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Abstract: Influenza viruses arise from animal reservoirs, and have the potential to cause pandemics.
In 2013, low pathogenic novel avian influenza A(H7N9) viruses emerged in China, resulting from
the reassortment of avian-origin viruses. Following evolutionary changes, highly pathogenic strains
of avian influenza A(H7N9) viruses emerged in late 2016. Changes in pathogenicity and virulence
of H7N9 viruses have been linked to potential mutations in the viral glycoproteins hemagglutinin
(HA) and neuraminidase (NA), as well as the viral polymerase basic protein 2 (PB2). Recognizing
that effective viral transmission of the influenza A virus (IAV) between humans requires efficient
attachment to the upper respiratory tract and replication through the viral polymerase complex,
experimental evidence demonstrates the potential H7N9 has for increased binding affinity and
replication, following specific amino acid substitutions in HA and PB2. Additionally, the deletion of
extended amino acid sequences in the NA stalk length was shown to produce a significant increase in
pathogenicity in mice. Research shows that significant changes in transmissibility, pathogenicity and
virulence are possible after one or a few amino acid substitutions. This review aims to summarise key
findings from that research. To date, all strains of H7N9 viruses remain restricted to avian reservoirs,
with no evidence of sustained human-to-human transmission, although mutations in specific viral
proteins reveal the efficacy with which these viruses could evolve into a highly virulent and infectious,
human-to-human transmitted virus.

Keywords: H7N9; avian influenza virus; hemagglutinin; neuraminidase; polymerase basic protein 2;
evolution; mutation; reassortment

1. Introduction

The pandemic potential of the influenza A virus (IAV) is well known, with the most significant
impact occurring during the 1918 Spanish Flu, where mortality was estimated between 21.5 million and
100 million [1]. In the one hundred years since this initial event, evolutionary adaptations in human
and animal influenza viruses have resulted in another three IAV pandemic events; the 1957 Asian flu
(H2N2), the 1968 Hong Kong flu (H3N2) and the 2009 swine flu (H1N1) [2]. While pandemic events
remain limited in number, recurring seasonal influenza virus epidemics result in approximately three
to five million cases of severe illness annually, with between 290,000 and 650,000 deaths linked to
virally associated respiratory diseases [3]. The morbidity rate for influenza epidemics underscores the
constant molecular changes taking place within the viral genome, which in turn facilitates the evasion
of host immunity. In response to selective evolutionary pressures, the IAV is adapting, resulting in
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viral diversity and the creation of novel genotypes. The emergence of the novel IAV H7N9 in 2013 and
the resulting morbidity and mortality signalled an evolutionary adaptation of unknown consequence.
The purpose of this review is to document the emergence of the H7N9 virus, how it adapted to human
hosts, and also highlight the molecular changes that could bring about a human-to-human pandemic.

2. Viral Characterization and Origin of Avain Influenza A(H7N9) Viruses

Influenza viruses are enveloped negative-sense, single-stranded RNA (ssRNA) comprising
a segmented genome (Figure 1) [4–6]. The three largest RNA segments (1–3) encode the viral
polymerases PB1, PB2 and PA, which are necessary for RNA synthesis and replication within
an infected cell. Two RNA segments (4 and 6) encode the viral glycoproteins hemagglutinin (HA)
and neuraminidase (NA), respectively, covering the virion surface at a ratio of approximately 4:1 [7].
The HA protein mediates binding and viral entry via specificity for host cell surface sialic acid (SA)
residues, which are common to many animal species and cell types, whilst NA acts to cleave terminal
SA residues, facilitating viral release [7]. Nucleoprotein (NP) is encoded on Segment 5, and mainly
serves to bind the segmented RNA genome. The viral RNA Segment 7 encodes proteins that enclose
the virion to provide a structural scaffold (M1) and a proton ion channel required for viral entry and
exit (M2) [6,7]. The non-structural protein 1 (NS1) and nuclear export protein (NEP) are encoded
by RNA Segment 8. NS1 has a major role in restricting the host cell immune response by limiting
interferon production, as well as modulating viral RNA replication, viral protein synthesis and host-cell
physiology [8]. NEP mediates the export of viral RNA from the nucleus to the cell cytoplasm [9].
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viral release, the binding viral NP; RNA Segment 7 (M) encoding the matrix scaffolding protein (M1) 
and membrane protein (M2); RNA Segment 8 (NS) encoding a non-structural protein and NEP. 
Reprinted by permission from Springer Nature: Springer, Nature Reviews Disease Primers [6], 
Copyright (2018). 

