
Citation: Wu, J.; Xu, W.; Xu, Y.; Su, H.;

Hu, X.; Cao, Y.; Zhang, J.; Wen, G.

Impact of Organic Carbons Addition

on the Enrichment Culture of

Nitrifying Biofloc from Aquaculture

Water: Process, Efficiency, and

Microbial Community. Microorganisms

2024, 12, 703. https://doi.org/

10.3390/microorganisms12040703

Academic Editor: Alexander

I. Netrusov

Received: 9 February 2024

Revised: 29 February 2024

Accepted: 14 March 2024

Published: 30 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

microorganisms

Article

Impact of Organic Carbons Addition on the Enrichment Culture
of Nitrifying Biofloc from Aquaculture Water: Process, Efficiency,
and Microbial Community
Jiaqi Wu 1,2, Wujie Xu 1,2,3,4,* , Yu Xu 2, Haochang Su 2,3,4, Xiaojuan Hu 2,3,4, Yucheng Cao 2,3,4, Jianshe Zhang 1

and Guoliang Wen 1,2,3,*

1 National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University,
Zhoushan 316022, China; wujiaqi3861@163.com (J.W.); zhangjianshe@zjou.edu.cn (J.Z.)

2 South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences,
Guangzhou 510300, China; xuyublq@163.com (Y.X.); su.haochang@163.com (H.S.); xinr129@163.com (X.H.);
cyc_169@163.com (Y.C.)

3 Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and
Rural Affairs, Guangzhou 510300, China

4 Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
* Correspondence: xu_wujie@163.com (W.X.); wgl610406@163.com (G.W.); Tel.: +86-20-34063050 (W.X.)

Abstract: In this study, we developed a rapid and effective method for enriching the culture of
nitrifying bioflocs (NBF) from aquacultural brackish water. The self-designed mixotrophic mediums
with a single or mixed addition of sodium acetate, sodium citrate, and sucrose were used to investigate
the enrichment process and nitrification efficiency of NBF in small-scale reactors. The results showed
that NBF with an MLVSSs from 1170.4 mg L−1 to 2588.0 mg L−1 were successfully enriched in a
period of less than 16 days. The citrate group performed the fastest enrichment time of 10 days, while
the sucrose group had the highest biomass of 2588.0 ± 384.7 mg L−1. In situ testing showed that
the highest nitrification efficiency was achieved in the citrate group, with an ammonia oxidation
rate of 1.45 ± 0.34 mg N L−1 h−1, a net nitrification rate of 2.02 ± 0.20 mg N L−1 h−1, and a specific
nitrification rate of 0.72 ± 0.14 mg N g−1 h−1. Metagenomic sequencing revealed that Nitrosomonas
(0.0~1.0%) and Nitrobacter (10.1~26.5%) were dominant genera for AOB and NOB, respectively, both
of which had the highest relative abundances in the citrate group. Linear regression analysis further
demonstrated significantly positive linear relations between nitrification efficiencies and nitrifying
bacterial genera and gene abundance in NBF. The results of this study provide an efficient enrichment
culture method of NBF for the operation of biofloc technology aquaculture systems, which will
further promote its wide application in modern intensive aquaculture.

Keywords: biofloc technology; organic carbon addition; enrichment process; nitrification efficiency;
nitrifying bacteria; nitrifying gene

1. Introduction

Aquaculture has become an important agricultural production activity, and it plays a
key role in global food and nutrition security [1]. With the development of intensification,
water nitrogen pollution and associated environmental problems during aquaculture are
increasingly prominent [2]. Nitrogenous wastes, which are derived from the excretion of
aquacultural animals and the microbial degradation of uneaten food, usually accumulate in
intensive aquaculture systems. Among them, ammonia and nitrite are especially harmful
to aquacultural animals [3]. Therefore, how to effectively remove these toxic nitrogenous
compounds is a priority of water quality control for modern aquaculture.

