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Abstract: Impacts of climate change rank among the century’s most significant ecological and medical
concerns. As a result of climatic changes, the distribution of some bacterial species will alter across
time and space. Numerous bacterial infections will reorganize as a result worldwide. Acinetobacter
baumannii Bouvet and Grimont is one of the most significant and frequently occurring bacteria
identified in soil and air. The COVID-19 pandemic has changed how bacteriologists perceive this
species as a new threat to human health. In order to estimate the existing and future worldwide
distribution of A. baumannii under various climate change scenarios, about 1000 A. baumannii oc-
currence records were employed. Given its superior accuracy and dependability versus alternative
modeling techniques, maximum entropy implemented in MaxEnt was selected as the modeling tool.
The bioclimatic variable that contributes the most to the distribution of A. baumannii is the mean
temperature of the coldest quarter (bio_11). The created current distribution model agreed with the
species’ actual globally dispersed distribution. It is projected that A. baumannii will experience a
severe range expansion due to the increase in temperature brought on by global warming in different
regions of its range. According to the risk maps created for 2050 and 2070 using two alternative RCPs,
there are various regions that will be under risk of this bacterium as a result of rising temperature.
Future data science and GIS evaluation of the current results are necessary, especially on a local level.
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1. Introduction

Acinetobacter baumannii is a bacterial species that is prevalent in soil and water. It is
also an opportunistic pathogen that can cause deadly infections in people, particularly in
hospitals [1]. A. baumannii is well-known for its capacity to live in a variety of environ-
ments, including surfaces and medical equipment [2]. This makes it especially difficult
to control and cure in hospital settings, where it can spread easily from patient to patient.
Infections produced by A. baumannii can range from mild to severe, including pneumonia,
meningitis [3], and bloodstream infections [4]. Multiple antibiotics, including carbapenems,
which are often employed as a last line of defense against bacterial infections, are frequently
resisted by this bacterium [5]. Although slightly less common than healthcare-associated
infections, A. baumannii is a ubiquitous pathogen that is also known to cause community
infections that can easily cause large outbreaks [6].

Acinetobacter baumannii has emerged as a major global pathogen as a result of a number
of causes, including its capacity to live in a variety of conditions, its potential to acquire
antibiotic resistance, and the widespread use of invasive medical devices in healthcare
settings [2,5]. Global travel and migration have also contributed [7] to the spread of
A. baumannii, as the bacteria can be carried by persons who are colonized or infected [8]. The
spread of the COVID-19 pandemic has also contributed to the emergence of A. baumannii as
a global health issue [9]. A. baumannii secondary infections have been frequently reported
in COVID-19 patients, particularly those who are hospitalized and require mechanical
ventilation [10]. This could be attributed to a number of circumstances, including the use
of invasive medical devices, prolonged hospitalization, and a weakened immune function.
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Furthermore, there are worries that the increased use of antibiotics [9] to treat COVID-19
patients may lead to the development of antibiotic-resistant infections, such as those caused
by A. baumannii, because the bacterium is notorious for developing resistance to numerous
drugs [11], including but not limited to those in many different antibiotic families such as
beta-lactams (penicillin, cephalosporin, carbapenems, monobactams, and beta-lactamase
inhibitors), aminoglycosides, tetracyclines, fluoroquinolones, macrolides, lincosamides,
strepgramin antibiotics, polymyxins, amphenicols, oxazolidinones, rifamycins, fosfomycin,
glycopeptide, and lipopeptide antibiotics, possibly among many others [12]. Due to its
very large spectrum of broad multidrug resistance, it comes as no surprise that the treat-
ment of A. baumannii infection is currently one of the most difficult among nosocomial
infections [13].

Given the nature of nosocomial infections and the vulnerability of the patients suf-
fering from co-infection or an otherwise weakened immunity, one small study found that
the mortality rate of patients who acquired an A. baumannii bloodstream infection while
enrolled in hospital was as high as 29%, with the highest risk factor shown to be neutrope-
nia after multivariate analysis [14]. Another systematic review found that the infection
mortality rate of A. baumannii was as high as 43% in patients admitted to the intensive care
unit [15].

In addition to the aforementioned challenges, some small studies have demonstrated
that there may be some seasonal variation in the incidence of Acinetobacter infections,
with some even going as far as to suggest that climate change may directly influence its
epidemiology [16]. Climate change in general is already one of most serious current global
concerns [17], which is mostly driven by anthropogenic activity, mainly the burning of fossil
fuels [18], changes in land usage [19], and solid waste landfills [20]. Some of the impacts
of climate change are observable in the form of changes in precipitation patterns [21],
an increased likelihood of extreme weather events [22], and subsequently, an increased
incidence of natural disasters [23].

