investigates the microbial ecology of cv.
Konservolia and cv. Halkidiki fermented table olives using metagenomic analysis and aims to assess
potential biogeographic patterns.

2. Materials and Methods

2.1. Olive Sampling

In total, thirty (30) table olive samples—15 samples of fermented cv. Konservolia natural black
olives and 15 samples of cv. Halkidiki Spanish-style fermented green olives—were obtained during
the 2018–2019 season from two table-olive-producing companies in Greece. The drupes had been
collected from four different geographical areas and supplied to the company’s facilities where the
fermentations took place according to traditional Greek-style or Spanish-style methods for black and
green olives, respectively. Overall, Konservolia variety drupes had been collected from the Magnesia
(6 samples) and Fthiotida (9 samples) regions, while Halkidiki variety drupes were collected from the
Kavala (6 samples) and Halkidiki (9 samples) regions (Table 1).

Table 1. Geographical origin of the fermented cv. Konservolia natural black and cv. Halkidiki
Spanish-style green olive samples.

Samples Variety Region Origin Olive Colour Fermentation
Type

MAG1 Konservolia Central Greece Magnesia Black Greek-style
MAG2 Konservolia Central Greece Magnesia Black Greek-style
MAG3 Konservolia Central Greece Magnesia Black Greek-style
MAG4 Konservolia Central Greece Magnesia Black Greek-style
MAG5 Konservolia Central Greece Magnesia Black Greek-style
MAG6 Konservolia Central Greece Magnesia Black Greek-style
FTH1 Konservolia Central Greece Fthiotida Black Greek-style
FTH2 Konservolia Central Greece Fthiotida Black Greek-style
FTH3 Konservolia Central Greece Fthiotida Black Greek-style
FTH4 Konservolia Central Greece Fthiotida Black Greek-style
FTH5 Konservolia Central Greece Fthiotida Black Greek-style
FTH6 Konservolia Central Greece Fthiotida Black Greek-style
FTH7 Konservolia Central Greece Fthiotida Black Greek-style
FTH8 Konservolia Central Greece Fthiotida Black Greek-style
FTH9 Konservolia Central Greece Fthiotida Black Greek-style
KAV1 Halkidiki Macedonia Kavala Green Spanish-style
KAV2 Halkidiki Macedonia Kavala Green Spanish-style
KAV3 Halkidiki Macedonia Kavala Green Spanish-style
KAV4 Halkidiki Macedonia Kavala Green Spanish-style
KAV5 Halkidiki Macedonia Kavala Green Spanish-style
KAV6 Halkidiki Macedonia Kavala Green Spanish-style
HAL1 Halkidiki Macedonia Halkidiki Green Spanish-style
HAL2 Halkidiki Macedonia Halkidiki Green Spanish-style
HAL3 Halkidiki Macedonia Halkidiki Green Spanish-style
HAL4 Halkidiki Macedonia Halkidiki Green Spanish-style
HAL5 Halkidiki Macedonia Halkidiki Green Spanish-style
HAL6 Halkidiki Macedonia Halkidiki Green Spanish-style
HAL7 Halkidiki Macedonia Halkidiki Green Spanish-style
HAL8 Halkidiki Macedonia Halkidiki Green Spanish-style
HAL9 Halkidiki Macedonia Halkidiki Green Spanish-style
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2.2. Microbiological Analysis

Classical microbiological analysis was performed in olive samples to enumerate the main
microbial groups implicated in table olive fermentations [23], i.e., TVC, LAB, yeasts and molds, and
Enterobacteriaceae. For this purpose, olives were removed from the brine and 25 g of olive flesh was
aseptically cut and homogenized in 225 mL sterile 1