As one of the most promising microbial technologies, biofloc technology (BFT) has gained
great attention in nitrogenous waste removal for sustainable intensive aquaculture [4–8]. The
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basis of BFT is active bioflocs, which are suspended aggregates of various bacterial communi-
ties flocculated with organic particles in the body of aquaculture water [9–11]. The bacterial
communities are the functional body of bioflocs, which are promoted and developed usually by
supplementing organic carbons in the culture water for the harmful nitrogenous transformation
and control in the aquaculture systems [4,11]. Two main pathways of nitrogen conversion are
mediated by the bacterial communities of bioflocs, which are the autotrophic nitrification of
ammonium-nitrogen (NH4

+-N) to nitrite-nitrogen (NO2
−-N) and further to nitrate-nitrogen

(NO3
−-N), and the heterotrophic assimilation of NH4

+-N directly to bacterial biomass [7,11].
An increasing number of studies have shown that nitrification should be more substantial and
beneficial for NH4

+-N and NO2
−-N removal than heterotrophic assimilation, as production

intensity increases in the BFT aquaculture systems [12–16]. It is now widely recognized that the
establishment of nitrification is the key process to reach the stability and maturity status of BFT
aquaculture systems [7,14,15,17].

Over the past decade, BFT has been widely studied and applied in aquaculture for
many shrimp and fish species [18,19]. In practice, significant rises of NH4

+-N and NO2
−-

N and an uncertain duration of their peaks are often observed when applying BFT in
the intensive aquaculture systems [14,15,17,20]. This is supposed to be related to the
delayed establishment of nitrification function in the BFT systems, which is carried out
by the attached nitrifying bacteria of bioflocs [7,14,20]. Previous studies have shown
that inoculating mature nitrifying bioflocs was effective in the smooth operation of BFT
aquaculture systems, as no obvious peaks of NH4

+-N and NO2
−-N were observed during

the whole process [12,14,17,21–23]. Thereby, the pre-culture or enrichment of nitrifying
bioflocs became an important and indispensable task before the initiation of the BFT
aquaculture systems.

Nitrifying bacteria are generally chemoautotrophic bacteria, including ammonia-
oxidizing bacteria (AOB) (e.g., Nitrosomonas) and nitrite-oxidizing bacteria (NOB)
(e.g., Nitrobacter). They jointly execute a two-step process of nitrification, in which am-
monia is first oxidized to nitrite by AOB and subsequently to nitrate by NOB. Due to
slow growth and attachment characteristics, long periods are often required to obtain
nitrifying bacterial consortia, especially for the enrichment from natural environment using
autotrophic inorganic mediums [24–26]. Bioflocs are typically microbial aggregates, and
their formation and development are accompanied by the attachment growth process of
nitrifying bacteria [7,12,13]. To date, there have been reports on the enrichment of nitrifying
bacterial consortia or heterotrophic bioflocs from aquatic systems [16,27,28], while no study
has been conducted to explore the rapid and effective enrichment of nitrifying bioflocs.

In this study, we primarily aimed to establish a rapid and effective method for the
enrichment culture of nitrifying bioflocs. Here, we hypothesized that an organic carbon
addition can enhance the process and efficiency of the nitrifying biofloc enrichment culture
from aquaculture water. To prove this, self-designed mixotrophic mediums with the
addition of different organic carbon sources were used to investigate the enrichment
process of nitrifying bioflocs. The nitrification efficiency of enriched nitrifying bioflocs was
evaluated in terms of the in situ ammonia oxidation rate, net nitrification rate, and specific
nitrification rate. Furthermore, the nitrifying bacterial community and functional genes of
the enriched nitrifying bioflocs were profiled by metagenomic sequencing and were further
correlated to nitrification efficiency.

2. Materials and Methods
2.1. Medium Preparation and Enrichment Experiment

The mixotrophic medium for the enrichment culture of nitrifying bioflocs contained
the following (g L−1): powered shrimp feed (0.2), (NH4)2SO4 (0.1), NaNO2 (0.1), NaHCO3
(0.3), CaCl2 (0.5), MgSO4 (0.3), KH2PO4 (0.3), and 10 mL of trace element solution. The
trace element solution contained the following (g L−1): FeSO4·7H2O (1.0), MnSO4·4H2O
(1.0), ZnSO4 (0.1), CuSO4·5H2O (0.1), Na2MoO4·2H2O (0.1), and EDTA-Na2·2H2O (2.0).
The powered shrimp feed had 40.0% protein, 8.0% lipid, 3.5% fiber, and 14% ash. The
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enrichment mediums were further prepared with mixotrophic medium by adding organic
carbon compounds at a concentration of 0.3 g L−1. Sodium acetate (C2H3O2Na·3H2O),
sodium citrate (C6H5O7Na3·2H2O), and sucrose (C12H22O11) were used as three kinds of
organic carbon.

