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Abstract: Enterotoxigenic E. coli (ETEC) are endemic in low-resource settings and cause robust
secretory diarrheal disease in children less than five years of age. ETEC cause secretory diarrhea
by producing the heat-stable (ST) and/or heat-labile (LT) enterotoxins. Recent studies have shown
that ETEC can be carried asymptomatically in children and adults, but how ETEC subvert mucosal
immunity to establish intestinal residency remains unclear. Macrophages are innate immune cells
that can be exploited by enteric pathogens to evade mucosal immunity, so we interrogated the
ability of ETEC and other E. coli pathovars to survive within macrophages. Using gentamicin
protection assays, we show that ETEC H10407 is phagocytosed more readily than other ETEC and
non-ETEC isolates. Furthermore, we demonstrate that ETEC H10407, at high bacterial burdens,
causes nitrite accumulation in macrophages, which is indicative of a proinflammatory macrophage
nitric oxide killing response. However, at low bacterial burdens, ETEC H10407 remains viable within
macrophages for an extended period without nitrite accumulation. We demonstrate that LT, but
not ST, intoxication decreases the number of ETEC phagocytosed by macrophages. Furthermore,
we now show that macrophages exposed simultaneously to LPS and LT produce IL-33, which is a
cytokine implicated in promoting macrophage alternative activation, iron recycling, and intestinal
repair. Lastly, iron restriction using deferoxamine induces IL-33 receptor (IL-33R) expression and
allows ETEC to escape macrophages. Altogether, these data demonstrate that LT provides ETEC with
the ability to decrease the perceived ETEC burden and suppresses the initiation of inflammation.
Furthermore, these data suggest that host IL-33/IL-33R signaling may augment pathways that
promote iron restriction to facilitate ETEC escape from macrophages. These data could help explain
novel mechanisms of immune subversion that may contribute to asymptomatic ETEC carriage.

Keywords: enterotoxins; diarrhea; ETEC; macrophages; colonization factors; mucosal and systemic
ETEC immunity

1. Introduction

Enterotoxigenic Escherichia coli (ETEC) are prominent causes of diarrheal disease
that particularly affect children in low-to-middle income countries [1]. Asymptomatic
ETEC carriage has been reported in both children and adults [2–4], but the sequence
of events leading to symptomatic infection or asymptomatic carriage remains unknown.
Furthermore, sustained exposure to ETEC or other enteropathogens predisposes children to
other co-morbidities including growth faltering [5,6], childhood anemia [7], or intellectual
stunting [6,8]. Although the precise molecular mechanisms of ETEC pathogenesis that
cause these co-morbidities have not been elucidated, they are likely an outcome following
repeated exposure from the heat-stable (ST) and/or heat-labile (LT) enterotoxins.

LT and ST cause secretory diarrhea by increasing cAMP and cGMP second messen-
ger signaling, respectively, and activation of the cystic fibrosis transmembrane receptor
results in water and electrolyte loss [9]. ETEC are classically considered non-invasive
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and non-inflammatory, but sometimes, ETEC can cause low-grade fevers in symptomatic
individuals [10]. In some cases, ETEC can be disseminated into extraintestinal tissues
including the mesenteric lymph nodes, spleen, and liver [11] without overt inflammation,
but how they are trafficked to these tissues and whether these sites represent a potential
source for reinoculation of the intestinal mucosa following primary infection remains unre-
solved. ETEC may compromise intestinal barrier integrity [12], or they may be trafficked to
non-intestinal sites via immune cells [11]. Intranasal ETEC infection models have demon-
strated that macrophages are recruited to the mucosae [13]. Furthermore, in vitro co-culture
experiments have shown that macrophages can project through intestinal epithelial cell
monolayers to phagocytose ETEC and other E. coli pathovars [14,15], but macrophages have
not received major attention as ETEC reservoirs. Thus, it is important to further understand
whether ETEC and its virulence-determining enterotoxins affect macrophage-mediated
phagocytosis such that ETEC could subvert mucosal immunity.