4 Ringer’s solution (Stomacher 400 circulator,
Seward Limited, Norfolk, United Kingdom) for 60 s at room temperature. The appropriate decimal
dilutions were poured or spread on the following growth media: (i) Tryptic Soya Agar (TSA, 4021502,
Biolife, Milan, Italy ) for TVC enumeration, incubated at 25 ◦C for 48–72 h; (ii) de Man-Rogosa-Sharpe
agar (MRS LAB233, LABM) for the enumeration of LAB, supplemented with 0.05% (w/v) cycloheximide
(AppliChem, Darmstadt, Germany), overlaid with the same medium and incubated at 30 ◦C for 48–72
h; (iii) Rose Bengal Chloramphenicol Agar (RBC Agar, BK151HA, Biokar diagnostics, Allone, France)
for the enumeration of yeasts and molds, incubated at 25 ◦C for 48 h; and (iii) Violet Red Bile Glucose
Agar (VRBGA, CM0485, Oxoid, Hampshire, United Kingdom) for the enumeration of Enterobacteriaceae,
overlaid with the same medium and incubated at 37 ◦C for 24 h. The results were log transformed and
expressed as log CFU/g.

2.3. pH and Salt Measurement

The pH of the brine was recorded using a digital pH meter (Metrohm AG, Herisau, Switzerland).
Salt (sodium chloride) determinations in the brines were carried out by titration [24]. The results were
expressed as a percentage (w/v) of NaCl.

2.4. Sensory Evaluation

Sensory evaluation of olive samples was performed by a taste panel consisting of ten trained
persons according to the method of sensory analysis of table olives established by the IOC [25]. The
sensory attributes taken into account included the following descriptors: abnormal fermentation, salty,
bitter, acid, hardness, fibrousness, and crispness. Scores were obtained from an evaluation sheet by
reading the marks for each descriptor in an unstructured 1–11 scale.

2.5. Determination of Olive Microbiota by Next Generation Sequencing (NGS)

For olive microbiota determination, total DNA was directly extracted from olives’ surface using
the NucleoSpin Food kit (Macherey-Nagel GmbH & Co. KG, Dueren, Germany) according to the
manufacturer instructions. Purified DNA samples were stored at −20 ◦C until use.

The Ion 16S Metagenomics kit (Thermo Fisher Scientific, Waltham, MA, USA) was used to amplify
the V2-4-8 and V3-7-9 hypervariable regions of 16S rRNA gene, and the resulting amplicons (400
bp) were sequenced using Ion Torrent PGM by CeMIA SA (https://cemia.eu/) (Larissa, Greece) to
estimate the bacterial diversity. The analysis of sequences was performed using Ion Reporter software
(Thermo Fisher Scientific, Waltham, MA, USA). Chimeras and noise were removed from the sequences.
Operational taxonomic units (OTUs) were taxonomically classified (at >97% similarity) using Nucleotide
Basic Local Alignment Search Tool (BLASTn) against the NCBI database (www.ncbi.nlm.nih.gov)
(Bethesda MD, 20894 USA).

For yeast/fungal ecology estimation, amplicon sequencing (bTEFAP) was performed on the
Illumina MiSeq at Molecular Research DNA (MR DNA, Shallowater, Texas). The ITS primer pair,
ITS1F (5′-CTTGGTCATTTAGAGGAAGTAA-3′) and ITS2R (5′-GCTGCGTTCTTCATCGATGC-3′), was
used to amplify the yeast/fungal internal transcribed spacer (ITS) DNA region, namely, ITS1-ITS2.
Each sample underwent a single-step 30 cycle PCR using HotStarTaq Plus Master Mix Kit (Qiagen,
Valencia, CA, USA). Following PCR, and all amplicon products from different samples were mixed in
equal concentrations and purified using Agencourt Ampure beads (Agencourt Bioscience Corporation,
Beverly, MA, USA). Samples were sequenced utilizing the Illumina MiSeq chemistry following the
manufacturer’s protocols. Sequences were then denoised and chimeras removed. Operational

https://cemia.eu/
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taxonomic units were defined after removal of singleton sequences, clustered at 3% divergence (97%
similarity) and taxonomically classified using BLASTn against a curated NCBI deriving database [26]
and compiled into each taxonomic level as percentages, reflecting the relative percentage of sequences
within each sample.

