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Abstract: This study aimed to explore the phenotype and relationship of drug resistance genes in
livestock and poultry farm wastewater and drinking water reservoirs to provide evidence for the
transmission mechanisms of drug resistance genes, in order to reveal the spread of drug resistance
genes in wastewater from intensive farms in Central China to urban reservoirs that serve as drinking
water sources and provide preliminary data for the treatment of wastewater from animal farms to
reduce the threat to human beings. DNA extraction and metagenomic sequencing were performed
on eight groups of samples collected from four water reservoirs and four related wastewaters from
animal farms in Central China. Metagenomic sequencing showed that the top 20 AROs with the
highest abundance were vanT_gene, vanY_gene, adeF, qacG, Mtub_rpsL_STR, vanY_gene_, vanW_gene,
Mtub_murA_FOF, vanY_gene, vanH_gene, FosG, rsmA, qacJ, RbpA, vanW_gene, aadA6, vanY_gene,
sul4, sul1, and InuF. The resistance genes mentioned above belong to the following categories of drug
resistance mechanisms: antibiotic target replacement, antibiotic target protection, antibiotic inactiva-
tion, and antibiotic efflux. The resistomes that match the top 20 genes are Streptococcus agalactiae and
Streptococcus anginosus; Enterococcus faecalis; Enterococcus faecium; Actinomyces viscosus and Bacillus
cereus. Enterococcus faecium; Clostridium tetani; Streptococcus agalactiae and Streptococcus anginosus;
Streptococcus agalactiae and Streptococcus anginosus; Acinetobacter baumannii, Bifidobacterium bifidum,
Bifidobacterium breve, Bifidobacterium longum, Corynebacterium jeikeium, Corynebacterium urealyticum,
Mycobacterium kansasii, Mycobacterium tuberculosis, Schaalia odontolytica, and Trueperella pyogenes; My-
cobacterium avium and Mycobacterium tuberculosis; Aeromonas caviae, Enterobacter hormaechei, Vibrio
cholerae, Vibrio metoecus, Vibrio parahaemolyticus, and Vibrio vulnificus; Pseudomonas aeruginosa and
Pseudomonas fluorescens; Staphylococcus aureus and Staphylococcus equorum; M. avium, Achromobacter
xylosoxidans, and Acinetobacter baumannii; Sphingobium yanoikuyae, Acinetobacter indicus, Morganella
morganii, Proteus mirabilis, Proteus vulgaris, Providencia rettgeri, and Providencia stuartii. Unreported
drug resistance genes and drug-resistant bacteria in Central China were identified in 2023. In the
transmission path of drug resistance genes, the transmission path from aquaculture wastewater to
human drinking water sources cannot be ignored. For the sake of human health and ecological
balance, the treatment of aquaculture wastewater needs to be further strengthened, and the effective
blocking of drug resistance gene transmission needs to be considered.

Keywords: antibiotic resistance genes; animal farms; wastewater; drinking water; fluoroquinolone
resistance genes

1. Introduction

Antibiotic resistance (ABR) is an escalating global public health concern, and it is
acknowledged as a pivotal issue within the One Health Framework (Centers for Disease
Control and Prevention, USA). The interconnected domains of the One Health Framework
have identified that the emergence, evolution, and dissemination of antibiotic-resistant
microorganisms at both the local and global scales pose a substantial risk to global health.
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Multiple environmental reservoirs of microorganisms, including water and farm waste,
contribute to the dissemination of ABR [1,2].

Inadequate waste treatment steps in the livestock sector exacerbate the persistence of
resistant superbugs and antibiotic resistance genes (ARGs) in water and soil [3]. Research
has demonstrated that the patterns of ABR genes in wastewater resemble those found in
clinical settings. Metagenomic tools and genetic relatedness have been employed to predict
and continuously monitor ABR microbes.

To ensure drinking water safety, sewage discharge that is up to standards, and the recy-
cling of drinking water for livestock water purposes, it is imperative to establish guidelines
that define the threshold levels of antibiotic-resistant bacteria and ARGs. Metagenomics
proves to be an invaluable tool for delineating microbial diversity, identifying genes, and
reconstructing the complete genomes of microbial communities. One of the key advantages
of this tool lies in its sensitivity in detecting species abundances and identifying ARGs.