The segmented nature of the IAV genome enables genetic reassortment, a process by which 
complete viral segments are exchanged within a cell co-infected with differing influenza viruses. 
Reassortment of an IAV genome can then generate an antigenic shift, in which the resulting virus 

Figure 1. Diagrammatic representation of the influenza A virus (IAV) and its viral genome. Eight internal
ssRNA segments encode the major viral proteins of: the RNA-dependent RNA polymerase (PB2, PB1
and PA); HA providing the structural basis for host binding and viral entry; NA facilitating viral
release, the binding viral NP; RNA Segment 7 (M) encoding the matrix scaffolding protein (M1) and
membrane protein (M2); RNA Segment 8 (NS) encoding a non-structural protein and NEP. Reprinted
by permission from Springer Nature: Springer, Nature Reviews Disease Primers [6], Copyright (2018).

The segmented nature of the IAV genome enables genetic reassortment, a process by which
complete viral segments are exchanged within a cell co-infected with differing influenza viruses.
Reassortment of an IAV genome can then generate an antigenic shift, in which the resulting virus may
produce novel antigenic proteins for which there is no pre-existing immunity. The mixing of viral
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genomes also enhances viral diversity, since strains from different animal species may mix freely within
a susceptible host. In addition, selective environmental pressures can facilitate rapid viral evolution
through processes like adaptation to a new host environment, evasion of the host immune response or
acquisition of antiviral drug resistance [10].

The poor proof-reading capacity of the influenza virus RNA polymerase contributes to molecular
changes within the viral genome via amino acid substitutions, deletions or insertions [11]. These changes
are responsible for generating viral diversity, and are referred to as antigenic drift [12]. Point mutations
result in relatively minor changes at antigenic sites on target proteins, although these changes can
accumulate over time, and eventually produce a strain that is no longer recognized by host antibodies [7].
As will be discussed below, antigenic shifts can produce a whole new viral strain, although in the case
of the H7N9 virus, antigenic drift can significantly alter the pathogenicity and virulence in humans.

Wild aquatic bird species are recognized as a major reservoir for influenza viruses, including IAV,
providing viral seeding for domestic birds and mammals [12,13]. While IAVs circulate widely in aquatic
birds, they also circulate in humans, pigs, horses, domestic birds (including chickens, turkeys, ducks
and geese), dogs, marine mammals and wild migratory birds (Figure 2) [10,14–19]. Although aquatic
birds are recognized as the primary source of IAVs, the circulation of two additional subtypes (H17N10
and H18N11) is carried by bats [13,20], and although these subtypes are phylogenetically similar to IAV,
they cannot reassort with IAV [6]. However, a recent study isolated an IAV in Egyptian bats with viral
characteristics indicative of an avian host origin. It was experimentally verified that viral replication of
this IAV was possible in the lungs of infected mice, thereby demonstrating evidence of a capacity to infect
other mammalian species [21]. Although IAVs from bats are not considered potential IAV reservoirs,
this recent evidence suggests novel subtype viruses may be emerging from this host.
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Figure 2. Aquatic birds remain the principal reservoir of all influenza viruses. Cross-species transmission
adds to viral reassortment and mixing possibilities with swine acting as mixing vessels for influenza
viruses uniquely adapted to birds and humans. Adapted by permission from Springer Nature: Springer,
Springer eBook [13], Copyright (2014).

Figure 2 outlines the diversity of hosts in which replication and mixing (reassortment) of the
IAV RNA genome can occur [13]. Wild aquatic birds remain the principal reservoirs for IAVs and all
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16 HA subtypes [12,13,22], with the reassortment of IAVs potentially occurring in wild aquatic birds,
poultry, swine and humans. Importantly, it should be emphasized that while swine are not considered
principal reservoirs for IAV, the potential for influenza viruses normally circulating in three distinct
species (humans, swine and birds) to meet within pigs indicates they could act as mixing vessels,
providing an ideal host for reassortment and cross-species transmission of novel IAVs [10].