Intuitively, the impacts of climate change on biodiversity are undeniable. These
impacts include posing a risk of extinction for organisms that are unable to adapt [24],
while those that can may do so by altering behavior, morphology, and/or physiology [25],
which may lead to range shifting [26], which itself poses a risk for a non-indigenous
species becoming invasive [27]. For all these reasons, climate change can ultimately lead to
ecological imbalances that may have notorious ecological and economic consequences [28].

Fortunately, with the rise in modern computing came the development of the geo-
graphic information system (GIS) [29]. A GIS is defined as any computer system that can
capture, store, retrieve, analyze, and/or visualize geospatial data [30]. This has proven
revolutionary to remote sensing technology, birthing what is known as integrated GIS,
which aims to ease the integration between GIS technologies with remote sensing technolo-
gies [31].

Combining high-throughput GIS analysis techniques with high-throughput remote
sensing data generated by modern satellites has enabled us to study many different char-
acteristics of the Earth remotely, thus eliminating the need for field-based and invasive
experiments, allowing us to infer the biophysical properties of species’ habitats [32], mon-
itoring land cover, its changes, and their effects on biological systems [33] and, most
importantly, within meteorology and climate studies [29]. Remote sensing can also be used
to directly track individuals’ movement via sensors in a technique known as active remote
sensing [34] to study the migration, distribution, and behavior of a species.

Geographic information systems, remote sensing technology, the understanding of the
climate, and the rise of data science powered by widely available data and machine learn-
ing algorithms have enabled the creation and study of mathematical and computational
climate models [35,36]. This led to the development of a tool known as species distribution
modeling (SDM). Species distribution modeling algorithms correlate known-occurrence
records of a species with environmental data to predict said species’ potential distribution
across other geographical areas [37]. Species distribution models have myriad applica-
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tions, including but not limited to biogeography, conservation biology, climate change
research [37], and invasive species management [38].

This study aims to shed light on the vague relationship between the climate and
A. baumannii epidemiology [16], as well as predict for the first time for bacterial species the
potential global distribution under different climate change scenarios in 2050 and 2070, by
employing species distribution modeling on historic and future projected climate data.

2. Materials and Methods
2.1. Data Collection
2.1.1. Species Occurrence Records

Species occurrence records for Acinetobacter baumannii were downloaded in the Darwin
Core (DwC) format from the Global Biodiversity Information Facility (GBIF) [39]. Data
obtained from GBIF include data recorded in the literature, as well as data submitted by
users who volunteer to contribute to public databases [40].

The occurrence records were filtered out to only include those with longitude and
latitude coordinates recorded, and then further filtered out to remove suspicious unverified
occurrence records. The longitude and latitude coordinates were then saved in the CSV file
format for compatibility with the MaxEnt application that was used for modeling. A total
of 1044 final occurrence records were used in this study (Figure 1).
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Figure 1. World map showing occurrence records of A. baumannii.

2.1.2. Climate Data

Climate data represented in 19 bioclimatic variables were downloaded from World-
Clim version 1.4 using a spatial resolution of 2.5 min, which corresponds to approximately
5 km at the equator (Table S1) [41]. These data were downloaded for the current climate
scenario (historical mean of values from 1960 to 1990) as well as future projected scenarios
in the years 2050 (projected mean of values from 2041 to 2060) and 2070 (projected mean of
values from 2061 to 2080).

For future projected climate data, the general circulation model used was the MRI-
CGCM3, developed by the Japanese Meteorological Research Institute (MRI) [42]. The
representative concentration pathways used were RCP 2.6 and RCP 8.5 to forecast potential
best- and worst-case scenarios, respectively [43].

All the data were finally converted into ASCII format using ArcMap version 10.3 to
enable it to be used with MaxEnt.

2.2. Model Construction

Species distribution models were constructed using the maximum entropy algorithm
as implemented in the MaxEnt application [44] using the species occurrence data and
climate data obtained. Maximum entropy as an algorithm was chosen because of its ability
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to construct statistically accurate species distribution models using only species’ presence
data without needing species’ absence data, which are not available for most species [45],
as well as its superior accuracy and dependability as compared to other species distribution
modeling algorithms.