For the enrichment experiment, three groups were set up with a sodium acetate,
sodium citrate, and sucrose addition of 0.3 g L−1, respectively; one group had a mixture
addition of sodium acetate, sodium citrate, and sucrose at 0.1 g L−1 each, and the control
group had no organic carbon addition. After adding organic carbons, the pH of the
enrichment medium was adjusted to 7.8 with the addition of diluted hydrochloric acid
(1 mol L−1).

2.2. Water Sample Collection for Seeding

Water samples were collected from an intensive brackish water pond at Guanlida
Marine Bio Technology company’s shrimp farm in the city of Maoming, Guangdong
province. The sampling pond is about 0.1 hectare, and it was stocked with 150 thousand
post-larval of Penaeus vanamei. The shrimp were cultured for forty-six days under limited
water exchange conditions. The basic characteristics of the culture water were as follows:
salinity of 12 mg L−1, temperature of 29 ◦C, pH of 7.8, dissolved oxygen of 5.1 mg L−1, total
alkalinity of 106 mg L−1 as CaCO3, NH4

+-N of 3.2 mg L−1, NO2
−-N of 3.5 mg L−1, and

NO3
−-N of 23.6 mg L−1. The pond water was collected with an organic glass hydrophore,

and about eighty liters of the water was transported to the laboratory of the company.

2.3. Enrichment Reactor and Culture Process

The reactor was a cylindrical tank with a 16.0 cm inner diameter, 35 cm height, and
5.0 L effective volume. A discal air-stone was placed on the bottom of each reactor and
connected to an air pump. Fifteen reactors were prepared and randomly assigned to the
five experimental groups. Each experimental group had three reactors, and each reactor
was filled with 4.5 L of respective enrichment mediums. Then, 0.5 L of the water sample
was inoculated into each reactor, and the enrichment culture of nitrifying bioflocs started.
The mixing and aeration of the reactors were achieved by bubbling the air of air-stones.
The reactors were operated at room temperature (26~30 ◦C). The pH was kept at 7.6~8.0 by
adding saturated sodium carbonate solution. The dissolved oxygen concentration was kept
at 4.0~6.0 mg L−1. The experiment of enrichment culture continued until both NH4

+-N and
NO2

−-N concentrations were stabilized below 1.0 mg L−1 in all reactors. Dechlorinated
tap water was added to the reactors for the compensation of water loss due to evaporation
and water sampling.

2.4. In Situ Nitrification Testing and Performance Analysis of Enriched Bioflocs

At the end of the enrichment culture, 0.5 g of (NH4)2SO4 and 0.5 g of NaNO2 were
both added into each reactor to evaluate the nitrification efficiency of enriched nitrifying
bioflocs. The calculated concentrations of added NH4

+-N and NO2
−-N were 21.2 mg L−1

and 20.3 mg L−1. The dynamic concentrations of NH4
+-N, NO2

−-N, NO3
−-N, and total N

(TIN) were detected and calculated for each reactor. The in situ ammonia oxidation rate
(AOR), net nitrification rate (NNR), and specific nitrification rate (SNR) were calculated
using the following equations:

AOR (mg N L−1 h−1) = [C0(NH4
+-N) − Ct(NH4

+-N)]/∆t; (1)

NNR (mg N L−1 h−1) = [Ct(NO3
−-N) − C0(NO3

−-N)]/∆t; (2)

SNR (mg N g−1 h−1) = [Ct(NO3
−-N) − C0(NO3

−-N)]/MLVSS/∆t; (3)

where C0(NH4
+-N) and Ct(NH4

+-N) are the concentrations of NH4
+-N detected initially and

one day later, C0(NO3
−-N) and Ct(NO3

−-N) are the concentrations of NO3
−-N detected

initially and one day later, MLVSS is the mixed liquor volatile suspended solids and represents
the biomass concentration of bioflocs, and ∆t is the reaction time of 24 h for one day.
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2.5. Water Bioflocs and Various Nitrogen Detection Analysis