Identification of the avian influenza A(H7N9) virus was first reported in March 2013, when three
Chinese nationals were hospitalized with a severe lower respiratory tract disease of unknown cause [23].
Two patients from Shanghai (identified with strains A/Shanghai/1/2013 and A/Shanghai/2/2013) died
within six days of hospital admission, while the third from Anhui Province, east of Shanghai
(A/Anhui/1/2013), died 19 days after admission. This event was the first sign of a newly emerging
virus that had the potential to be severely pathogenic within the human population [23].

Early analysis of H7N9 viruses revealed an unusually high internal genetic diversity, noting the
unusual characteristic that gene segments encoding the viral HA and NA genes were more conserved
than the segments encoding internal genes [24]. The precise origin of H7N9 viruses is unknown,
with internal genes potentially derived from avian H9N2 viruses (A/brambling/Beijing/16/2012),
while genes encoding the viral HA and NA were obtained from unknown avian H7N?/H?N9 viruses of
Eurasian origin [25–27]. Phylogenetic analysis of multiple H7N9 viruses supports a minimum two-step
sequential reassortment for generating avian influenza A(H7N9) viruses (Figure 3). This analysis
proposed at least two stages of sequential reassortment, incorporating distinct H9N2 viruses at each
stage. A lack of data on the first reassortment in wild birds precludes an accurate dating of that event,
although the latest reassortment potentially occurred in early 2012 [25].
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Figure 3. A minimum two-step sequential reassortment was proposed for the evolution of H7N9, with
the latest reassortment occurring in early 2012. The first reassortment likely took place between two
distinct species of wild birds, incorporating a distinct H9N2 virus. The resulting virus transmitted to
Chinese domestic birds before undergoing a second reassortment, with more recent H9N2 viruses
already circulating in Chinese poultry. Reprinted/adapted from [25], Copyright 2013, with permission
from Elsevier.

3. Hemagglutinin Mutations Confer Specificity for Human Epithelial Cells of the Respiratory Tract

The viral life cycle is initiated through attachment to a susceptible host. To achieve attachment,
a virus must have binding specificity for certain surface molecules on a host cell (a receptor), and without
that specificity, transmission of viral particles into the host will not occur. Sialic acid (SA) is a nonspecific
term used for nine-carbon acidic amino sugars that act as a cell surface receptor determinant for
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all influenza A virus (IAV) strains [28]. The attachment of all IAV strains to cells requires SAs with
an affinity that are dependent upon the presence of an α-2,3 or α-2,6 linkage between the SA and the
sugar galactose. Regarding the α-2,3 linkage, the carbon at Position 2 on the SA hexose is linked via
an oxygen atom to the carbon at Position 3 of galactose. This is also the case for α-2,6 except the SA
carbon is now linked to Position 6 on the hexose of galactose. On the surface of an IAV, hemagglutinin
(HA) glycoproteins are responsible for binding with SAs on the host cell surface, although the specificity
of HA towards SA varies between different animal species and contributes to host range restriction. For
example, an avian IAV will have an HA-glycan binding specificity that promotes transmission between
bird species, but lacks the necessary binding specificity to readily spread to humans, and vice versa [29].
The HA-glycan receptor interaction is critical for human infection [23]. Specifically, it requires an α-2,6
SA residue on the human host [30]. Hence, a human IAV will preferentially bind to an α-2,6 SA residue,
while an avian IAV has specificity for an α-2,3 SA residue, thereby limiting the effective transmission
of IAVs between birds and humans.

Following the emergence in 2013 of low pathogenic avian infleunza A(H7N9) viruses, evidence
began to mount of a novel IAV originating from an avian reservoir, but without signs of sustained
human-to-human transmission. The switching of viral HA specificity from avian α-2,3 SAs to
human α-2,6 SA receptors confers an increased binding affinity in the upper respiratory tract of
humans [23,31–33]. It should be noted that epithelial cells within the nasal mucosa of the upper
respiratory tract of humans are dominated by α-2,6 linked SAs, while alveolar epithelial cells in the
lower respiratory tract are dominated by α-2,3 linked SAs [30]. Efficient replication of an avian IAV in
the lower respiratory tract is possible where the avian receptor is present, although replication in the
upper respiratory tract is required for sustained human-to-human transmission. Although susceptible
individuals are at risk from multiple modes of transmission, aerosol transmission is possibly the
predominant mode of IAV transmission [34]. Hence, to achieve effective airborne transmission of
avian influenza viruses, there needs to be aerosol transmission via coughing/sneezing followed by
adherence to a host cell receptor [34,35]. Switching of the viral H7N9 HA specificity to favour human
SA receptors is likely to have been facilitated by mutation, and it has been shown that a change in
the viral HA molecule is a crucial adaptation in the transmissibility of previous pandemic influenza
strains [36]. Importantly, it has been shown that of the five waves of H7N9 viruses, there is no evidence
for enhanced or sustained human-to-human transmission [37].

