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Abstract: Scuticociliatosis is an invasive external or systemic infection caused by ciliated protozoa,
mainly those within the subclass Scuticociliatia (scuticociliates). Many scuticociliates are fish
pathogens, including Miamiensis avidus, Philasterides dicentrarchi, Pseudocohnilembus persalinus,
and Uronema marinum. Our previous study showed that hemolysis-related genes derived from bacteria
through horizontal gene transfer (HGT) may contribute to virulence in P. persalinus. Hemorrhagic
lesions are a common feature of scuticociliatosis, but it is not known whether other scuticociliates
also have bacteria-derived hemolysis-related genes. In this study, we constructed a high-quality
macronuclear genome of another typical pathogenic scuticociliate, U. marinum. A total of 105 HGT
genes were identified in this species, of which 35 were homologs of hemolysis-related genes (including
hemolysin-like genes) that had previously been identified in P. persalinus. Sequencing of an additional
five species from four scuticociliate families showed that bacteria-derived hemolysis-related genes
(especially hemolysin-like genes) are widely distributed in scuticociliates. Based on these findings,
we suggest that hemolysin-like genes may have originated before the divergence of scuticociliates.
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1. Introduction

Scuticociliatosis is one of the most serious parasitic diseases in fish worldwide, with a high
mortality rate in cultured marine fish, e.g., olive flounder and turbot [1,2]. Associated outbreaks of
fatal infection have led to serious economic losses. Scuticociliates, which belong to the ciliate subclass
Scuticociliatia, have been identified as causative agents of scuticociliatosis. A salient clinical manifestation
of scuticociliatosis is hemorrhagic lesions [3]. More than 20 species are facultative parasites that can
destroy host tissues, including Miamiensis avidus, Philasterides dicentrarchi, Pseudocohnilembus persalinus,
and Uronema marinum [4], suggesting a common molecular basis for virulence in scuticociliates.
However, many studies on scuticociliates have focused on species identification, morphology,
and phylogenetic analysis, and few have examined the molecular basis or mechanism of virulence.
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One study on P. dicentrarchi found that cysteine proteases are activated and secreted into the
extracellular medium and probably participate in host tissue invasion and degradation, as well
as in the degradation of hemoglobin within erythrocytes [5]. Metalloprotease, phosphatidylcholine
(PC)-specific phospholipase D (PC-PLD), and PC-specific phospholipase C (PC-PLC) activities have
been detected in U. marinum-infected tissues, and may play an important role in host cell penetration [6].

In 2015, we sequenced the first macronuclear (MAC) genome of a scuticociliate, P. persalinus.
Comparative genomics analysis showed that the MAC genome is relatively small compared with
other free-living ciliates and that the protein domain composition resembles that of an obligate fish
parasite, Ichthyophthirius multifiliis. More importantly, the P. persalinus MAC genome harbors many
bacteria-derived genes that encode proteins which may be involved in cell adhesion, hemolysis,
and heme utilization processes [7].

Similarly to P. persalinus, U. marinum is a facultative parasite [8] that can be cultured at a high
density in a variety of media and cryopreserved in liquid nitrogen using glycerol and fetal bovine
serum [9]. To explore the molecular basis of the virulence of scuticociliates, we sequenced the MAC
genome of U. marinum using Oxford Nanopore Technologies long-read sequencing and acquired a
high-quality genome assembly. Horizontal gene transfer (HGT) analysis showed that U. marinum has
similar hemolysis-related genes to P. persalinus. Sequencing of five other scuticociliates (members of
four families) using Illumina short-read sequencing showed that hemolysis-related genes are widely
distributed in scuticociliates. These findings suggest that these genes originated in an ancestor of the
scuticociliates through HGT.

2. Methods

2.1. Ciliate Culture and Identification

U. marinum (a gift from Dr Xuming Pan, Harbin Normal University) was isolated from seawater
in Qingdao (QD), China (36◦08′ N, 120◦43′ E; salinity 3.5%) [10]. The body shape was elongated
with a rounded posterior and bluntly pointed anterior end. The length and width of cells averaged
24.09 µm and 14.95 µm, respectively. For 4′,6-diamidino-2-phenylindole (DAPI) staining, the cells
were fixed by 37% formaldehyde and mounted with DAPI, then incubated for 5 min at 4 ◦C. A total of
10 µL cell suspension was applied to the slides. Cell staining was observed by means of fluorescence
microscopy using an Olympus BX51 (Olympus Corp., Tokyo, Japan). The staining showed two typical
types of nucleus: MAC and micronucleus (MIC), of 8.13 µm and 1.61 µm in diameter, respectively.
For silver staining, the method is briefly described as follows [11]. The enriched cells were fixed with
50% formalin solution for 5 min at room temperature (RT), washed several times, then added an
equal-volume mixture of 10% formalin and Fernandez–Galiano solution. The cells were heated in a
60 ◦C water bath under continual observation until the color of the cell body became brownish black,
and were then added to the same volume of 5% Na2S2O3 solution. Finally, the cells were tipped onto
the slides with glass pipette and observed using light microscopy with an Olympus BX51 (Figure 1A).