First, a preliminary model was constructed using all 19 historic bioclimatic variables
to determine the variables that are the most powerful contributors to the model or the
most powerful predictors. The use of bioclimatic factors 8, 9, 18, and 19 was avoided
during variable selection due to known spatial artifacts and discontinuities [46], which may
adversely impact the model quality. The factors were selected through an interpretation of
the response curves as well as the jack-knife test. The response curves show the predicted
probability of suitability for A. baumannii in given environmental variable ranges, while
the jack-knife test is a method of assessing the significance or importance of the used
environmental features, which depends on constructing models using all variables, omitting
one in turn. It then estimates the ability of the model to make predictions, omitting the
excluded variable, and the larger the differences between the models, the more important
the predictor is deemed [47].

Next, a model for the potential current distribution of A. baumannii was constructed
using the same species occurrence records but with only the selected bioclimatic variables,
deemed the most powerful environmental predictors.

Then, for the potential future distribution, a model was constructed using climate data
for each of the four used scenarios (RCP 2.6 and 8.5 for each of 2050 and 2070) using the
same selected bioclimatic variables. The future climate data for each run were loaded into
MaxEnt’s projection layers for suitability in the current climate scenario to be estimated,
but then projected against the future climate data.

For all the aforementioned models, the settings used on the MaxEnt application were
as follows: 10 replicate runs, response curves and jack-knife testing enabled, cloglog output
format, 25% random testing data, and 75% random training data. Accounting for the
random differences between the replicate models, the median was used as the final result
for each run. The output from each model is an ASCII raster world map consisting of
values ranging from 0 to 1, where each value is interpreted as the probability of a given
point being environmentally suitable for the species.

2.3. Quality Assessment

The model quality was assessed according to the area under the receiver operating
characteristics curve (AUC) [45] and the true skill statistic (TSS) [48]. The mean AUC across
the models is automatically exported by MaxEnt itself and is a threshold-independent
metric that ranges from zero to one, where 0.9–1 signifies excellent quality, 0.8–0.9 signifies
good, 0.7–0.8 signifies satisfactory, 0.6–0.7 signifies poor, and less than 0.6 signifies that the
model failed [49].

The true skill statistic, on the other hand, is a threshold-dependent metric calculated
as the sum of the true positive rate and true negative rate minus 1, where the value
ranges from −1 to 1. A TSS value of positive one indicates a hypothetical model that
perfectly distinguishes between positives and negatives, while zero or negative values
indicate a model whose performance is no better than random [48]. The threshold used to
classify the models into presence/absence points was 0.6, representing a 60% probability of
environmental suitability. Points with probabilities greater than or equal to 0.6 were used
to select presence points, and else for absence points.

2.4. Visualization and Exporting Maps

The generated models were each individually visualized on a world map and exported
using ESRI ArcMap 10.3 [50]. They were classified into different categories using Jenks
natural breaks optimization and then color-coded to each visual interpretation.

The maps were then classified into a presence–absence map using the same threshold
used to calculate the TSS as previously mentioned, where zeroes represent absence points
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and ones represent presence points. To ease the interpretation of the future projected
distribution maps, the maps were calibrated by subtracting the present–absent values of
the current distribution maps from those of the future distribution maps [51]. This yielded
a final raster map where positive values signify range gain, zeroes signify unaffected range,
and negative values signify range loss. The classified maps were then color-coded and
exported as well.

3. Results
3.1. Model Quality

Quality assessment according to the AUC value revealed that the model was of very
good quality [49], with a mean AUC value of 0.869 across the replicate runs.

The TSS value was computed at 0.745, which is significantly better than the default
threshold value of 0.5, revealing that the models were of satisfactory quality.

3.2. Significant Environmental Variables

The preliminary MaxEnt runs showed that the most significant environmental vari-
ables deemed the most powerful predictors or contributors to the model were bio_1 (annual
mean temperature), bio_6 (minimum temperature of the coldest month), bio_11 (mean
temperature of the coldest quarter), and bio_12 (annual precipitation). The environmen-
tal enveloped test was performed for bio_1 and bio_12 for a better understanding of the
ecological requirements of this bacteria (Figure S1).

The response curves strongly suggest that A. baumannii has a preference for warm and
wet climates.

An analysis of the jack-knife test shown below in Figure 2, which is also used to
assess variable importance or significance, revealed that the distribution of A. baumannii is
most affected by the mean temperature of the coldest quarter (bio_11) and the minimum
temperature of the coldest month (bio_6), which, when combined with the response curves
shown in Figure 3, also shows a tendency to prefer warmer temperatures.
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Figure 2. Jack-knife test of A. baumannii showing the most significant bioclimatic variable that affects
its distribution.