With reference to avain H7N9 viruses, a change in the SA receptor affinity from avian to human
has been consistently linked to the substitution of glutamine (Q) with leucine (L) at Position 226 of
HA (HA-Q226L) [23,31,32]. The presence of a leucine residue in Position 226 of HA was predicted
to increase the strength of binding affinity of HA to human α-2,6 linked SA receptors [23], yet the
H7N9 HA failed to show an increased binding affinity. Instead, the H7N9 HA protein displayed
limited binding to α-2,6 linked SA receptors in the upper respiratory tract [33]. It was subsequently
demonstrated that mutation of the glycan receptor binding site of H7N9 HA with G228S produced
extensive binding to human tracheal tissue (Figure 4).

An experimental comparison of the glycan receptor binding site for A/Anhui/1/2013 with H3
HA (its phylogenetically closest human-adapted HA) has highlighted the critical importance of S228
in H3 for an amino acid network containing residues S186, T187 and E190 (Figure 4). This network
structurally positions E190 such that it can make critical contact with sialic acids for both avian and
human receptors. The H7 HA does not possess this amino acid network, as it has G228, which alters
the positioning of the contact residues involving E190, and as a result, binding to human respiratory
epithelial cells is diminished. Site-directed mutagenesis was used to introduce the G228S mutation
into H7 HA to produce HA-G228S, modifying the structural network and optimally positioning E190
and S228 for binding to both avian and human SA receptors [33].
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Figure 4. Staining of human trachea cells with G228S hemagglutinin (A/Anhui/1/2013) and a wild type
(WT) virus. Tissue sections present recombinant HA stained green, counterstained with propidium
iodide in red. The WT virus has not stained cells (top) as intensely as HA-G228S (bottom), demonstrating
an increased affinity of the mutated HA for human trachea cells. White arrows indicate specific staining
by recombinant HA (in green). Reprinted from [33], Copyright (2013), with permission from Elsevier.

As previously discussed, mutations in HA-226Q are indicative of the H7N9 mammalian adaptation
process, with typical human isolates displaying a characteristic HA-Q226L mutation [31,32,38].
While HA-226L continues to provide evidence of preferential binding to α-2,6 SAs in humans,
this substitution does not necessarily impart significant binding avidity [39]. Despite this, experimental
results demonstrate that HA-Q226L remains critical for binding to α-2,6 SAs, and enables the
transmission of H7N9 viruses in mammalian hosts [38]. Should H7N9 viruses with the HA-226L
mutation move into the swine population, this could represent a significant selective advantage,
given that swine are recognized as mixing vessels for human, swine and avian influenza viruses [40].
Using a recombinant wild-type virus (rAnhui-WT), Liu et al. [38] demonstrated the effectiveness of
direct contact transmission amongst pigs using the recombinant Anhui-HA-Q226L mutation [38].
This study identified that transmission/replication-enhancing mutations were occurring after a single
passage in pigs, concluding that the potential for novel reassortments to occur with other IAVs was
significant, should H7N9 become enzootic within pigs.