Metagenomics is emerging as a valuable alternative to DNA sequencing for studying
microbial diversity in veterinary clinical and water samples [4,5]. Traditional methods, such
as culturing bacterial pathogens or sequencing isolates, can be logistically challenging and
impractical in certain situations. To overcome these limitations, a pathogen-independent ap-
proach, such as metagenome sequencing, can detect the entire genetic material in a sample.

Metagenomics offers a comprehensive assessment of pathogenic microorganism varia-
tion and the spread of ARGs across different health niches, and it provides valuable insights
into the association between pathogens and various ARGs, facilitated by innovative tech-
niques such as metagenome high-throughput chromosome conformation capture (Hi-C).

The consequences of administering fluoroquinolones as antibiotics in animal drinking
water can be studied using metagenomic sequencing. This approach allows for the iden-
tification of microbial taxonomy and the presence of genes responsible for resistance in
drinking water [6].

This study aimed to analyze antibiotic resistance genes in wastewater from large- and
medium-sized animal farms and related drinking water reservoirs in Central China.

2. Methods
2.1. Sample Collection and Preparation

The corresponding numbers of samples were as follows: Medium Reservoir 21 Water
Sample (A21), Small Reservoir 22 Water Sample (A22), Small Reservoir 23 Water Sample
(A23), Small Reservoir 24 Water Sample (A24), Large Animal Farm 1 Sewage Sample (B21),
Large Animal Farm 2 Sewage Sample (B22), Medium Animal Farm 3 Sewage Sample (B23),
and Medium Animal Farm 4 Sewage Sample (B24). The water samples were collected in
July 2023 by the author using standard water sample collectors from eight locations.

2.1.1. The Sampling Location

The Sampling Location was 10 cm below the Water Surface of the Sampling Point.

2.1.2. Collection of Sewage Samples

1. When collecting sewage samples from the measuring or regulating tank, three diago-
nal positions were sampled. After stirring evenly, instantaneous water samples were
collected, and multiple sewage samples were combined to make a mixed sample.

2. When collecting sewage samples from drainage channels or pipes, sewage samples
collected at the same sampling point were mixed to form a mixed sample.

3. When sampling, the sampler and water sample container were first rinsed with
sampling water three times. Then, the water sample was collected into the container,
and the corresponding fixative was immediately added according to the requirements
of HJ493, after which the sample was properly labelled.

4. The sampling amount for testing a single project was executed following the HJ/T91
regulations, and the number of sewage samples for testing multiple projects was
increased. In contrast, each sample had a duplicate sample.
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5. On-site measurements: The pH meter and thermometer were immersed 5 cm be-
low the surface of the drainage channel or regulating pool, and the pH value and
temperature were recorded after the readings became stable.

2.2. Experimental Procedure
2.2.1. DNA Extraction and Sample Quality Control

DNA was extracted using a DNA Kit (TianGen, Beijing, China) and the Cetyltrimethy-
lammonium bromide (CTAB) extraction method. After DNA extraction, each sample
was divided into two parts for preservation: one for 16s rDNA testing and the other for
metagenomic sequencing.

2.2.2. Construction of the Library and Quality Control

The genomic DNA underwent random shearing, resulting in the generation of short
fragments. Subsequently, sequencing libraries were created. The resulting fragments
were processed, utilizing an Illumina adapter provided by ABclonal Technology Co., Ltd.
Wuhan, China. in Wuhan, China. Fragments containing adapters were then subjected to
polymerase chain reaction (PCR) amplification, size selection, and purification.

To ensure the quality of the library, it underwent quantification via qPCR. The se-
quencing platform was Illumina PE150.

2.3. Bioinformatics Analysis Pipeline
2.3.1. Pre-Processing of Sequencing Results

Readfq was employed to preprocess raw data from the sequencing platform and
obtain clean data for analyses.

Bowtie2 was utilized with default settings, employing the end-to-end sensitive mode
and employing parameter settings of −I 200 and ×400.

2.3.2. Metagenome Assembly

The clean data underwent assembly analysis using MEGAHIT 1.2.9 software. The
assembly parameters were set as follows: pre-set meta-large (end-to-end, sensitive, I 200,
×400) [7–18].