Microbial diversity was analyzed using the R package Phyloseq v. 3.6.1. [27]. OTU abundance
was normalized using the median sequencing depth of all samples. Analyses of alpha diversity were
carried out using standard or custom Phyloseq command lines.

2.6. Statistics and Multivariate Analysis

Differences in microbial populations, tested with one-way analysis of variance (ANOVA) followed
by post hoc comparisons with Tukey’s test, were considered statistically significant at p < 0.05. Analysis
of data was carried out with Statistica 8.0 software package (StatSoft Inc., Tulsa, OK, USA).

Partial least squares discriminant analysis (PLS-DA), was used to optimize separation between
the different olive samples by linking two data matrices X (i.e., raw data) and Y (i.e., classes) [28]. In
our case, the raw data used were the microbiological, physicochemical, sensory data as well as the
characterized microbiota (bacteria and yeasts) at species level OTUs. The tested classes were either the
cultivars (i.e., Konservolia and Halkidiki) or the four geographical sampling regions (i.e., Magnesia,
Fthiotida, Halkidiki and Kavala). Data were transformed by autoscaling before analysis. In addition,
the variable importance on projection (VIP) was used to identify the most important variables. A
VIP value of 1.0 has generally been accepted as a cut-off limit in variable selection; thus, variables
exceeding this limit were considered to be highly influential [20]. Heatmaps were also performed for
data visualization. PLS-DA analysis and heatmaps were performed using MetaboAnalyst 4.0 [29].

3. Results

3.1. Microbial and Physicochemical Quality of Fermented Table Olives

Figure 1 illustrates the mean population of TVC, LAB, and yeasts and molds in fermented table
olives of Konservolia cultivar from the Magnesia and Fthiotida regions (Figure 1A) and Halkidiki
cultivar from the Halkidiki and Kavala regions (Figure 1B). The specific population of the different
microbial groups enumerated on each sample is shown at Table S1. TVC in natural fermented table
olives of Konservolia variety exhibited an average value of 5.2 ± 0.9 log CFU/g, with the counts of
olives from the Fthiotida region exhibiting about 2-log units higher value than the corresponding
average population in olives harvested from Magnesia (p < 0.05) (Figure 1A). Similarly, the LAB
population exhibited average values of 5.7 ± 0.2 log CFU/g and 4.2 ± 0.5 log CFU/g in table olives from
the Fthiotida and Magnesia regions, respectively. By contrast, the yeast population in table olives from
the Fthiotida was 2.8 ± 0.5 log CFU/g, about 1-log unit lower than the respective population in olives
from the Magnesia region (p < 0.05).

In the case of Spanish-style fermented green olives of Halkidiki variety, no significant differences
were observed in the microbial populations between samples from the Halkidiki and Kavala regions
(p > 0.05) (Figure 1B). It has to be noted that, in all samples, Enterobacteriaceae population was lower
than the detection limit of the method (<1 log CFU/g).

Regarding pH measurements, the pH values in the brine of olives did not exceed 4.30 (Table S1),
a finding complying with the physicochemical characteristics for the safety of the final product [30].
More specifically, the pH value of brine samples from Magnesia (3.58 ± 0.01) was significantly lower
(p < 0.05) than the pH of brine samples from the Fthiotida region (4.14 ± 0.14). On the other hand, brine
samples from the Kavala and Halkidiki regions presented average similar pH values, i.e., 3.81 ± 0.04
and 3.79 ± 0.01, respectively. Moreover, the salt concentration in the brines of samples from Magnesia
(10.3 ± 0.17% w/v) was significantly higher than the salt concentration in brine samples from Fthiotida
(5.45 ± 0.78% w/v) (p < 0.05). Similarly, significant differences were also observed in salt concentration
between brine samples from Kavala (5.75 ± 2.01% w/v) and Halkidiki (7.63 ± 0.13% w/v) (p < 0.05).
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Figure 1. Microbial enumerations of total viable counts (TVC), lactic acid bacteria (LAB), and yeasts in
fermented table olives of (A) cv. Konservolia from Magnesia (MAG) and Fthiotida (FTH) regions and
(B) cv. Halkidiki from Kavala (KAV) and Halkidiki (HAL) regions. The results present average values
± SD. Different letters indicate statistically significant differences (p < 0.05).