Despite the mutation at HA-Q226L, H7N9 retains stronger specificity for avian type SA receptors [41].
Sustained transmission in humans is postulated to require additional amino acid substitutions with
specificity for α-2,6 linked SA residues [31]. All human pandemic IAV strains have specificity for
α-2,6 linked SA receptors [42,43], which is consistent with the switch from avian to human SA
receptors that are accompanied by mutations within the HA receptor-binding pocket. In a systematic
mutational analysis, de Vries et al. [31] investigated the effect additional mutations would have towards
establishing complete human-type receptor binding specificity [31]. The authors used site-directed
mutagenesis of the wild type influenza A virus (A/Shanghai/2/2013), where HA-Q226L was already
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present. Two substitutions, each containing three amino acid mutations (V186G/K-K193T-G228S or
V186N-N224K-G228S), successfully demonstrated an acute loss of binding to α-2,3 SA receptors whilst
increasing avidity for α-2,6 SA receptors and subsequent effective binding to human trachea epithelial
cells, as shown in Figure 5. This approach successfully demonstrated how a combination of amino
acid mutations in H7 HA could result in increased specificity of the H7N9 virus to the α-2,6 linked SA
receptors on epithelial cells. The authors concluded that such a mutation would raise the potential for
human-to-human viral transmission via airborne droplets, which could lead to a pandemic outbreak [31].
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Figure 5. Determination of specificity for wild type (Sh2 = A/Shanghai/2/2013) and mutant H7
HAs on glycan arrays (left) and trachea epithelium (right). Mutations introduced in each glycan
array are listed above the plot. Glycans 1 to 10 are non-sialylated controls, while 11 to 79 represent
α-2,3 linked sialosides and 80 to 135 represent α-2,6 linked sialosides. The binding profile for triple
mutants V186K/G-K193T-G228S is nearly identical to the pandemic control virus Cal/04/09 2009 H1N1.
Minimally adapted from the original picture in [31].
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Following the initial outbreak in 2013, the H7N9 virus has undergone reassortment and mutation,
resulting in five epidemic waves of infection, with each wave responding to new evolutionary pressures
and adapting in the process [44]. The first four waves caused by H7N9 strains were classified as low
pathogenic avian influenza (LPAI), although with the emergence of the fifth wave during late 2016,
the LPAI H7N9 virus mutated into a highly pathogenic avian influenza virus [45]. The geographic
distribution of H7N9 was more widespread in the fifth wave, which was coupled with an increase in
human infection clusters, a trait symptomatic of an actively evolving virus [39].

To assess the potential for a fifth wave IAV switch in receptor specificity, triple mutations previously
identified by de Vries et al. [31] (V186G/K-K193T-G228S) were introduced in two separate lineages
of the H7N9 virus isolated from the 2016 fifth wave (Yangtze River Delta and Pearl River Delta),
and investigated to assess changes in human SA receptor specificity [39]. The expression of new variant
HAs from the recombinant viruses was analyzed using glycan microarray and bio-layer interferometry
to show a significant, but incomplete loss of binding to α-2,3 SA receptors, accompanied by increased
binding to α-2,6 SA receptors. The incomplete loss of α-2,3 SA receptor affinity in a fifth wave virus
contrasts with the complete loss of receptor affinity for similar mutations in A/Shanghai/2/2013, implying
a subtle mutagenic shift in this latest wave [39]. Yang et al. [39] noted that while HA receptor-binding
preference is important, it is not the only consideration for efficient human-to-human transmission [39].

The first step in the viral lifecycle is attachment to a susceptible host epithelial cell, without which
infection cannot ensue, and the life cycle terminates. Epithelial cells of the upper respiratory system
express abundant α-2,6 SAs at their surface, while alveolar cells in the lower respiratory tract are coated
with α-2,3 SAs. The adaptation of H7N9 into the human host from an avian reservoir is realized because
HA mutations have switched their binding affinity from α-2,3 SAs in birds to α-2,6 SAs in mammals,
and consequently can bind to epithelial cells in the upper respiratory tract. A consistent substitution
of leucine at HA-226 occurs in H7N9 viruses, but this mutation does not endow the expected strong
binding, potentially contributing to the lack of sustained human-to-human transmission. In contrast
to this, a single point mutation at 228 (G228S) produced a significant binding affinity to human cells,
and served to highlight the ease with which this virus could mutate into a highly infectious form.

4. Mutations in Polymerase Basic Protein 2 Enhance Replication and Virulence of H7N9

Successful binding to the human host is a necessary first step in viral transmission, followed by
host cell entry and replication. As a part of the viral replication complex, polymerase basic protein
2 (PB2) plays a crucial role in mammalian adaption, hence an amino acid change or reassortment in
PB2 has the potential to allow more efficient viral replication in a new host. Replication efficiency in
mammalian cells can be linked to amino acid substitutions in PB2 [36,46], therefore like hemagglutinin
(HA) mutations, a change in virulence factors may be related to the accumulation of specific PB2
protein mutations.