Consistent with the previous results, the MaxEnt runs also showed that the following
factors contributed the most to the distribution of A. baumannii. Note that the permutation
importance is preferred over the percent contribution when using environmental variables
that are correlated with each other, such as the mean temperature of the coldest quarter
(bio_11) and the minimum temperature of the coldest month (bio_6), because in such cases,
the percent contribution refers mostly to the amount of information present in said variable
that is not present in any other variable used [52] (Table 1).
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Table 1. Contribution and permutation importance of the most important contributors to the global
distribution of A. baumannii.

Variable Percent Contribution Permutation Importance

Annual mean temperature (bio_1) 9.5% 26.1%

Minimum temperature of the coldest month (bio_6) 12.6% 26.1%

Mean temperature of the coldest quarter (bio_11) 37.8% 32.9%

Annual precipitation (bio_12) 40.2% 14.9%

3.3. Potential Current Distribution

A visualization of the models constructed on historic climate data as an estimation of
the current climate scenario revealed that A. baumannii has a significant and wide potential
global distribution that can potentially include every biogeographic realm, as shown in the
following figure. Warmer colors indicate a higher probability of suitability for A. baumannii
and vice versa for colder colors (Figure 4).

In line with the response curves indicating that A. baumannii appears to prefer warm
and moist climates, the map shows that the largest areas with the highest probability of
suitability are predominantly concentrated in south Europe, South Asia, and the south-east
of the United States (Figure 5). Significant potential ranges suitable for A. baumannii are
also observed in most of South America and Australia.
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3.4. Potential Future Distribution

The MaxEnt models built on projected climate data in 2050 and 2070 indicated that
A. baumannii is projected to still enjoy a considerably wide range in the future in different
climate change scenarios (Figure 6).
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For both RCP 2.6 and RCP 8.5, there appears to be a significantly higher range suit-
ability for A. baumannii when contrasted with the potential current distribution shown in
Figure 3. To clarify the exact changes in range predicted to be undergone by A. bauman-
nii in response to climate change, the following calibration maps will be used for result
interpretation instead of the previously shown maps.

The calibration maps (Figure 7) mostly show an alarmingly high range of expansion
in all climate change scenarios used in this study. Specifically, with rising global mean
temperatures and the expected associated changes in precipitation patterns, the range of
A. baumannii is projected to expand to include new ranges in Northern and Central Europe,
Sub-Saharan Africa, most of South America, Australia, and the Arabian Peninsula. This
range expansion is also clearly projected to become increasingly more extreme in the more
severe climate change scenarios with rising global temperatures, as can clearly be seen
when comparing Figure 7d (2070 in the worst-case scenario) with Figure 7a (2050 in the
best-case scenario).
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The models also predicted negligible range loss, which is expected to be a form of
range shifting into areas with warmer and wetter climates, as A. baumannii appears to
prefer.

4. Discussion

Nosocomial infections (NIs), also known as hospital-associated or healthcare-associated
infections (HAIs) are a serious threat to healthcare worldwide, affecting as many as 1 in
every 10 patients admitted to hospital [53]. Among the organisms that cause nosocomial
infections are Acinetobacter spp., with one five-year review even finding that Acinetobacter
spp. was indeed the most common among them [54]. This has notorious consequences as
Acinetobacter spp., especially A. baumannii, are capable of quickly developing multidrug re-
sistance due to their mobile genetic elements, such as insertion sequences and transposable
elements [55]. Pathogenic Acinetobacter spp. are also known to spread through communities
and cause community-acquired infections, especially after war or natural disasters [56].

Like all other living organisms, A. baumannii is subject to the possible ecological
impacts of climate change, that may include adaptation to the new conditions [25], which
may lead to range shifting [26]. A 2018 case study suggested that the climate plays a role in
how most A. baumannii infections are diagnosed and reported in tropical areas, and noted
that there may also be some seasonal variation to its healthcare. It also suggested that
climate change may influence the infection incidence, but the claim needs to be investigated
more thoroughly [16].

This study aimed to shed light on the aforementioned implied correlation between
climate and A. baumannii infection incidence. Maximum entropy modeling implemented in
MaxEnt [44] was employed to construct species distribution models for A. baumannii in the
current climate scenario to show its possible range in the present, as well as in different
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future climate change scenarios to predict what the distribution and inferred infection
incidence may look like in the foreseeable future. The performance of the models was
judged according to their mean AUC and TSS values and were deemed to be of very good
quality [49]. The models also showed that the environmental factors that affected the
distribution of A. baumannii the most were the mean temperature of the coldest quarter
(bio_11) followed closely by the minimum temperature of the coldest month (bio_6), as
shown in Figure 2 and Table 1. The response curves in Figure 3 from the MaxEnt models
showed that A. baumannii indeed appears to prefer warmer climates. Through a thorough
interpretation of the response curves, the jack-knife test, and the permutation importance
(Table 1), it can be safely concluded that the geospatial range of A. baumannii is subject to
the heaviest weight of seasonal temperature, with a clear preference for warmer climates.