3.2. Sensory Evaluation of Fermented Table Olives

The scores of sensory attributes evaluated for the fermented table olives are presented in Figure 2.
Regarding the gustatory sensations, naturally fermented black olives of cv. Konservolia from Fthiotida
and Magnesia were perceived to be bitterer than green olives of cv. Halkidiki. Black olives from
Magnesia received the highest score for saltiness by the panelists. Concerning acidity, green olives
from Halkidiki and Kavala received higher scores compared to black olives from Fthiotida and
Magnesia that developed a milder taste. No off odors indicating abnormal fermentation (i.e., butyric,
putrid fermentation or zapateria) or other defects were detected by the panelists in any of the table
olive samples. Moreover, Spanish-style fermented green olives of cv. Halkidiki from Halkidiki and
Kavala received higher scores for the kinesthetic sensations of hardness, fibrousness, and crunchiness
compared to naturally fermented black olives of cv. Konservolia from Fthiotida and Magnesia.

Figure 2. Spider graph showing the sensory profiles (original scores) for the diverse fermented table
olives samples. FTH (origin, Fthiotida; cultivar, Konservolia), MAG (Magnesia; Konservolia), HAL
(Halkidiki; Halkidiki), KAV (Kavala; Halkidiki).
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3.3. Bacterial Community Profiling

The NGS of 16S rRNA amplified from total DNA extracted from the surface of olive samples was
applied to monitor the bacterial relative abundancies. The metataxonomic analysis in cv. Konservolia
and cv. Halkidiki table olives revealed a complex bacterial microbiota that consisted of thirteen and
eleven families, respectively. In brief, differences in bacterial families (Figure 3A) and species (data
not shown) were observed based on olive varieties and were significantly higher (p < 0.05) in cv.
Halkidiki than in cv. Konservolia table olives. In the case of cv. Halkidiki table olives, bacterial families
were significantly higher in olives from the Halkidiki region than from the Kavala region (p < 0.05)
(Figure 3B). Similarly, significantly higher bacterial communities were observed in table olives from
the Magnesia region than from the Fthiotida region (Figure 3C).

Figure 3. Alpha-diversity boxplots for table olive’s bacterial families of (A) cultivar Halkidiki and
Konservolia, (B) cultivar Halkidiki from Halkidiki (A_1) and Kavala (B_2) regions, and (C) cultivar
Konservolia from Magnesia (C_3) and Fthiotida (C_4) regions based on observed and Simpson indices.

In Figure 4, the OTUs at family level on the olive surface of cv. Konservolia (Figure 4A) and cv.
Halkidiki (Figure 4B) samples, representing at least 1% of the total sequence reads in each sample, are
displayed. Lactobacillaceae was the predominant bacterial family identified across all olive samples
of cv. Konservolia and cv. Halkidiki from both geographical regions (Figure 4A,B). The whole set of
identifications at family, genus, and species level is shown as Supplementary Material (Table S2A–C).