Avian influenza viruses typically carry glutamic acid (E) at Residue 627 in PB2. Replication
efficiency and host specificity are known to be influenced by Residue 627 in PB2. The substitution
PB2-E627K has been linked to increased pathogenicity in human isolates of H5N1 and H7N7, both
highly pathogenic avian influenza viruses [47]. Thus, there is some evidence that 627K may be
instrumental in enhancing the replication efficiency and virulence of avian influenza viruses in
mammals, and potentially contribute to mammalian adaptation [48].

Mok et al. [49] identified increased polymerase activity associated with PB2-E627K in human
isolates of H7N9, noting that poultry isolates lacked this mutation. The effect of substituting lysine
for glutamic acid (PB2-E627K) was experimentally investigated using mice infected with viruses
encoding either the PB2-627E or PB2-E627K proteins. Results showed a decrease in disease severity,
lower virus replication and decreased pro-inflammatory cytokines in mice lungs following viral
infection with the influenza A virus (IAV) (PB2-627E), compared to mice infected with IAV (PB2-627K),
concluding that these mutations contribute to increased pathogenicity in mice and mammalian
adaptation [49]. Furthermore, in addition to PB2-E627K, human isolates of H7N9 viruses have
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been identified with additional PB2 mutations, including Q591K and D701N, which are all known
to contribute to mammalian adaptation [49–51]. Similar substitutions in avian H7N9 viruses have
not been reported, noting that although these mutations occur rapidly in mammalian isolates of
H7N9, they are mammalian-specific, and are likely to have occurred after infection from the avian
host [49]. Yamayoshi et al. [51] provided experimental evidence for increased viral polymerase activity
associated with mutations PB2-627K and PB2-701N, concluding that these mutations are essential for
the mammalian adaptation of H7N9.

Xiao et al. [52] demonstrated how PB2-A588V resulted in enhanced polymerase activity, viral
replication and virulence for avian-origin H7N9 viruses in mammalian and avian cells. It was noted
that the presence of this mutation (PB2-A588V) has increased in human-origin H7N9 viruses, from 0%
in 2013 to 24.2% in 2014, with only a minimal presence of this mutation in H7N9 viruses of avian origin
(1.9%) [52]. It was concluded that PB2-588V is essential for mammalian adaptation, and when coupled
with PB2-627K, significantly affects the replication and virulence of H7N9.

An increase in the replication efficiency of avian influenza viruses in humans is associated with
specific mutations in PB2. The similar occurrence of a single amino acid substitution (PB2-E627K) in
H7N9 and other highly pathogenic viruses suggests this substitution is instrumental in mammalian
adaptation. Other PB2 mutations are known to contribute to replication, enhanced polymerase
activity and virulence, and it appears that a virus with multiple PB2 mutations could be appreciably
more virulent.

5. Neuraminidase Stalk Truncation Enhances Pathogenicity and Virulence of H7N9

Host tropism of the influenza virus is strongly influenced by virus-receptor specificity and avidity
for hemagglutinin (HA), preferentially binding to α-2,6 SA receptors, resulting in the fusion of the
viral envelope with host cells, whilst neuraminidase (NA) acts to cleave sialic acid (SA) from glycans,
thereby contributing to the release of viruses from the cell surface [53,54]. Importantly, the balance
between HA and NA activity is considered critical for effective influenza A virus transmission and
replication [54,55], hence mutations in the NA stalk of the H7N9 virus may produce changes in
virulence factors.

When IAV H7N9 emerged in 2013, a notable characteristic of this virus was the deletion of amino
acids 69 to 73 in the NA stalk, a feature consistent with other influenza subtypes. Chen et al. [56] postulated
that this was a potential mechanism for increasing human tropism and virulence, although this conclusion
was reached without experimental evidence, instead noting that a decreased stalk length was statistically
significant in other avian influenza subtypes (H5N1, H6N1, H7N1, H7N3 and H9N2), and therefore may
have similar significance in H7N9. Although the shortened NA stalk is considered a remnant of molecular
evolution, following the early adaption of IAV from wild aquatic birds to terrestrial poultry, it was notable
that this was the first time such a deletion had been observed in N9 [57].