2.3.3. Abundance Analysis

For each sample, MetaGeneMark was employed to predict Open Reading Frames
(ORFs) in the scaftigs (≥500 bp) using default parameters. Predictions with a length of
<100 nt were filtered out from the results.

To eliminate redundancy in the ORF predictions, CD-HIT was employed.
The abundance of genes was calculated based on the following formula, where r

represents the number of gene reads on alignment, and L denotes the length of the gene.

Gk =
rk
Lk

· 1

∑n
i=1

ri
li

2.3.4. Taxon Annotation

DIAMOND 3.0 software was employed to align UniGene sequences with those of bac-
teria, fungi, archaea, and viruses extracted from NCBI’s Non-Redundant Protein Sequence
(NR) database. The alignment was performed using blastp with the parameter setting
e 1 × 10−5.

The sequences were filtered based on their alignment results, selecting those with
an evalue ≤ min. evalue*10. Since each sequence could have multiple alignment results,
the species annotation information was determined using the LCA algorithm, which was
applied to the systematic taxonomy of the MEGAN 6 software.

From the LCA annotation results and the gene abundance table, the abundance of
each sample at different taxonomic levels (kingdom, phylum, class, order, family, genus,
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or species) was obtained. Additionally, the corresponding gene abundance tables were ac-
quired. The abundance of a taxon in a sample was calculated as the sum of the abundances
of the genes annotated relative to that taxon. The number of genes belonging to a taxon in a
sample was determined by counting the non-zero abundances among the annotated genes.

Using the abundance tables at each taxonomic level, various analyses were conducted,
including a Krona analysis, a relative abundance overview, and an abundance clustering
heatmap. These analyses were combined with dimension reduction techniques, such as
principal component analysis (PCA), using the R ade4 package, and non-metric multi-
dimensional scaling (NMDS) analysis was carried out via the R vegan package. To test
for differences between groups, an analysis of similarities (ANOSIM) was performed via
the R vegan package. Taxon differences between groups were explored using Metastats
and LEfSe analyses. Permutation tests between groups at each taxonomic level were con-
ducted using Metastats to obtain p-values. The p-values were corrected via the White and
Nagarajani method to obtain q-values. The LEfSe 1.12.1 software, with a default linear
discriminant analysis (LDA) score of 4, was used for the LEfSe analysis.

Finally, we employed the random forest algorithm (utilizing the R pROC and random-
Forest packages) to identify species at the species level via gradient selection and model
construction. Significant species were identified using mean decrease accuracy and mean
decrease Gini, followed by cross-validation (using the default 10-fold method) for each
model and the generation of receiver operator curves (ROCs).

To visually represent the data, we conducted a principal coordinates analysis (PCoA)
based on the Bray–Curtis distance and selected the principal coordinate combination with
the highest contribution rate.

2.3.5. Annotations of the Common Functional Database

Annotations of the common functional database were performed using the DIA-
MOND software. Unigenes were aligned with the functional database using the following
parameter settings: blastp, −e 1 × 10−5. The functional databases included the Kyoto
Encyclopaedia of Genes and Genomes (KEGG) database, the eggNOG database, and the
CAZy database. The best BLAST hits were selected for subsequent analyses based on the
alignment results of each sequence.

From these alignment results, we calculated the relative abundances at different
functional levels. The relative abundance at each functional level was determined by
summing the relative abundances of genes annotated at that specific level.

To derive the gene number table for each sample at each taxonomic level, we utilized
the functional annotation results and the gene abundance table. The number of genes
with a specific function in a sample was equivalent to the number of genes with non-zero
abundances among the genes annotated with that particular function.

Using the abundance table at each taxonomic level, we conducted annotated gene
statistics, generated a relative abundance overview, and constructed an abundance clus-
tering heat map. These analyses were combined with dimension reduction techniques,
such as PCA and NMDS; ANOSIM analysis to assess inter-/intra-group differences based
on functional abundance; comparative analysis of metabolic pathways; and Metastat and
LEfSe analyses to identify inter-group functional differences.