Intestinal macrophages represent a heterogenous population of cells originating from
either the self-renewal of embryonically seeded yolk sac progenitors or the differentiation
of monocytes of hematopoietic origin [16]. Macrophages can be activated by pathogen-
associated molecular patterns (PAMPS) including the TLR4 ligand LPS to drive proin-
flammatory M1 phenotypes, consisting of nitric oxide and proinflammatory cytokine (e.g.,
TNFα and IL-1β) production [17]. During early infection, M1 macrophages help control
the invading pathogen burden, but their secreted factors also lead to intestinal epithelial
transcriptional changes that may affect ETEC attachment [18]. However, sustained M1
macrophage activity can lead to inflammation-associated tissue damage, and IL-4 and
IL-33 are key cytokines that promote the resolution of inflammation via the conversion of
macrophages to the M2 phenotype (e.g., alternative activation) [19].

We recently demonstrated that LT and ST stimulate IL-33 production in the murine
small intestinal mucosa [20,21]. IL-33 is generally believed to polarize toward type 2
immunity characterized by the induction of the IL-5 and IL-13 cytokines that function
to reinforce the intestinal mucosa [22,23]. Although IL-33 is predominantly produced by
epithelial cells, some macrophages can produce it after stimulation with a TLR4 signal (e.g.,
LPS) and a cAMP-elevating agent (e.g., forskolin or adenylate cyclase toxin) [24,25]. We
previously demonstrated that LT suppresses IL-33-mediated TNFα production in bone-
marrow dendritic cells (BMDCs) and bone marrow macrophages (BMMs) [21]. However,
IL-33-stimulated responses developed much more rapidly in BMDCs as compared to BMMs,
indicating that signaling through the IL-33 receptor (IL-33R, aka ST2) on macrophages may
be dependent on the conditions that elevate its expression [21].

In macrophages, IL-33 promotes the M2 phenotype via mitochondrial redox-related mi-
tophagy [26], a process that liberates iron, which is strictly controlled as a well-documented
enteropathogen virulence factor. Interestingly, IL-33 and hemin are also required to drive
the differentiation of iron-recycling macrophages from circulating monocytes [27], which
suggests that IL-33 could initiate the host response to prevent ETEC from accessing iron.
Similar to IL-33, the acute iron deprivation of macrophages reprograms cellular metabolism
to promote increased citric acid cycle intermediates including itaconate and succinate,
which promote M2 phenotypes [28].

Together, these observations led us to question whether ETEC enterotoxins alter IL-
33/IL-33R signaling to affect iron homeostasis and promote ETEC escape from macrophages
that could lead to asymptomatic carriage. Furthermore, we set out to understand whether
macrophages could produce IL-33 following exposure to ETEC (e.g., bearing LPS) and LT
(e.g., cAMP-inducing source). Finally, we set out to demonstrate that iron availability is a
virulence factor that contributes to ETEC escape from macrophages.

2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions

ETEC H10407 (CFA/I+, STh+, STp+, LT+), ETEC 214-4 (CS6+, STp+), ETEC B41 (F41+,
STp+), ETEC E24377A (CS1+, CS3+, STh+, LT+), ETEC LSN03-016011/A (CS17+, LT+),
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adherent and invasive E. coli (AIEC) NRG857c, enteroaggregative E. coli (EAEC) C3493,
enteropathogenic E. coli (EPEC) O127:H6, and enterohemorrhagic E. coli (EHEC) O157:H7
were streaked from glycerol stocks onto LB agar plates. Isolated colonies were used to
inoculate LB overnight cultures before being subcultured in LB broth the next day at
a 1:100 dilution. Stationary phase bacterial cultures were harvested via centrifugation
for 5 min at 14,000 rpm and then resuspended in sterile PBS for infection in gentamicin
protection assays. For multiplicity of infection (MOI) experiments, MOI = 1 corresponds to
5 × 105 bacterial cells per well, MOI = 5 corresponds to 2.5 × 106 bacterial cells per well,
and MOI = 10 corresponds to 5 × 106 bacterial cells per well.

2.2. Enterotoxins

ST was purified from the supernatants of recombinant strain 9115 as described previ-
ously [29]. LT-holotoxin was purified as previously described [20]. ST and LT were used at
1.0 µg per well.