Water samples were collected by 50 mL plastic bottles from each reactor for biofloc
biomass and various from nitrogen concentration analysis; the sampling was conducted
every two days in the enrichment experiment and daily in the nitrification testing. Total
mixed liquor volatile suspended solids (MLVSSs), NH4

+-N, NO2
−-N, NO3

−-N, and total
N (TN), were detected following the “Standard methods for the examination of water and
wastewater” [29]. TIN was calculated as the sum of NH4

+-N, NO2
−-N, and NO3

−-N. At
the end of the enrichment experiment, actual TN was detected for each reactor; total organic
N (TON) was calculated by subtracting TIN from actual TN; and N loss was calculated
by subtracting actual TN from input TN. Input TN represented the total N of the input in
the reactor, including the N content of both the initial inoculated water sample and the
enrichment medium.

2.6. Biofloc DNA Extraction, Metagenomic Sequencing, and Bioinformatics Analysis

At the end of the enrichment experiment, 50 mL of mixed water was also collected by
sterile bottles from each reactor and then filtered through a 0.2 µm pore-size polycarbonate
membrane filter (Millipore, Bedford, MA, USA) to obtain the biofloc sample. Total genomic
DNA was extracted from biofloc samples using the E.Z.N.A.® Soil DNA Kit (Omega
Bio-Tek, Norcross, GA, USA), and after the measurement of quantity and quality, the
extracted DNA was then sent for metagenomic sequencing at Wekemo Tech Group Co.,
Ltd., Shenzhen, China. Individual libraries were constructed using the NEBNext@ UltraTM
DNA Library Prep Kit (NEB, Ipswich, MA, USA), and DNA sequencing was performed
on the Illumina NovaSeq platform (Illumina, San Diego, CA, USA) using a 2 × 150 bp
paired-end read protocol. The raw sequence data generated in this study were deposited
into the NCBI Short Read Archive database (accession number: PRJNA1071834).

The raw sequences were preprocessed using Kneaddata (v0.10.0, https://github.com/
biobakery/kneaddata (accessed on 22 March 2023)) for quality control. Then, all clean
sequences were annotated and classified using kraken2 (v2.0.8-beta, http://ccb.jhu.edu/
software/kraken2/ (accessed on 22 March 2023)) and a self-built microbial database (se-
quences were screened from NT nucleic acid database and RefSeq whole genome database
of NCBI) to characterize the taxonomic composition of the metagenomic dataset of the
samples. Bracken (v2.5.0, https://ccb.jhu.edu/software/bracken/index.shtml (accessed on
10 April 2023)) was used to estimate the species-level abundance of metagenomic samples.

The clean sequences were also assembled into contigs using MEGAHIT v1.1.2 [30],
and gene sequences in all contigs were predicted using Prodigal v2.6.3 [31]. Then the de-
redundant gene was obtained using Cd-hit v4.6.1 [32], quantified using Salmon v0.14.1 [33],
and translated into protein sequences for subsequent blast and functional annotation against
Kyoto Encyclopedia of Genes and Genomes (KEGG v94.2, http://www.genome.jp/kegg/
(accessed on 12 April 2023)) using Eggnog-mapper v2.0.1 based on DIAMOND [34,35]. The
targeted N-cycling genes were filtered out from the metagenomic samples. The abundance
of the de-redundant gene was annotated to the same gene family and is presented as
transcripts per kilobase million (TPM).

2.7. Statistical Analysis

All statistical analyses were performed using IBM SPSS Statistics 20.0 software for
Windows (IBM Corporation, Armonk, NY, USA). The normality of data was evaluated
using the Shapiro–Wilk test. The data means were analyzed using one way ANOVA after
conducting Levene’s test of homogeneity of variance. Difference was considered significant
at p < 0.05. The percentage data were transformed with arcsine square root before analysis.

3. Results and Discussion

Nitrogen wastes, especially harmful ammonia and nitrite, are major stressors of water
environments in intensive aquaculture systems. BFT provides a microbial ecology pathway
to solve this problem, and its application basis is the nitrification of bioflocs in the in situ
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water of aquaculture systems. In this study, we established a rapid and effective method for
the enrichment culture of nitrifying bioflocs in small-scale reactors. The addition of different
organic carbons in the enrichment medium altered the nitrification process and efficiency
of the enriched bioflocs, which should be the result of differences in the abundance of
Nitrobacter and Nitrosomonas and related nitrifying genes.