The U. marinum 18S small subunit (SSU) ribosomal DNA (rDNA) gene was PCR-amplified
using the universal ciliate primer pairs 18S-F (AACCTGGTTGATCCTGCCAGT) and 18S-R
(TGATCCTTCTGCAGGTTCACCTAC) as follows: Denaturation at 94 ◦C for 5 min; 33 cycles of
denaturation at 94 ◦C for 30 s, annealing at 55 ◦C for 30 s, and extension at 72 ◦C for 2 min; and a final
extension step at 72 ◦C for 5 min [12]. The 18S rDNA gene shared 99.11% sequence identity with the
previously reported U. marinum (GenBank accession: GQ259745.1) [13].

The U. marinum cells were cultured in PGY medium (proteose peptone 1.5%, glucose 0.5%, yeast
exact 0.5%, pH 8.0) containing sterilized seawater (filtered through a 200 µm pore membrane) at 25 ◦C.
Bacterial contaminations were reduced by adding 200 µg/mL normocin (Invivogen, San Diego, CA,
USA) to the culture medium.
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Figure 1. Genomic evidence for parasitism in U. marinum. (A) U. marinum morphology under (left to 
right) light microscopy, 4′,6-diamidino-2-phenylindole (DAPI) staining, and silver staining, with the 
latter showing the dorsal and ventral surfaces. White arrows indicate micronucleus (MIC) and 
macronucleus (MAC); black arrows indicate the oral cilium and the caudal cilium. (B) Correlations of 
protein domain composition between U. marinum and four other ciliates. Both the horizontal and 
vertical axes represent the number of protein domains. (C) Number of protease genes in five different 
ciliates. 

Five other scuticociliates were also isolated. One was isolated from seawater in Qingdao (QD), 
China; two were isolated from a fish farm (Larimichthys polyactis) in Ningde (ND), China; and two 
were isolated from seawater in Shenzhen (SZ) Bay Port, China. All five scuticociliates were cultured 
in the medium described above supplemented with wheat (one grain per 10 mL sterilized water). 
Bacterial contaminations were reduced using the method above. DNA was extracted using the 
phenol/chloroform method. PCR amplification for 18S rDNA was conducted using the primers as 
before. Species identification was based on Basic Local Alignment Search Tool (BLAST) search results 
against the GenBank database (Table S1). 

2.2. DNA and RNA Sample Preparation and Sequencing 

Figure 1. Genomic evidence for parasitism in U. marinum. (A) U. marinum morphology under (left to
right) light microscopy, 4′,6-diamidino-2-phenylindole (DAPI) staining, and silver staining, with the
latter showing the dorsal and ventral surfaces. White arrows indicate micronucleus (MIC) and
macronucleus (MAC); black arrows indicate the oral cilium and the caudal cilium. (B) Correlations
of protein domain composition between U. marinum and four other ciliates. Both the horizontal
and vertical axes represent the number of protein domains. (C) Number of protease genes in five
different ciliates.

Five other scuticociliates were also isolated. One was isolated from seawater in Qingdao (QD),
China; two were isolated from a fish farm (Larimichthys polyactis) in Ningde (ND), China; and two
were isolated from seawater in Shenzhen (SZ) Bay Port, China. All five scuticociliates were cultured
in the medium described above supplemented with wheat (one grain per 10 mL sterilized water).
Bacterial contaminations were reduced using the method above. DNA was extracted using the
phenol/chloroform method. PCR amplification for 18S rDNA was conducted using the primers as
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before. Species identification was based on Basic Local Alignment Search Tool (BLAST) search results
against the GenBank database (Table S1).