2.3.6. Annotations of Resistance Genes

Unigenes were aligned relative to the CARD database using the Resistance Gene
Identifier (RGI) 6.0.3 software provided by the CARD database (RGI built-in blastp, default
evalue < 1 × 10−30). The relative abundance of each antibiotic resistance ontology (ARO)
was calculated based on the RGI alignment results and unigene abundance information.
Several analyses were conducted, including an abundance histogram, abundance clustering
heat map, abundance distribution circle map, ARO difference analysis between groups, re-
sistance gene annotation (unigenes annotated as ARO), and the species attribution analysis
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of resistance mechanisms. For abbreviation purposes, certain AROs with long names were
shortened to the first three words followed by an underline [19,20].

3. Results
3.1. Taxon Annotations
3.1.1. Overview of Taxon Relative Abundances

In order to comprehensively and intuitively display the relative abundance of species
at different taxonomic levels in each sample, Krona was adopted to visually display the
species annotation results. A Krona example diagram is shown in Figure 1.
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Figure 1. Taxon annotation results using Krona.

In Figure 1, the different classification levels (phylum, order, family, genus, and species)
are represented by the circles, with the fan size indicating the relative proportion of each
taxon. Separate figures are included in Supplement Material S1.

Based on the relative abundance table of different taxonomic levels, the taxonomic
groups with the highest relative abundance (top 10) were selected, and the rest were set
to others. The relative abundance histogram of each sample (group) corresponding to the
classification results at different classification levels was constructed.
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The histogram of the relative abundance at different taxonomic levels is shown in
Figure 2.
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Figure 2. Relative abundances of taxa at the phylum and genus levels. (a). Horizontal relative
abundance column chart of phylum. (b). Horizontal relative abundance column chart of genera.
The horizontal axis represents the sample name. The vertical axis shows the relative proportion of
annotated genera of a certain type. The types of objects corresponding to each color block are shown
in the legend on the right.

The top 10 taxa with the highest relative abundances at the phylum level were Pseu-
domonadota, Uroviricota, Actinomycetota, Bacteroidetes, Cyanobacteria, Planctomycetota,
Verrucomicrobiota, Gemmatimonadota, Chloroflexota, and Chytridiomycota. The top ten
genera with the highest relative abundances were Limnohabitans, Flavobacterium, Synechococ-
cus, Cyanobium, Polynucleobacter, Pararheinheimera, Pelomonas, Aestuariivirga, Rheinheimera,
and Vogesella.

3.1.2. Cluster Analysis of Gene Numbers and Abundances at the Genus Level

The top 35 genera with the highest abundance and their abundance information in
each sample were thermologically mapped, and the clustering results from the species level
are shown in Figure 3.
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Figure 3. Cluster heatmap of gene number and abundance at the genus level. (a). Heatmap showing
the statistical gene annotation numbers. The horizontal axis represents the sample name, and the verti-
cal axis represents genus information. Different colors represent the number of unigenes. (b). Cluster
heatmap of relative abundances at the genus level. The horizontal axis represents sample information,
and the vertical axis represents genus information. The cluster tree on the left represents the genus
clustering. The middle heatmap displays the standardized relative abundances, with the Z value
indicating the difference between the relative abundance of the sample in that classification and the
average relative abundance of all samples in that classification divided by the standard deviation of
all samples in that classification.
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3.1.3. Sample Clustering Analysis Based on Taxon Abundances

A cluster analysis was conducted to construct a cluster tree of the samples, revealing
similarities between the different samples. The clustering tree is shown in Figure 4.
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3.2. Overview of Resistance Gene Abundances

Beginning with the relative abundance table of the resistance genes, we computed the
content and percentage of the antibiotic resistance ontologies (AROs) in each sample and
subsequently identified the top 20 AROs with the highest abundance.

The AROs with the highest abundance in the top 20 AROs were vanT_gene, vanY_gene,
adeF, qacG, Mtub_rpsL_STR, vanY_gene, vanW_gene, Mtub_murA_FOF, vanY_gene, vanH_gene,
FosG, rsmA, qacJ, RbpA, vanW_gene, aadA6, vanY_gene, sul4, sul1, and InuF.