A subsequent study by Bi et al. [57] investigated the impact NA stalk length variation has within
the H7N9 virus, specifically if the deletion of the five amino acid sequence (69–73) impacted virus
infectivity or replication. H7N9 strains with NA stalk length variations (deletions or insertions) were
administered to mice via intranasal inoculation to demonstrate that the five-amino acid deletion
(NA 69–73), commonly present in H7N9, had no significant impact on viral replication, NA activity or
pathogenesis [57]. It was contended that NA stalk length is optimized as an evolutionary strategy to
maintain a functional balance of HA-NA interaction, thereby enhancing viral fitness, and that short
deletions have no discernible impact on pathogenicity [57,58].

In contrast, certain NA stalk deletions are known to produce virulence enhancements in H5N1 [57,59,60],
and therefore similar amino acid deletions (NA residues 49–68, 54–72 and 54–73) were tested in mice by
deleting these sequences in three separate mutations (A/Anhui/1/2013) [57]. Truncated NA stalks resulted
in significantly greater pathogenic infections in mice, compared with that of a full-length NA stalk virus,
although the naturally occurring 5 amino acid deletion in the NA stalk of H7N9 had no significant impact
on NA activity, viral replication or pathogenesis in mice [57]. The increase in pathogenicity was attributed to
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a disruption in the HA-NA balance and the consequence of a shortened NA stalk length, although the link
between reduced NA stalk length and increased virulence requires further investigation.

The association between NA stalk length, pathogenicity and virulence in H7N9 has received
relatively limited attention within the research literature. Although present in other influenza subtypes,
the natural deletion of five amino acid sequences in N9 does not appear to impact viral fitness or
pathogenesis. However, expanded sequence deletions of amino acids in NA results in major pathogenic
infections, yet the likelihood of this occurring as a natural mutational advantage seems unlikely, since it
has been demonstrated that viral fitness is intimately tied to a functional HA-NA balance.

6. Conclusions

Evolutionary pressures have driven molecular changes within the viral genome of H7N9, and in
the process, established favourable binding to human epithelial cells through increased specificity
for α-2,6 linked SA receptors. In an apparent incongruity, the H7N9 virus also retains its specificity
for avian cells, which may be an indication of insufficient or ineffective evolutionary pressures.
Experimental studies show how a single amino acid substitution enhances binding to human epithelial
cells (HA-Q226L), but an equivalent reduction in specificity for avian α-2,3 linked SAs is lacking,
and nor is there a particularly strong avidity for α-2,6 linked SAs in the presence of this mutation.
The potential impact of single point mutations in hemagglutinin (HA) was recognized when serine
was experimentally substituted for glutamine at the HA-228 residue. HA-G228S produced a significant
increase in binding affinity within human tracheal cells, signalling the relative simplicity with which
antigenic drift could create a highly infectious virus. Introducing multiple mutations into HA residues
appears to increase virulence and strengthen binding to human-type cells.

Despite the current lack of specificity by H7N9 HA for human cells, there is enough evidence
to show increased virulence, and viral replication occurs under certain PB2 amino acid mutations.
The substitution of lysine for glutamic acid at Residue 627 (PB2-E627K) occurs across many highly
pathogenic avian influenza viruses, delivering enhanced replication efficiency and virulence in
mammals. Like the introduction of multiple mutations in HA, the introduction of multiple PB2
mutations into the viral genome altered the viral function, creating a shift towards increased polymerase
activity and virulence.

With much of the research focus directed towards HA receptors, little attention has been given
to molecular changes in the neuraminidase stalk. Naturally occurring five amino acid deletions
in the H7N9 NA stalk are noted to occur in other influenza subtypes, and have been shown to
have no significant impact on infectivity, replication or pathogenesis. However, the introduction
of extended amino acid sequence deletions in NA stalk length resulted in significant increases in
pathogenicity. Nevertheless, it seems that the prospect of such deletions occurring naturally may be
limited, if recognition is given to the functional balance that must be maintained between HA and
NA activity.

The H7N9 virus continues to evolve through reassortment and amino acid substitutions.
While certain mutations have been shown to elicit high pathogenicity, increased virulence and
transmission, the prevalence of these mutations appears to be limited at present. Even so, it has been
readily demonstrated that a single mutation of one amino acid is all it takes to create a more adaptive
H7N9 virus. Under the right conditions, evolutionary pressures could result in a mutation favouring
direct human-to-human transmission, at which point H7N9 viruses have the potential to become
an unconstrained epidemic, and reach pandemic status within a very short period.
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