2.2. DNA and RNA Sample Preparation and Sequencing

U. marinum cells were lysed in TEN buffer (100 mM Tris-HCl at pH 8.0, 50 mM EDTANa2 at pH 8.0,
1 M NaCl) containing 0.1% β-mercaptoethanol, 30 mg proteinase K, and 2.5% SDS. DNA was then
extracted from a chloroform:isoamyl alcohol (24:1) mixture and precipitated in isopropanol. The DNA
pellet was washed in 70% ethanol and resuspended in sterile water. The contimated RNA was removed
by incubation at 37 ◦C with 100 µg/mL RNase A for 45 min. A Blood and Cell Culture DNA Midi Kit
(Qiagen Sciences, Germantown, MD, USA) was used to purify DNA according to the manufacturer’s
protocols. DNA was then purified using an equal volume of AMPure XP beads (Beckman Coulter,
Indianapolis, IN, USA). DNA quality and concentration were checked using a Qubit 3.0 Fluorometer
and 0.8% agarose gel electrophoresis. Total DNA from U. marinum was sequenced using Oxford
Nanopore sequencing (for long reads) and MGI sequencing (for short reads). For Nanopore sequencing,
a library was prepared using 1D Genomic DNA sequencing (SQK-LSK109 Ligation Sequencing Kit,
Oxford Nanopore Technologies) according to the manufacturer’s protocols. An average fragment
length of 8 Kb was selected with a high-throughput automated DNA (fragment) recovery system
(Sage Science, Beverly, MA, USA) and was used to construct the library. The final library was loaded
onto a PromethION flow cell and monitored using MinKNOW software (version 1.15.1) over a 24-h
sequencing period. For MGI sequencing, a library was prepared using a DNA Sample Preparation Kit,
as recommended by the manufacturer. The library was used for 300 bp paired-end sequencing using a
MGISEQ-2000 sequencer (MGI Tech Co., Ltd., Shenzhen, China).

Total RNA was extracted from U. marinum cells in the growth phase using an RNeasy Protect Cell
Mini Kit (Qiagen, Valencia, CA, USA), as described in the Tetrahymena Functional Genomics Database
(TetraFGD) [14]. Pair-end (150 bp) Illumina sequencing libraries were constructed according to the
manufacturer’s protocols and analyzed with a HiSeq 4000 sequencer (Illumina, San Diego, CA, USA).
Raw read adaptors were trimmed with Trim-Galore version 0.4.0 [15] and mapped to the U. marinum
genome using TopHat version 2.0.9 [16].

Total DNA was extracted from the other five scuticociliates using a method previously described
for Tetrahymena [17]. Briefly, cells were harvested by centrifugation at 5000 g for 3 min after filtering
with a 200 µm pore membrane (excluding the bacterial aggregates), and then lysed with urea buffer
(20 mM Tris-HCl pH 7.4, 50 mM NaCl, 12.5 mM EDTANa2 pH 8.0, 2% SDS, 42% urea). DNA was
extracted using a phenol/chloroform/isoamyl alcohol (25:24:1) mixture and precipitated in isopropanol.
The DNA pellet was washed in 70% ethanol and resuspended in sterile water. DNA samples were
sequenced using the NovaSeq 6000 platform (Illumina, San Diego, CA, USA) in 150 bp × 2 mode
according to the manufacturer’s protocols. The quality of raw sequence reads was assessed using
FastQC version 0.11.8 and Trim-Galore [15,17]. After adaptor trimming and filtering low-quality reads,
the clean sequence data were used for further bioinformatics analysis.

2.3. U. marinum Genome Assembly and Gene Prediction

Error-prone nanopore long reads were used for de novo assembly of the U. marinum genome
using Canu version 1.2 [18]. The higher-accuracy MGIseq short reads were used to correct errors in
long read assembly (i.e., polishing). In detail, MGIseq paired-end reads were mapped to the long-read
assembly using BWA-MEM and the assembly was polished using Pilon version 1.2.3 [19,20]. A total of
three rounds of polishing were performed, in accordance with Canu recommendations [18].

For gene prediction, RNA-Seq data were de novo assembled using Trinity and reference-guided
assembled using the TopHat and Cufflinks pipeline [16,21]. A combination of de novo and
reference-guided assembled transcripts were validated by aligning putative transcripts to the assembled
genome using PASA [22]. The full-length transcripts determined by PASA were used to train the
Augustus and GlimmerHMM gene prediction software [23]. The training parameters were then used
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by the two programs for de novo prediction of gene models. As Augustus software can accept cDNA
or protein evidence, assembled transcripts were also used as cDNA evidence for Augustus. Finally,
an integrated set of gene models was created using Evidence Modeler by merging all of the predicted
gene models [24]. Protein domains encoded by the genes were annotated using InterProScan [25].
Genes from U. marinum, P. persalinus, and I. multifliis were taken to perform all-by-all comparisons
among ciliates using BLASTP with an E-value less than 1 × 10−5. Ortholog groups (clusters) were then
annotated using OrthoMCL, which provided the best overall balance of sensitivity and specificity for
multiple species ortholog clustering [26]. The important parameter inflation index of OrthoMCL was
set at 1.5 to balance sensitivity and selectivity, as used in OrthoMCL-DB construction.