The relative abundance ranking of the top 20 AROs among all the AROs was as fol-
lows: vanT_gene_in_vanG_cluster, vanY_gene_in_vanB_cluster, adeF, qacG, Mtub_rpsL_STR,
vanY_in_vanM_cluster, vanW_in_vanl_cluster, Mtub_murA_FOF, vanY_in_vanA_cluster,
vanH_in_vanO_cluster, FosG, rsmA, qacJ, RbpA, vanW_in_vanG_cluster, aadA6,
vanY_in_vanG_cluster, sul4, sul1, and InuF.

The resistance genes mentioned above belong to the following categories of drug
resistance mechanisms: antibiotic target replacement, antibiotic inactivation, antibiotic
target protection, and antibiotic efflux.

In the glycopeptide resistance gene cluster, the drug class was identified as glycopep-
tide antibiotics. The resistance mechanism in this cluster is antibiotic target alteration,
which has been extensively detected in wastewater from small- and medium-sized reser-
voirs and aquaculture farms in Central China. Within this cluster, the gene vanTG is a
variant of the vanT gene and is commonly found. The resistomes that match with this
gene are Streptococcus agalactiae and Streptococcus anginosus. Similarly, the gene vanYB
is a variant of vanY in the vanB gene cluster, and its matching resistome is Enterococcus
faecalis. Additionally, the gene vanYM is a variant of vanY in the vanM gene cluster, and its
matching resistome is Enterococcus faecium. Moreover, the gene vanWI is a variant of vanW
found in the vanI gene cluster, and the resistomes that match with this gene are Actinomyces
viscosus and Bacillus cereus. Furthermore, the gene vanYA is a variant of vanY in the vanA
gene cluster, and it matches with the resistome of Enterococcus faecium. Within the vanO
gene cluster, the vanHO gene is a variant of vanH and has been found in resistomes with
sequence variants, including Clostridium tetani. Lastly, the gene vanWG is a vanW variant
observed in the vanG gene cluster, and its matching resistomes are Streptococcus agalactiae
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and Streptococcus anginosus. A similar observation is found for the gene vanYG, which is a
vanY variant observed in the vanG gene cluster, and the resistomes that match with this
gene are Streptococcus agalactiae and Streptococcus anginosus.

The gene AdeF encodes a membrane fusion protein called AdeFGH, which is part of a
multidrug efflux complex. This gene is resistant to the tetracycline and fluoroquinolone
antibiotic drug classes. The resistance mechanism in this case is antibiotic efflux, and the
matching resistome is Acinetobacter baumannii.

The gene Mtub_rpsL_STR codes for the ribosomal protein S12, resulting in streptomycin
resistance by disrupting interactions between the rRNA and streptomycin. The resistomes
that have sequence variants of this gene include Bifidobacterium bifidum, Bifidobacterium breve,
Bifidobacterium longum, Corynebacterium jeikeium, Corynebacterium urealyticum, Mycobacterium
kansasii, Mycobacterium tuberculosis, Schaalia odontolytica, and Trueperella pyogenes.

The gene Mtub_murA_FOF is responsible for the Mycobacterium tuberculosis murA gene.
The resistomes that have sequence variants of this gene include Mycobacterium avium and
Mycobacterium tuberculosis.

The gene FosG encodes a glutathione transferase that provides resistance to fosfomycin.
The AMR gene family associated with FosG is fosfomycin thiol-transferase, providing resis-
tance against phosphonic acid antibiotics. The resistance mechanism in this case is antibiotic
inactivation. The resistomes that have sequence variants of this gene include Aeromonas
caviae, Enterobacter hormaechei, Vibrio cholerae, Vibrio metoecus, Vibrio parahaemolyticus, and
Vibrio vulnificus.

The gene rsmA regulates the virulence of Pseudomonas aeruginosa. However, the
overexpression of the Multidrug Efflux Operon of Pseudomonas aeruginosa (MexEF-OprN)
results in a negative effect, conferring resistance to various antibiotics. In Escherichia coli,
the homologue of this gene is csrA. The AMR gene family related to rsmA is resistance-
nodulation cell division (RND) antibiotic efflux pumps, which provide resistance against the
diaminopyrimidine, phenicol, and fluoroquinolone drug classes. The resistance mechanism
in this case is antibiotic efflux. The resistomes that match with this gene are Pseudomonas
aeruginosa and Pseudomonas fluorescens.