Lactobacillus was the most common detected genus in all cases, followed by Pediococcus in samples
of cv. Konservolia and samples from the Halkidiki region. In brief, the species Lactobacillus acidipiscis,
Lactobacillus coryniformis, Lactobacillus paracollinoides, Lactobacillus parafarraginis, Lactobacillus harbinensis,
Lactobacillus kisonensis, Pediococcus parvulus, and Pediococcus ethanolidurans were identified (Table S2C).
Furthermore, Nostocaceae was the second most common family found in samples from Magnesia, Kavala
and Halkidiki, whereas Leuconostocaceae was the second abundant family detected in samples from the
Fthiotida region. Concerning the rest of the detected bacteria, in olives from Magnesia, Shewanellaceae
(including Shewanella), Propionibacteriaceae (including Propionibacterium), and Gloeobacteraceae were
also detected, with the remaining families being present at lower proportions (<2%) (Table S2B).
Similarly, Nostocaceae, Enterobacteriaceae, Gloeobacteraceae, and Phormidiaceae were in samples from the
Fthiotida region (Figure 4A). Moreover, other families contributing to the bacterial consortium in olives
from Kavala were Shewanellaceae (including Shewanella), Bacillaceae, Colwelliaceae, Gloeobacteraceae, and
Propionibacteriaceae, while Leuconostocaceae was identified only in one sample (Figure 4B). On the other
hand, Phormidiaceae, Vibrionaceae, Gloeobacteraceae, Prochlorococaceae, and Bacillaceae were also detected
on table olives from the Halkidiki region (Figure 4B).
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Figure 4. Relative abundance of total observed bacterial families on table olives of (A) cv. Konservolia
originating from the regions of Magnesia (MAG) and Fthiotida (FTH) and (B) cv. Halkidiki originating
from the regions of Kavala (KAV) and Halkidiki (HAL). Only families above 1% occurrence are reported.

3.4. Yeast Community Profiling

The yeast community of olive samples was revealed by NGS of the ITS region of yeast rDNA
amplified from total DNA extracted from the surface of fermented table olive samples. The
metataxonomic analysis in cv. Konservolia and cv. Halkidiki table olives revealed a complex
yeast microbiota. In brief, differences in yeast families and genera were observed based on olive
varieties and were significantly higher (p < 0.05) in cv. Konservolia than cv. Halkidiki table olives
(Figure 5). However, no significant differences were observed between the different geographical
regions for both cultivars (data not shown). The detected families at relative abundance >1% of the total
sequence reads in each olive sample are presented in Figure 6, while the whole set of identifications at
family, genus, and species level is shown as Supplementary Material (Table S3A–C).
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Figure 5. Alpha-diversity boxplots for table olives yeasts families (A) and species (B) of cultivar
Halkidiki and Konservolia based on observed and Simpson indices.

Figure 6. Relative abundance of total observed yeast families on table olives of (A) cv. Konservolia
originating from the regions of Magnesia (MAG) and Fthiotida (FTH) and (B) cv. Halkidiki originating
from the regions of Kavala (KAV) and Halkidiki (HAL). Only families above 1% occurrence are reported.

Pichiaceae was mainly detected at highest relative abundance in green, Spanish-style fermented
olives cv. Halkidiki from both geographical regions (Figure 6B) and the majority of olive samples
cv. Konservolia (Figure 6A). In the case of Konservolia olives from Magnesia, Phaffomycetaceae was
the dominant family in four samples, followed by Pichiaceae that dominated in two samples, while
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the remaining families were present at very low proportions (<1%) (Figure 6A). In the latter case, the
most detected species were Wickerhamomyces anomalus, Pichia membranifaciens, and Wickerhamomyces
sydowiorum (Table S3C). Similarly, Pichiaceae was the predominant family across eight out of nine
samples, followed by Aureobasidiaceae that dominated the yeast community in one sample in olives
from Fthiotida. The rest of the families, i.e., Debaryomycetaceae and Phaffomycetaceae, were present
at very low proportions (<1%) (Figure 6A). In brief, Pichia manshurica, Brettanomyces custersianus,
Pichia membranifaciens, Aureobasidium pullulans, Schwanniomyces etchelsii, and Wickerhamomyces anomalus
were characterized at species level (Table S3C). On the other hand, for cv. Halkidiki olives from
Kavala, beyond Pichiaceae which was the most detected family, the rest of the families were detected in
low relative percentages (< 1%) (Figure 6B). In brief, the yeast microbiota was dominated by Pichia
(including Pichia manshurica) and Brettanomyces (including Brettanomyces custersianus) (Table S3B,C). In
the case of olives from the Halkidiki region, the microbiota of one sample out of six was dominated by
Debaryomycetaceae, while the majority of them were dominated by Pichiaceae. Pichia (including Pichia
manshurica and Pichia membranifaciens) was the dominant genus detected in eight out of nine samples,
while Schwanniomyces (i.e., Schwanniomyces etchelsii) dominated the ninth sample followed by Ogataea,
Pichia, and Penicillium (Table S3B,C).