2.4. Identification of HGT Genes in U. marinum

HGT genes were identified using a published pipeline [7]. In detail, all predicted genes were
BLASTP searched against the NCBI non-redundant protein database using an E-value threshold of
1 × 10−5, and any prokaryote genes that had a best hit were regarded as candidate HGT genes.

Second, phylogenetic approaches were used to validate the HGT genes identified in U. marinum.
Briefly, we divided the NCBI non-redundant database into a eukaryote database and a prokaryote
database using blastdbcmd [27]. Next, all candidate genes retrieved from the first step were
independently BLASTP searched against the two databases in order to retrieve both eukaryotic
and prokaryotic homologs. U. marinum proteins with more than five homologs with an E-value of
less than 1 × 10−5 in prokaryotes but no homologs with an E-value of less than 1 × 10−5 in eukaryotes
were not included in the phylogenetic trees because of their low similarity to eukaryotic proteins.
Such proteins were defined as HGT proteins if the E-value of the best prokaryote hit divided by the
E-value of best eukaryote hit was less than 1 × 10−5. For homologs with an E-value of less than 1 × 10−5

in both prokaryotes and eukaryotes, a phylogenetic tree was used to determine whether the gene
originated from prokaryotes or eukaryotes. Two programs (FASTTREE and PHYML) were used to
construct the phylogenetic tree [28,29]. All homologs with an E-value of less than 1 × 10−5 were used
to construct the phylogenetic tree in FASTTREE due to its fast computation speed. In PHYML, only the
top 10 homologs (if present) were used to construct the phylogenetic tree. Sequences were aligned in
MUSCLE before constructing the phylogenetic tree. A gene was accepted as being encoded by an HGT
gene originating in prokaryotes if it clustered within a prokaryotic clade that had a eukaryotic outgroup.

2.5. Homologs of U. marinum HGT Genes in Other Scuticociliates

In addition to U. marinum, we sequenced the genome/transcriptome of the other five scuticociliates.
For four species (Uronemita sp. ND, Uronema sp. ND, Parauronema sp. SZ, and Uronema sp. SZ),
we generated only short reads (Illumina) to assemble the draft genomes using Megahit [30]. For one
species (Paralembus sp. QD), the transcriptome was sequenced and assembled using Trinity [31].
The removal of contaminating bacterial genes was based on a BLASTX search against the NCBI
non-redundant protein database and the guanine-cytosine (GC) distribution (as for U. marinum).
Regions homologous to U. marinum and P. persalinus HGT genes in the five scuticociliates were
identified by TBLASTN searches, and gene models in these homologous regions were predicted
using Augustus and GeneWise [32–34]. All the raw sequenced data were deposited in the Genome
Sequence Archive (GSA) database under the BioProject number PRJCA003485, and all the assembled
sequences and annotation were deposited in the Genome Warehouse (GWH) under the submission
number WGS012693.

3. Results and Discussion

3.1. The U. marinum MAC Genome

Polyploidy is a common feature of ciliate MACs. For example, the MAC ploidy is ~45 C in
Tetrahymena, ~800 C in Paramecium, and more than 1000 C in Oxytricha [35–37]. Therefore, as with those
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species, bulk DNA from U. marinum should also predominantly comprise MAC DNA. A preliminary
MAC genome of 91.7 Mb was assembled using long reads generated by nanopore sequencing.
The GC content distribution of the preliminary assembly had two peaks at 0.18 and 0.64 (Figure S1).
Sequences with a high GC content were found to be a result of bacterial contamination. Based on
the GC distribution and a BLAST search (the same procedure applied for P. persalinus), bacterial
contaminations were successfully removed, and 86.8 Mb MAC genome assembly with 403 scaffolds
was obtained for U. marinum. In all, 54% (218 out of 403) of scaffolds were chromosome-level assemblies
with telomere sequence repeats ([C4A2]n) at both ends, indicating that the U. marinum MAC genome
assembly was of high quality compared with other ciliates (Table 1) [7,38–40]. The U. marinum genome
was 60% larger than that of a previously sequenced facultative scuticociliate parasite, P. persalinus,
and 80% larger than that of the obligate fish parasite I. multifiliis, but 20% smaller than that of the
free-living ciliate Tetrahymena thermophila.