The gene qacG encodes a small multidrug resistance efflux pump that provides resis-
tance to benzalkonium chloride and ethidium bromide. The AMR gene family associated
with qacG is a small multidrug resistance (SMR) antibiotic efflux pump, conferring resistance
to disinfecting agents and antiseptics via the mechanism of antibiotic efflux. The efflux com-
ponent in this case is the efflux pump complex or subunit that confers antibiotic resistance.
The resistomes that match this gene are Staphylococcus aureus and Staphylococcus equorum.

The gene RbpA codes for an RNA polymerase-binding protein that confers resistance
to rifampin. The AMR gene family associated with RbpA is the bacterial RbpA RNA
polymerase-binding protein, which provides resistance against rifamycin antibiotics via
the mechanism of antibiotic target protection. The resistomes that have sequence variants
of this gene include M. avium and other Mycobacterium species.

The gene Sul1 is involved in sulfonamide resistance in Gram-negative bacteria and is
linked to other resistance genes found in class 1 integrons. The AMR gene family related
to Sul1 is sulfonamide-resistant sul, providing resistance against sulfonamide antibiotics.
The resistance mechanism in this case is antibiotic target replacement. The resistomes that
match with this gene include Achromobacter xylosoxidans and Acinetobacter baumannii.

The gene Sul4 is a dihydropteroate synthase gene, and the mobile sulfonamide re-
sistance gene has been shown to confer resistance when expressed in E. coli. The AMR
gene family related to Sul4 is the sulfonamide-resistant sul, which confers resistance to
sulfonamide antibiotics via the mechanism of antibiotic target replacement. The matching
resistome is Sphingobium yanoikuyae.

The gene lnuF codes for an integron-mediated nucleotidyltransferase observed in
E. coli. The AMR gene family related to lnuF is lincosamide nucleotidyltransferase, which
provides resistance against lincosamide antibiotics via the mechanism of antibiotic inacti-
vation. The resistomes that have sequence variants of this gene include Acinetobacter indicus,
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Morganella morganii, Proteus mirabilis, Proteus vulgaris, Providencia rettgeri, and
Providencia stuartii.

4. Discussion

When compared with previous data [21–28], the ARGs in the reservoirs and sewage
around livestock and poultry farms in Central China were low. Fluoroquinolone and
sulphonamide ARGs were detected in these samples; their abundances decreased signif-
icantly over time. This indicates that the Chinese government’s policy of reducing and
replacing antibiotics has significantly reduced the presence of ARGs. Although a significant
reduction in the ARGs was observed under the monitoring and intervention of the local
government, none of the detected ARGs were completely removed from the drinking water
source [29]. The results are consistent with this observation.

The discovery of highly abundant glycopeptide ARGs may indicate an increase in the
use of glycopeptide antibiotics in animal and human clinical settings, adding uncertainty
to the already controllable form of drug resistance. Glycopeptides have strong antibac-
terial activity against Gram-positive bacteria and are sensitive to various drug-resistant
Staphylococcus species, including methicillin-resistant S. aureus [30]. With the emergence
of drug-resistant bacteria, the clinical use of glycopeptide antibiotics has gradually de-
creased, and the development of safe and effective glycopeptide antibiotics has become
increasingly urgent.

Generally, if a bacterium carries genes that render it resistant to multiple antibiotics, it
is called a multidrug-resistant bacterium or a super-bacterium. The detection of multidrug
resistance genes indicates that antibiotics continue to be used at high levels in hospitals
and farms, the risk of horizontal transfer and the spread of resistance genes continues to
increase, and the detection of multiple resistance genes in water sources poses a huge threat
to public health.

5. Conclusions

The metagenomic sequencing showed that the abundance of sulphonamide and fluo-
roquinolone resistance genes decreased compared with that in measurements by [1,4,27].
Compared with [2,3,28]’s measurements, the abundance of glycopeptide resistance genes
and AdeF and qacG multidrug resistance genes was high, indicating that the Chinese gov-
ernment’s policy of reducing and replacing antibiotics in animal husbandry has played
a role in altering the abundances of antibiotic resistance genes. The existence of multi-
ple drug-resistant gene phenotypes in wastewater from livestock and poultry farms and
drinking water reservoirs has raised public health concerns.
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