2.3. Macrophage Culture

Raw 264.7 murine macrophages were obtained from ATCC and cultured in Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS) in
tissue culture flasks. Raw cells were harvested via trypsinization and subcultured at 5 × 105

cells per well in 24-well plates for 24 h to allow attachment overnight before experimentation.
For BMM preparation, femurs and tibias were removed from euthanized female CD1

mice and flushed with sterile PBS through a 70 µm filter. The cells were centrifuged for
5 min at 4 ◦C and 500× g and resuspended in 28 mL complete DMEM (cDMEM) (10%
FBS, 5% horse serum, 1% HEPES, 1% sodium pyruvate, 1% GlutaMAX, 1% penicillin–
streptomycin). Then, L929 conditioned media (7 mL) containing murine CSF was prepared
and added to the cDMEM, as described previously [21]. Macrophage differentiation was
carried out for 12 days before experimentation.

Macrophages (Raw 264.7 or BMMs) were then treated with purified LT, purified ST,
Salmonella minnesota LPS (InvivoGen, cat# R595, San Diego, CA, USA), IL-33 (R&D Systems,
cat# 3626-ML, Minneapolis, MN, USA), forskolin (Sigma, cat#F3917, Waltham, MA, USA),
CFA/I (BEI Repository, cat# NR-49110, Manassas, VA, USA), or deferoxamine mesylate
(Sigma, cat# D9533).

2.4. Gentamicin Protection Assays

Raw 264.7 macrophages or BMMs were plated in DMEM supplemented with 10% FBS
at 5 × 105 cells per well in 24-well plates for 24 h to allow attachment. The following day,
wells were washed 3 times with PBS, and the media were replaced with antibiotic-free
DMEM supplemented with 20% FBS.

Raw 264.7 macrophages or BMMs were infected with ETEC H10407, ETEC 214-4,
ETEC B41, ETEC E24377A, ETEC LSN03-016011/A, AIEC NRG857c, EAEC C3493, EPEC
O127:H6, and EHEC O157:H7 at MOI of 1, 5, or 10 for 1, 4, 8, or 24 h at 37 ◦C. Then,
the media was removed and replaced with DMEM with 100 µM gentamicin (Gibco, cat#
15710-064, Waltham, MA, USA) to kill non-phagocytosed bacteria. Gentamicin treatment
was carried out for 1, 4, 8, or 24 h. Macrophages were osmotically lysed with 1% Triton-X
(Sigma-Aldrich, cat# 9002-93-1) to release phagocytosed bacteria, and lysates were plated
on LB agar and grown statically overnight at 37 ◦C. Colony-forming units (CFUs) were
enumerated from LB agar plates and represent phagocytosed bacteria that remained viable
at each timepoint.

2.5. Griess Assay

Nitrite levels were assessed as a proxy for macrophage nitric oxide production by
assessing culture supernatant nitrite buildup at noted timepoints with Griess reagent
(Invitrogen, cat# G7921, Waltham, MA, USA).
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2.6. Lactate Dehydrogenase Activity

Macrophage viability was assessed via measurement of lactate dehydrogenase (LDH)
activity in cell culture supernatants using the LDH cytotoxicity assay kit (Thermo, cat#
88953, Waltham, MA, USA). Data are reported as percent lysis by taking the ratio of the
absorbance (490 nm) of cell culture supernatants to the absorbance (490 nm) of lysed
untreated control cells.

2.7. ELISA

Cell culture lysates or supernatants were collected, clarified, and their protein con-
tent was quantified through the bicinchoninic acid (BCA) assay (Thermo Fisher, cat no.
23225). These samples were then applied to IL-33 (R&D Systems, #DY3626) or TNFα
(R&D Systems, #DY410) DuoSet ELISAs according to the manufacturer’s instructions. Ex-
periments were repeated at least three times. Cytokine measurements are calibrated per
microgram of total protein for cell lysates but represented as nanograms per milliliter for
macrophage secretions.

2.8. Flow Cytometry

Raw 264.7 macrophages were treated with IL-33 (1–100 ng) or deferoxamine mesylate
(0.1–1.5 mM) for 24 h before being trypsinized and counted. Cells were then washed with
500 µL cell sorting buffer (CSB; 1× PBS, 2% newborn calf serum, 0.1% NaN3, 5 mM EDTA,
pH 8.0) and blocked for 15 min with an Fc block derived from a 2.4G2 hybridoma cell
(ATCC, HB-197) supernatant. PerCP/Cy5.5 CD80 (BioLegend, cat# 104722, San Diego, CA,
USA), PE-CD86 (BioLegend, cat# 159204), APC-CD40 (BioLegend, cat# 124612), PE-Cy7-
IA/IE (BioLegend, cat# 107630), FITC IL-33R (MD Bioproducts, cat# 101001F, St. Paul, MN,
USA), and aqua fluorescent live/dead stain (Invitrogen, cat# L34966) were added directly
to cells following Fc block incubation for 30 min at 4 ◦C protected from light. Then, the cells
were washed with CSB and fixed for 20 min at room temperature in 2% paraformaldehyde
protected from light. The cells were washed again with CSB and resuspended in 500 µL
fresh CSB for analysis via flow cytometry on a BD LSR Fortessa.