3.1. Enrichment Process of Nitrifying Bioflocs and The Effects of Organic Carbons Addition

In aquaculture practice, artificial feeds and other high-carbon matters are usually used to
culture bioflocs, and the establishment of nitrification was recognized as the sign of mature
bioflocs [7,12,14,20,22]. In this study, a mixotrophic medium was designed and used, which
was modified from the combination of autotrophic medium and artificial feed. Autotrophic
medium had both NH4

+-N and NO2
−-N substrates for the concomitant growth of ammonia-

and nitrite-oxidizing bacteria [36,37]. Artificial feed provided organic nitrogen and carbon
sources for bacterial growth and, meanwhile, simulated the feeding environment of aquacul-
ture systems. Moreover, three kinds of low molecular and commonly used organic carbon
sources, including sodium acetate, sodium citrate, and sucrose, were added into the enrich-
ment medium for the enhancement of the enrichment process [27,38]. Good results were
achieved in the enrichment period and biomass production compared to previous similar
studies [16,24,25,37]. The enrichment process of nitrifying bioflocs was clearly shown by the
concentration changes of NH4

+-N, NO2
−-N, NO3

−-N, TIN, and input TN in the reactors
with different organic carbon additions (Figure 1). From day one of the enrichment process,
the NH4

+-N concentration firstly increased and then decreased; the NO2
−-N concentration

declined gradually; and the NO3
−-N concentration increased rapidly and then fluctuated

slightly during a 16-day culture period (Figures 1 and 2), indicating the establishment of the ni-
trification process along with the enrichment growth of nitrifying bioflocs in reactors. Organic
nitrogen in the feed could be decomposed and ammoniated into NH4

+-N by heterotrophic
bacteria in the initial stage [16], which accounted for the observed increase of NH4

+-N during
the first four days (Figure 2a).
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Although there were similar enrichment processes in all reactors, the N mass balance
showed significant differences among the five groups with different organic carbons addi-
tion (Figure 1f). It was found that the citrate group had the highest concentration of TIN, the
sucrose group had the highest concentration of TON, and the control group had the highest
concentration of N loss in the reactors (Figure 1f). This indicated that, while NH4

+-N and
NO2

−-N were used for the nitrification and growth of nitrifying bacteria, there also existed
N loss induced by denitrification during the enrichment of the bioflocs [39]. This could
be supported by the abundant denitrifying bacteria and functional genes in the enriched
bioflocs by metagenomic analysis below hereinafter. Further, comparison analysis also
showed that different organic carbon additions had significant effects on the concentra-
tion dynamics of NH4

+-N, NO2
−-N, NO3

−-N, and TIN during the enrichment process
of nitrifying bioflocs (Figure 2). For the establishment of time of complete nitrification,
the citrate group showed the fastest enrichment of nitrifying bioflocs, and it only took ten
days (Figure 2).

The addition of specific organic carbon could not only contribute to shortening the
enrichment period but also to increasing biomass production during the culture of nitrifying
bioflocs. It was shown that the nitrification process was completely established in all
reactors on day 16, and the biomass production of nitrifying bioflocs in terms of MLVSS
was between 1170.4 mg L−1 and 2588.0 mg L−1 (Figure 3a). Significant differences in
MLVSS were observed among five groups, with the sucrose group the highest and the
control group lowest. This indicates that the promotional effects of the three organic
carbon sources in addition to the production of bioflocs had varying extents. The organic
carbon addition could promote the growth of heterotrophic nitrifying bacteria to form
bioflocs, which further provides an attachment matrix for autotrophic nitrifying bacteria
growth [12,39,40]. Moreover, a significantly positive linear relation (R = 0.97, p < 0.01) of
biofloc biomass and TON level could be found (Figure 3b), indicating that TON in the
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reactor should be mainly derived from cultured bioflocs [41]. For biomass production, the
sucrose group showed the highest enriched biomass of nitrifying bioflocs, with MLVSSs of
2588.0 ± 384.7 mg L−1 (Figure 3a).
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Figure 3. Effects of different organic carbon additions on the biomass production of nitrifying bioflocs
in the reactors (means ± S.D., n = 3). Mix-C: mixture of sodium acetate, sodium citrate, and sucrose;
Control: no organic carbon addition; MLVSS: mixed liquor volatile suspended solid; TON: total
organic nitrogen. Different letters indicate significant differences among the five groups (p < 0.05).
The dots with five colors represent five groups.