3.5. Cultivar and Geographical Discrimination of Table Olives by Multivariate Analysis

A dual hierarchal dendrogram (heatmap) was utilized to display the data obtained from this
study (microbiological, physicochemical, sensory, and bacterial and yeast species—level OTUs) with
clustering related to the different olive samples. Based on the clustering evident in Figure 7, there
appears to be a clear distinction between samples based on cultivar (Figure 7A) and geographical
origin (Figure 7B) classes.

Figure 7. Hierarchically clustered heatmap of microbiological, physicochemical, organoleptic, and
species level operational taxonomic units (OTUs) of bacteria and yeast communities data of table olive
samples based on (A) the cultivar and (B) the geographical origin of the samples. The sample codes are
indicated in Table 1.

Furthermore, PLS-DA analysis effectively discriminated olive samples based on cultivar (Figure 8A)
and geographical origin (Figure 8B) classes with no overlapping. However, a statistically significant
difference (p < 0.001) was confirmed only for the discrimination of olives based on geographical origin.
In this case, according to the VIP values (>1), pH_Br, TVC-F and LAB_F and Lactobacillus paracollinoides,



Microorganisms 2020, 8, 1241 11 of 18

Lactobacillus coryniformis, Leuconostoc, and Cladosporium cladosporioides were highly associated with the
Fthiotida region (Figure 9B). Similarly, Lactobacillus acidipiscis, Wickerhamomyces anomalus, Lactobacillus
suebicus, RBC_F, Lactobacillus vaccinostercus, and Wickerhamomyces sydowiorum were highly associated
(VIP value > 1) with the Magnesia region and Propionibacterium and Shewanella with the Kavala region
(Figure 9B).

Figure 8. Partial least squares discriminant analysis (PLS-DA) clustering depending on (A) cultivar
and (B) geographical origin of the olive samples.

Figure 9. Most influential parameters of the olive samples based on the VIP scores from the PLS-DA
analysis at (A) cultivar and (B) geographical origin levels.

4. Discussion

The effect of cultivar and geographical origin on the microbiota of the fermented table olives was
assessed in this research. For this purpose, the bacterial and yeast diversity of fermented table olives
of two main Greek varieties collected from different regions, i.e., black olives, cv. Konservolia, from
Magnesia and Fthiotida and green olives, cv. Halkidiki, from Kavala and Halkidiki was evaluated
using metataxonomics in parallel with the classical microbiological approach and taking into account
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physicochemical and organoleptic characteristics. The characterization of the microbial communities
of Greek table olives aims at a comprehensive analysis of their microbial ecology and contributes to the
exploitation of their microbial fingerprint based on cultivar and area of origin.

PLS-DA analysis indicated a satisfactory discrimination among the different geographical regions
without overlapping between the cases, with the pH value and the TVC and LAB counts representing
the most discriminative parameters.

LAB was the predominant microbial population in black Greek-style fermented olives cv.
Konservolia from Fthiotida and in green Spanish-style fermented olives cv. Halkidiki from both
geographical regions. The dominance of LAB is rather typical for Spanish-style processing and has been
previously observed by other researchers [15,31]. This observation is also in line with previous findings
for Greek table olives and is attributed to the low salt level (6–7%) used by the Greek industry in the
brine during the period of active fermentation to ensure the dominance of LAB and therefore improve
the preservation and sensory characteristics of the final product [6,32]. It is well documented that yeast
development is favored against LAB by high salt concentrations, the presence of phenolic compounds,
and low pH levels [33–35]. Low pH values and high salt concentrations were also measured in the case
of black olives from the Magnesia region, where LAB and yeasts were detected at similar levels. The
involvement of yeasts is particularly important in natural olives, when fruits are not lye-treated and
phenolic compounds partly inhibit LAB development [36]. Similar yeast populations, i.e., 4.7 log cfu/g
and 4 log cfu/mL were previously enumerated in Greek black dry-salted olives (cv. Thassos) with ~7.5%
NaCl [37] and black table olives of cv. Hojiblanca with 4% NaCl and 0.3% acetic acid [38], respectively.