Table 1. Statistics of the assembled macronuclear (MAC) genomes for five ciliates.

Species U. marinum P. persalinus T. thermophila I. multifiliis P. tetraurelia

Subclass Scuticociliatia Scuticociliatia Oligohymenophorea Oligohymenophorea Oligohymenophorea

Genome size
(Mb) 86.8 55.5 103.0 47.8 72.1

N50 (Kb) 470 368 521 66 413

Scaffold
number 403 288 1148 1375 697

Longest
scaffold (Mb) 2.48 2.0 2.2 0.4 1.0

Sequencing
method/platform Nanopore/MGI Illumina Sanger Sanger/454 Sanger

Average
guanine-cytosine

(GC) content
18% 19% 22% 16% 28%

Assembled
chromosome

number
218 (54%) 0 (0%) 129 (11.2%) 0 (0%) 8(1%)

Completeness 84.8% 79.5% 85.1% 67.0% 85.5%

Gene number 24,582 13,186 26,460 8062 39,642

Using both de novo and homology-based gene prediction pipelines, a total of 24,582 genes were
identified in U. marinum (Table 1). This number was about 1.86-fold greater than that of P. persalinus
and comparable to that of T. thermophila. Segmental DNA duplications were found to be the main
contributors to the high gene number in U. marinum (Table S2). U. marinum shared many orthologs
with P. persalinus (n = 3235) that were absent in I. multifiliis (Figure S2). Global protein domain analysis
showed that the domain composition of U. marinum predicted proteins was similar to that of P. persalinus
and I. multifiliis, but different from that of T. thermophila (Figure 1B). More importantly, we found
that U. marinum, P. persalinus, and I. multifiliis had similar proportions of parasitic lifestyle-related
gene families—they all contained a higher percentage of proteases compared with free-living ciliates
(Figure 1C). Both U. marinum and P. persalinus had more proteases than I. multifiliis, especially in the
cysteine and serine catalytic classes (Figure 1C), which may contribute to virulence in scuticociliates.

3.2. U. marinum Acquired Hemolysis-Related Genes through HGT

MAC genome sequencing showed that the facultative parasite P. persalinus acquired many genes from
bacteria through HGT, especially hemolysis-related genes [7]. The histophagous ciliate U. marinum is closely
related to P. persalinus and can also induce systemic scuticociliatosis in marine fish [41,42]. To determine
whether U. marinum also acquires bacterial genes through a similar mechanism, we identified all HGT
genes in U. marinum. A total of 105 putative HGT genes were identified in U. marinum. The GC content
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of these genes was found to be similar to the other U. marinum genes (Figure 2A), and 87.62% were
predicted to have introns, a typical feature of eukaryotic genes (Figure 2B). These results suggest that
the 105 genes were not derived from bacterial contamination.Microorganisms 2020, 8, x FOR PEER REVIEW 7 of 13 
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Figure 2. Horizontal gene transfer (HGT) genes in U. marinum. (A) Guanine-cytosine (GC) content of
the 105 HGT genes. (B) Distribution of intron number in the 105 HGT genes. (C) Venn diagram showing
the numbers of specific and homologous HGT genes in U. marinum and P. persalinus. (D) Potential
hemolysis-related HGT genes identified in U. marinum.

Comparison of HGT genes between U. marinum (105 genes; Table S3) and P. persalinus (54 genes)
showed that 33.3% (n = 35) of U. marinum HGT genes are homologs of P. persalinus genes (Figure 2C),
including hemolysis-related genes, such as those encoding the cell adhesion proteins hemolysin III-like
(Hly-III-like), lysophospholipase L1 (LYPLA1), and PC-PLC (Figure 2D).

Cell adhesion is an initial process in the infection response involving the recognition of signals
between the pathogen and the host [43]. Different sets of cell adhesion genes were identified in the
HGT genes of both U. marinum and P. persalinus. In P. persalinus, two Ig family genes encode an He_PIG
domain (PF05345) that contains a conserved core region of about 90 residue repeats found in several
haemagglutinins and other cell-surface proteins, indicating that these proteins may contribute to cell
adhesion [7]. In U. marinum, cell adhesion gene (UMARIN_00095740 and UMARIN_00112310)-encoded
proteins include a surface layer (S-layer) family protein. S-layers are the outermost proteinaceous cell
envelope structures, found on members of nearly all taxonomic groups of bacteria and archaea [44].
The function of cell adhesion is very different between species, which may be related to species-specific
cell recognition during infection.