3.2. Nitrifying Bacteria and Genes of Enriched Bioflocs, and the Effects of Organic
Carbons Addition

Metagenomic sequencing revealed that both ammonia- and nitrite-oxidizing bacteria
were simultaneously enriched in the nitrifying bioflocs. Nitrobacter, Leisingera, Rhodococcus,
and Tritonibacter were the top four dominant bacterial genera shared by all reactors, and they
showed significant differences in the relative abundance among five groups (Figure 4a). For
nitrifying bacteria, Nitrobacter, Rhodococcus, Nitratireductor, Pseudomonas, Afipia, Nitrosomonas,
Nitrogeniibacter, Bradyrhizobium, and Rhodopseudomonas were found to be dominant genera;
among them, Nitrobacter, Rhodococcus, Nitrosomonas, Bradyrhizobium, and Rhodopseudomonas
showed significant differences in the relative abundance among five groups (Figure 4b).
Nitrosomonas was the most abundant genus of AOB and accounted for 0.0~1.0%, while
Nitrobacter was the most abundant genus of NOB and accounted for 10.1~26.5% (Figure 4b).
For both Nitrosomonas and Nitrobacter, the highest relative abundances were detected in
the citrate group (Figure 4b). Eight species belonging to Nitrobacter could be detected, and
Nitrobacter winogradskyi was the most dominant species, while eleven species belonging
to Nitrosomonas could be detected, and Nitrosomonas oligotropha was the most dominant
species (Figure 4c).

In this study, both Nitrosomonas (e.g., N. oligotropha) and Nitrobacter (e.g., N. winogradskyi)
were detected as dominant nitrifying bacteria in the enriched bioflocs, which are known
to be major players of ammonia oxidation and nitrite oxidation respectively [42,43]. The
two functionally synergistic populations are commonly found in aquatic environments or
aquaculture systems [11,42,44,45] and are known to be widely involved in the two-step
process of nitrification. The Nitrosomonas and Nitrobacter species are usually assumed to be
r-strategists AOB and NOB, respectively, both of which can grow quickly at high substrate
concentrations [27,46]. The high abundances of Nitrosomonas and Nitrobacter enriched in the
nitrifying bioflocs illustrate that the designed and used mixotrophic medium of this study
provided an appropriate and high-nutrient environment for the enrichment culture of the
two r-strategist nitrifying populations in the reactors [47]. Moreover, these two nitrifying
populations could have the ability to attach and form bioflocs [13,15]. It should be noted that
the abundance of Nitrobacter (10.1~26.5%) was far higher than Nitrosomonas (0.0~1.0%) in the
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enriched bioflocs. This could guarantee that complete nitrification was achieved without the
accumulation of nitrite.
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Meanwhile, a subset of 36 functional genes was identified from the enriched bioflocs,
which comprised seven N-transformation processes: nitrification, denitrification, assim-
ilatory nitrate reduction to ammonium, dissimilatory nitrate reduction to ammonium,
ammonium assimilation, ammonium production, and N2 fixation (Figure 5). Among the
five groups, there were no significant differences in the abundance of gene families for
these N-transformation processes, except for nitrification, and ammonium assimilation had
the highest abundance of gene families compared to the other N-transformation processes
(Figure 5a). Importantly, the abundance of gene families for the nitrification process showed
significant differences among the five groups with different organic carbon additions, and
the highest could be found in the citrate group (Figure 5a,b). This difference in nitrifying
gene abundance could be found to be in accordance with the difference of the Nitrobacter
abundance (Figures 4c and 5a), indicating the uniformity of the structure and function of
the enriched nitrifying bioflocs. Five nitrifying functional genes of nxrA, nxrB, pmoA-amoA,
pmoB-amoB, pmoC-amoC, and hao could be found in the enriched bioflocs, all of which
showed differences among the five groups (Figure 5b). The nxrA gene showed the highest
abundance in nitrifying functional genes, which encoded the alpha subunit of nitrite oxi-
doreductase catalyzing the oxidation of nitrite to nitrate [48]. It is very meaningful to find
out that these functional genes constituted a complete and complex N-cycling network in
the enriched bioflocs (Figure 5c) [49].
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3.3. Nitrification Efficiency of Enriched Bioflocs, and Their Relations with Nitrifying Bacteria
and Genes