The metataxonomic analysis employed herein highlighted differences in bacterial and yeast
ecology both at cultivar and geographical origin levels. Lactobacillaceae was the dominant family
identified in olive samples from both cultivars, indicating that these were all lactic acid fermentations,
which was also verified by the classical microbiological analysis. The significant role of this microbial
group in olive fermentations has been extensively reviewed by Hurtado et al. [39], and it is commonly
found in the microbiota of fermented green and black olives using both classical microbiological
and metagenomics analyses [7,15,18,40–42]. NGS highlighted relevant differences in the occurrence
of different Lactobacillus species, depending on the cultivar. According to multivariate analysis, the
most discriminative species were Lactobacillus acidipiscis, Wickerhamomyces anomalus, and Lactobacillus
paracollinoides (VIP > 1.6). In a recent study, the presence of Lactobacillus was also highly influential for
the differentiation of Greek-style fermented olives cv. Kalamata from different geographic regions [20].
Furthermore, the species Lactobacillus paracollinoides was identified as responsible for the discrimination
of Spanish-style green olive fermentations among different patios [22]. Moreover, L. harbinensis was
found to colonize only the surface of green Spanish-style fermented table olives cv. Halkidiki, while
L. vaccinostercus/L. suebicus, described by Abriouel et al. [13] were detected only on the surface of
black naturally fermented table olives cv. Konservolia underlining the impact of cultivar in microbial
diversity. In the present study, the occurrence of L. harbinensis at fermented table olives was revealed for
the first time. L. harbinensis is a halotolerant species often isolated from fermented vegetables and dairy
products [43]. However, the detection of L. coryniformis has also been reported previously in green
table olive fermentations [44,45] and in black olives packed in modified atmosphere conditions [46]. In
addition, L. acidipiscis was detected in green olives cv. Halkidiki from the Kavala region and in black
olives cv. Konservolia from the Magnesia region, reinforcing the importance of regional characteristics
(e.g., climatic conditions) in microbial diversity. Likewise, L. paracollinoides was detected in black
table olives from Fthiotida and in one sample of green olives from Kavala. The occurrence of L.
paracollinoides in table olive fermentations has been reported previously [13,22]. Moreover, pediococci
were also detected in olives of both cultivars, with a higher abundance in green olives from Halkidiki
where in some samples, they dominated over the Lactobacillus population. The dominant species
were Pediococcus parvulus, detected in olives from both cultivars and Pediococcus ethanolidurans found
in higher abundance in olives from Halkidiki than Konservolia variety, as it was detected at low
relative abundance only in olives from Magnesia. In earlier studies, Pediococcus ethanolidurans was
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also isolated from black [46] and green [16] olive fermentations, while P. parvulus was found to be the
dominant species in green table olives [47]. Regarding the rest of the LAB, the high relative abundance
of Leuconostoc genus in black olives cv. Konservolia from the Fthiotida region in combination with
the low salt concentration of these samples is in accordance with previous findings that observed a
high occurrence of these heterofermentative cocci in fermentations carried out in brine with a low salt
concentration [45].

An unusual finding of the present study was the detection of cyanobacteria in the microbiota
of fermented table olives of Konservolia and Halkidiki cultivars, represented mainly by Nostocaceae
family, followed by Phormidiaceae and Gloeobacteraceae with relative lower abundances. Cyanobacteria
are ubiquitously present in soil and marine environments, and some species can survive harsh
environmental conditions, including environments with high salt concentrations [48]. Their presence
has been highlighted in earlier studies conducted on table olives [49] and olive-mill wastewater [50];
however, it should be carefully evaluated due to emerging human health issues related to this bacterial
group [51–53].

Moreover, Enterobacteriaceae was detected in black naturally fermented olives cv. Konservolia
only in some samples from the Fthiotida region at low relative abundances, although its presence
was not confirmed by the classical microbiological methods. This could be attributed either to the
amplification of DNA from dead bacteria or to the low detection limit of the plate counting method [49].
The presence of this family in the fermentation of table olives is rather habitual, with a well-known
negative contribution in the quality of the final product [54].