The map of the current potential distribution of A. baumannii (Figures 4 and 5) shows
that the regions with the highest regional suitability for A. baumannii are predominantly
concentrated in South Asia, southeastern United States, Southern Europe, and South
America. This is in line with currently reported A. baumannii infection cases [57–59]. It
is also in line with the observation [16] that most diagnosed and reported A. baumannii
infections are usually located in more tropical climates rather than cooler, continental
climates, which will be further clarified in the future projected distribution maps.

In the maps representing the future projected distribution of A. baumannii (Figures 6
and 7), there is a very clear range expansion throughout all the regions where A. baumannii
was known to be prevalent, and new significant range developments are expected in
several regions, most notably the Arabian Peninsula, North and Central Europe, and Sub-
Saharan Africa. This may confirm the seasonality of A. baumannii infection incidence as
it indeed seems to prefer warmer climates. In the regions that were predicted to undergo
A. baumannii range expansion, it can unfortunately be assumed that its infection incidence
will increase in the future, which represents a growing problem, particularly for Africa and
Europe [60], where A. baumannii infection is already known and prevalent, especially in the
Mediterranean region [61].

Regions with developing or underdeveloped countries, which may have underfunded
or underdeveloped healthcare facilities, may be the most adversely impacted by this
projected change. Indeed, most of Sub-Saharan Africa and Central Europe [62] will need
to take the most precautionary measures against A. baumannii infection by controlling its
spread so as to not overwhelm healthcare systems. It is of major concern that in today’s
accessible world and with global travel easily available, infections such as A. baumannii
can easily transcend state borders as well, evident by the finding of antibiotic-resistant
strains of A. baumannii in a Kenyan hospital, and upon further microbiological and genomic
analysis, they were shown to be of European and Indian lineages [63]. An outbreak of
A. baumannii, particularly in the developing world, may prove disastrous for its citizens.

These results show that A. baumannii infection incidence is a growing problem and
with the rise in antibiotic resistance [3], treatment has proven difficult. Because most
A. baumannii strains are multidrug-resistant, the use of multiple antibiotics often is still not
sufficient to treat infection, and for this reason, it has been suggested that new therapies
and more well-controlled studies are needed to study possible treatment options, as well
as placing a greater emphasis on the prevention of infection transmission [13]. In line
with this vision, the World Health Organization has declared A. baumannii a top priority
for the development of new medical countermeasures, such as a vaccine, [64] and work
toward such a vaccine is indeed underway, [65] although no vaccine has been developed
sufficiently to the point of human clinical trials to date [66].

This study also shows that the possible ecological effects of climate change can also be
disastrous from a healthcare perspective and are not only limited to natural disasters [23]
or economic consequences [28]. The changes occurring in ecosystems around the world can
directly affect human health, as shown with the increased A. baumannii infection incidence,
and this may serve as an urgent warning system to promote sustainable development, as
well as raise public awareness on climate change and its consequences.
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I would also like to note that in this study, species distribution models for A. bauman-
nii were constructed using only bioclimatic variables, which may provide a satisfactory
estimation of possible geographic range, but can still be improved through the use of
more environmental variables, such as soil type, considering that multidrug-resistance
A. baumannii is known to inhabit soils [67]. Local or regional studies conducted on a smaller
scale may also potentially yield models with a higher accuracy at a higher resolution.

5. Conclusions

The present work represents the first study that used the application of GIS to predict
the distribution of bacteria in the future and it provides valuable insights into the potential
impact of climate change on the distribution of A. baumannii, a bacterial species that poses
a significant threat to human health. The study applies MaxEnt modeling techniques to
predict the current and future distribution of A. baumannii under four different climate
scenarios. The generated risk maps suggest that A. baumannii is likely to expand its range
in the future, especially through Europe, which could have serious implications for public
health. The study highlights the need for further research and action to mitigate the impact
of climate change on the distribution of pathogenic microorganisms.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/microorganisms11092174/s1, Table S1: The 19 bioclimatic variables
used to generate the prediction distribution maps of A. baumannii; Figure S1: Environmental envelope
model of recorded points of A. baumannii, the envelope showing the wide range of annual precipitation
(bio_12) and annual mean temperature (bio_1).
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