After the enrichment culture of nitrifying bioflocs, the nitrification efficiency was
further evaluated through an in situ test spiked with high concentrations of NH4

+-N
and NO2

−-N in this study. During the five days of testing, a rapid decrease in NH4
+-N

concentration, a slight increase, followed by a sharp decline of NO2
−-N concentration, a

gradual increase followed by a slight fluctuation of NO3
−-N concentration, and a slow

decrease of TIN concentration were observed (Figure 6). The concentration dynamics of
NH4

+-N, NO2
−-N, NO3

−-N, and TIN clearly demonstrated the efficient nitrifying activity
of enriched bioflocs in the reactors, which were comparable to relative studies [28,42,45].
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It is worthy to note that the nitrifying bioflocs enriched from different organic carbon
additions showed some differences in nitrification performance (Figure 6). From the
view of the rapid nitrification of NH4

+-N and NO2
−-N to NO3

−-N, the citrate group
showed the best performance. The further comparison of nitrification efficiencies among
the five groups evidenced this. The results showed that the highest nitrification efficiencies
were achieved in the citrate group, with an ammonia oxidation rate of 1.45 ± 0.34 mg
N L−1 h−1, net nitrification rate of 2.02 ± 0.20 mg N L−1 h−1, and specific nitrification rate
of 0.72 ± 0.14 mg N g−1 h−1 (Table 1).
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Table 1. Nitrification efficiencies of nitrifying bioflocs enriched from different organic carbon additions
in the reactors. Mix-C: mixture of sodium acetate, sodium citrate, and sucrose; Control: no organic
carbon addition.

Nitrification Efficiency Mix-C Acetate Citrate Sucrose Control

Ammonia oxidation rate (mg N L−1 h−1) 0.72 ± 0.28 a 0.55 ± 0.16 a 1.45 ± 0.34 b 0.59 ± 0.18 a 0.73 ± 0.12 a

Net nitrification rate (mg N L−1 h−1) 1.40 ± 0.30 a 1.56 ± 0.08 a 2.02 ± 0.20 b 1.29 ± 0.13 a 1.42 ± 0.13 a

Specific nitrification rate (mg N g−1 h−1) 0.49 ± 0.18 a 0.53 ± 0.02 a,b 0.72 ± 0.14 b 0.40 ± 0.09 a 0.44 ± 0.05 a

Different letters indicate significant differences among the five groups (p < 0.05).

Nitrifying bacteria are the executors of the nitrification process of enriched bioflocs,
and the nitrification activity should be correlated to the abundance of nitrifying bacteria.
Significantly positive linear relations were found between nitrification efficiencies and
functionally synergistic populations and genes of nitrifying bacteria in enriched bioflocs
from the fifteen reactors (Figure 7). The ammonia oxidation rate was significantly positively
correlated with the abundance of the Nitrosomonas genus (R = 0.89, p < 0.01), pmoA-amoABC
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gene (R = 0.88, p < 0.01), and hao gene (R = 0.88, p < 0.01) (Figure 7a–c). This further
confirmed that Nitrosomonas could play a leading role in ammonia oxidation, and pmoA-
amoABC and hao were the main involved functional genes. The net nitrification rate
was significantly positively correlated with the abundance of Nitrobacter genus (R = 0.78,
p < 0.01), nxrA gene (R = 0.76, p < 0.01), and nxrB gene (R = 0.74, p < 0.01) (Figure 7d–f).
The specific nitrification rate was significantly positively correlated with the abundance
of the Nitrobacter genus (R = 0.94, p < 0.01), nxrA gene (R = 0.74, p < 0.01), and nxrB gene
(R = 0.88, p < 0.01) (Figure 7g–i). These results further confirmed that Nitrobacter could play
a predominant role in the two-step nitrification process, and nxrA and nxrB were the main
functional genes involved in nitrite oxidation. The above results closely established links of
nitrifying functional genes, nitrifying bacterial populations, and nitrification efficiency, which
demonstrated the consistency of structure and function of enriched nitrifying bioflocs.