Similarly, yeast diversity on olive surfaces was determined by targeting the ITS region of the
nuclear ribosomal DNA, a widely accepted standard procedure for yeast identification not only in
fermented table olives [19,20] but also in other food fermentations [55]. According to the results,
the yeast microbiota of olive samples of both cultivars was less diverse compared to bacteria, a
finding in accordance with the results obtained previously regarding fermented natural black olives cv.
Kalamata [20].

Pichiaceae was the dominant family identified in green olives cv. Halkidiki from both regions,
confirming its ability to colonize the surface of table olives [8]. Specifically, green olives from Kavala
showed a homogeneous yeast population where Pichiaceae family prevailed in all samples. The
species Pichia manshurica, Brettanomyces custersianus, Pichia membranifaciens, Schwanniomyces etchelsii,
and Ogataea candida boidinii were the most common species detected. These results are in agreement
with a recent work, where Pichia manshurica, Pichia membranifaciens, and Schwanniomyces etchellsii were
found among the yeast species at the final stage of Spanish-style green olive fermentation [22]. The low
occurrence (<1%) of Saccharomyces in the observed yeast consortium is of importance, as this genus has
been highly associated with olive fermentation [9]. This finding is consistent with the results of biofilm
community formed on the surface of plastic vessels used in Spanish-style green olive fermentation cv.
Halkidiki [56] and middle stage of Spanish-style fermentation [22]. On the other hand, Brettanomyces are
usually associated with the fermentation of alcoholic beverages like beer and wine having a controversial
role from spoilage organisms to contributors to industrial fermentations. However, Brettanomyces was
also recently detected in black olives cv. Kalamata at low levels [20], while Brettanomyces custersianus
and D. bruxellensis have been isolated in the past from olives [57] and Greek-style black olives [58],
respectively. It has to be noted that differences were observed among the dominant yeast families
in black natural olives cv. Konservolia between the samples from the different geographical regions.
The dominant yeast families identified in samples from Magnesia were Phaffomycetaceae (mainly
Wickerhamomyces anomalus), followed by Pichiaceae (mainly Pichia membranifaciens). On the other hand,
Pichiaceae was identified as the dominant yeast family in most of the black natural olives cv. Konservolia
from the Fthiotida region, followed by Aureobasidiaceae. The prevalence of W. anomalus in the yeast
consortium was probably attributed to its tolerance to diverse stress factors such as low pH and high
salt concentration, characteristics found in the brines of the samples from Magnesia. Earlier studies
have confirmed its presence in natural black olives of cv. Konservolia [59,60]. W. anomalus has been
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reported to exhibit β-glucosidase activity and produce antioxidant compounds and killer toxins against
human pathogens and spoilage microorganisms [61,62], properties that may improve the quality of the
final product both from nutritional and safety aspects. Pichia manshurica, Brettanomyces, and Pichia
membranifaciens were also isolated recently from natural black olive fermentations of Konservolia
and Kalamata cultivars [20,59,60], while Aureobasidium pullulans has been previously detected on first
stages of cv. Konservolia olive fermentation [59] and Kalamata black olive natural fermentations [63].
P. membranifaciens has shown strain-specific killer activity against spoilage yeasts, thus preventing food
spoilage [64].

5. Conclusions

In conclusion, discriminative analysis was performed to detect biogeographic patterns of the
microbial populations along with physicochemical and organoleptic characteristics of Greek fermented
table olives belonging to Konservolia and Halkidiki varieties. The diversity of the microbial community
of olives from different regions was evaluated by metataxonomic analysis. The results obtained reveal
the complex structure of the microbiota in these fermentations and point the microbial key taxa that
may be linked to specific geographic areas. However, further studies are needed to enhance our
knowledge of the microbial ecology of Greek table olives and probably enable the design of new
strategies to improve their quality and safety.
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