LYPLA1, PC-PLC, and Hly-III-like proteins are reported to contribute to hemolysis. Two lypla1
genes (UMARIN_00121000 and UMARIN_00165080) and one pc-plc gene (UMARIN_00092030) were
identified as HGT genes in U. marinum. LYPLA1 and PC-PLC are phospholipases that can destroy the
cell membrane and function as virulence factors in the bacterial invasion of host cells [45]. Destruction
of the host surface cells is necessary for pathogens to gain access to nutrients such as hemocytes [46,47].

Hly-III is hemolytic toxin found in Bacillus cereus that plays an important role in destroying blood
cells [48]. The toxin acts by forming an oligomeric pore in three steps: The protein first binds to the
erythrocyte surface, and then monomers assemble to form the transmembrane pore, leading to cell lysis.
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A Hly-III-like protein encoded by the HGT gene (UMARIN_00191820) identified in U. marinum showed
high-sequence similarity to the Hly-III-like protein previously identified in P. persalinus, and shared a
conserved domain (Pfam accession: PF03006) and several transmembrane helices with B. cereus Hly-III
(Figure 3A,B). These results indicate that the Hly-III-like protein is a key protein involved in forming
hemorrhagic lesions in scuticociliatosis.Microorganisms 2020, 8, x FOR PEER REVIEW 8 of 13 
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3.3. Hemolysis-Related Genes Are Widely Distributed in Scuticociliates

U. marinum and P. persalinus belong to two different families of scuticociliates—Uronematidae
and Pseudocohnilembidae. The presence of hemolysis-related HGT genes led us to speculate that
these genes originated very early in the evolution of scuticociliates and may be widely distributed in
this subclass. To address this possibility, we checked the homologs of hemolysis-related HGT genes
in five additional scuticociliates belonging to four families in the class Scuticociliatia—a Paralembus sp.
isolated in Jiaozhou Bay, a Uronemita sp. and a Uronema sp. isolated in an L. polyactis farm in ND
(Fujian province, China), and a Parauronema sp. and a Uronema sp. isolated in SZ Bay Port, China.
Comparative genomics analysis showed that all seven scuticociliates contain homologs of different
cell adhesion genes, either Ig family genes or S-layer genes (Figure 4). These results indicate that
different scuticociliates have acquired different cell adhesion genes during their evolution. Interestingly,
homologs of genes encoding hly-iii-like, lypla1, and pc-plc were found in six of the seven scuticociliates
(Figure 4), suggesting a wide distribution of hemolysis genes in scuticociliates. Phylogenetic analysis
of hly-iii-like, lypla1, and pc-plc genes showed that these scuticociliate genes cluster into a monophyletic
group (Figures 5–7) that is separate from bacterial genes. This result suggests that ancestral hly-iii-like,
lypla1, and pc-plc genes originated through HGT before the divergence of scuticociliates. Phylogenetic
analysis showed that the closest bacterial relatives of hly-iii-like are in the Terrabacteria group (Figure 5),
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whereas the closest bacterial relatives of lypla1 and pc-plc genes are proteobacteria (Figures 6 and 7).
These results indicate hly-iii-like, lypla1, and pc-plc genes probably originated from different HGT events
involving different bacteria, but more evidence is needed.Microorganisms 2020, 8, x FOR PEER REVIEW 9 of 13 
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4. Conclusions

We sequenced and assembled a high-quality MAC genome of U. marinum, a typical scuticociliatosis
pathogen. As in P. persalinus, bacteria-derived hemolysis genes have also been acquired by U. marinum.
These genes were found to be widely distributed in scuticociliates, suggesting that they have important
roles in scuticociliatosis.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/8/11/1838/s1,
Figure S1. GC distribution of preliminarily assembled genome. Figure S2. Venn diagram showing specific and
orthologous genes in U. marinum, P. persalinus, and I. multifiliis. Table S1. Sampling information and species
identification for the five scuticociliates. Table S2. Number and type of segmental duplications in U. marinum and
P. persalinus. WGD, whole-genome duplication. Table S3. Description of the 105 HGT genes in the U. marinum
MAC genome.
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