Microorganisms 2024, 12, x FOR PEER REVIEW 12 of 15 
 

 

significantly positively correlated with the abundance of Nitrobacter genus (R = 0.78, p < 
0.01), nxrA gene (R = 0.76, p < 0.01), and nxrB gene (R = 0.74, p < 0.01) (Figure 7d–f). The 
specific nitrification rate was significantly positively correlated with the abundance of the 
Nitrobacter genus (R = 0.94, p < 0.01), nxrA gene (R = 0.74, p < 0.01), and nxrB gene (R = 0.88, 
p < 0.01) (Figure 7g-i). These results further confirmed that Nitrobacter could play a pre-
dominant role in the two-step nitrification process, and nxrA and nxrB were the main 
functional genes involved in nitrite oxidation. The above results closely established links 
of nitrifying functional genes, nitrifying bacterial populations, and nitrification efficiency, 
which demonstrated the consistency of structure and function of enriched nitrifying bio-
flocs. 

 
Figure 7. Relationships of nitrification efficiencies and nitrifying bacteria and genes of nitrifying 
bioflocs enriched from different organic carbon additions in the reactors based on linear regression 
analysis (n = 15). The dots with five colors represent five groups. (a): Linear relation of AOR and 
Nitrosomonas abundance, (b): Linear relation of AOR and pmoA-amoABC abundance, (c): Linear re-
lation of AOR and hao abundance, (d): Linear relation of NNR and Nitrobacter abundance, (e): Linear 
relation of NNR and nxrA abundance, (f): Linear relation of NNR and nxrB abundance, (g): Linear 
relation of SNR and Nitrobacter abundance, (h): Linear relation of SNR and nxrA abundance, (i): 
Linear relation of SNR and nxrB abundance. AOR: ammonia oxidation rate; NNR: net nitrification 
rate; SNR: specific nitrification rate. 

4. Conclusions 
This study established a rapid and effective method for the enrichment culture of 

nitrifying bioflocs from aquacultural brackish water. The results showed that the addition 
of sodium acetate, sodium citrate, and sucrose had different enhancement impacts on the 

Figure 7. Relationships of nitrification efficiencies and nitrifying bacteria and genes of nitrifying
bioflocs enriched from different organic carbon additions in the reactors based on linear regres-
sion analysis (n = 15). The dots with five colors represent five groups. (a): Linear relation of
AOR and Nitrosomonas abundance, (b): Linear relation of AOR and pmoA-amoABC abundance,
(c): Linear relation of AOR and hao abundance, (d): Linear relation of NNR and Nitrobacter abundance,
(e): Linear relation of NNR and nxrA abundance, (f): Linear relation of NNR and nxrB abundance,
(g): Linear relation of SNR and Nitrobacter abundance, (h): Linear relation of SNR and nxrA abun-
dance, (i): Linear relation of SNR and nxrB abundance. AOR: ammonia oxidation rate; NNR: net
nitrification rate; SNR: specific nitrification rate.

4. Conclusions

This study established a rapid and effective method for the enrichment culture of nitrify-
ing bioflocs from aquacultural brackish water. The results showed that the addition of sodium
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acetate, sodium citrate, and sucrose had different enhancement impacts on the enrichment
process, nitrification efficiency, and bacterial community of nitrifying bioflocs. Nitrifying
bioflocs could be successfully enriched with up to 2588.0 mg L−1 MLVSS in less than 16 days,
and the citrate group performed the best in the enrichment process, nitrification efficiency,
and nitrifying bacterial genera and gene abundance. Nitrosomonas (0.0~1.0%) and Nitrobacter
(10.1~26.5%) were dominant genera for AOB and NOB, respectively, in the enriched nitrifying
bioflocs, both of which significantly positively correlated to the involved functional genes and
nitrification efficiencies. Further research is needed to evaluate practical application effects of
the enriched nitrifying bioflocs obtained in this study.
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