2.9. Statistical Analysis

All statistical analyses were performed using Prism 9 software (GraphPad, Inc., San
Diego, CA, USA). Unpaired student’s t-tests were used to analyze experiments containing
two groups. In experiments with more than two groups, statistical analysis was performed
using an unpaired one-way analysis of variance (ANOVA) followed by post hoc analysis
for multiple comparisons, as described in the figure legends. Experiments monitoring
multiple treatment groups at different timepoints were analyzed with two-way ANOVA
followed by post hoc analysis as described in the figure legends. Biological significance is
defined as 5% or less chance (p < 0.05) that results were obtained due to chance.

3. Results
3.1. Macrophages Phagocytose ETEC

We began our investigation by performing gentamicin protection assays using Raw
264.7 macrophages or BMMs and gentamicin-sensitive ETEC strains and other pathogenic,
but non-enterotoxigenic, E. coli strains. Previous studies have demonstrated that adherent
and invasive E. coli (AIEC) can survive within the phagolysosome of macrophages via the
induction of an acid and stringent response [30], but we are unaware of studies that have
compared macrophage-mediated phagocytosis of ETEC strains with AIEC, EAEC, EPEC,
and EHEC. We chose to assess macrophage-mediated phagocytosis of ETEC strains that
have been assessed in in human challenge studies—H10407 [31], 214-4 [32], E24377A [33],
and LSN03-016011/A [34]—or caused disease in farm animals, B41 [35]. These clinical
ETEC isolates represent the diversity of wild ETEC with different colonization factor and
enterotoxin profiles. We infected Raw 264.7 macrophages with these ETEC strains and
EAEC C3493, AIEC NRG857c, EPEC (O127:H6), and EHEC (O157:H7) at the MOI of 1
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for 1 h before osmotic lysis to release intraphagosomal bacteria. We chose the MOI of 1
(5 × 105 CFU to 5 × 105 macrophages) to represent a low-dose infection. As expected, our
results demonstrate that macrophages phagocytose all E. coli assayed, but surprisingly,
ETEC H10407 is phagocytosed at a significantly (p < 0.0001) higher rate than other ETEC
and non-ETEC isolates (Figure 1A). ETEC H10407 represents one of the most diarrheagenic
and burdensome ETEC isolates, so these data suggest that macrophages may be important
innate immune ETEC sensors. ETEC H10407p is a non-diarrheagenic derivative ETEC
H10407 [36] that lost the 948 kilobase pair virulence plasmid (p948), which encodes the
genes for CFA/I fimbriae [37] among other genes. Since ETEC H10407 was phagocy-
tosed at significantly higher rates than other ETEC and non-ETEC isolates, we compared
ETEC H10407 and ETEC H10407p in side-by-side gentamicin protection assays. We show
that ETEC H10407 is phagocytosed more efficiently than ETEC H10407p (Figure 1B), al-
though the differences are minor compared to other E. coli (Figure 1A). Furthermore, we
demonstrate that the addition of exogenous CFA/I to ETEC H10407p rescues macrophage-
mediated phagocytosis to the level observed using ETEC H10407. Colonization factors may
promote macrophage-mediated phagocytosis, but it also remains possible that other factors
contribute to these phenotypes.
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Figure 1. Recoverable intracellular bacterial load of ETEC H10407 in macrophages differs from other
ETEC and E. coli pathovars. Gentamicin protection assays performed on ETEC H10407 compared
to other E. coli pathovars or other ETEC isolates revealed greater numbers of viable H10407 inside
macrophages. Raw 264.7 macrophages (5 × 105 cells) were added to the wells of 24-well cell culture
plates and allowed to attach for 24 h prior to infection. Bacteria were added at an MOI = 1 and
allowed to incubate with cells 1 h in DMEM with 20% FBS. After incubation, wells were washed, and
antibiotic-free media were replaced with gentamicin-containing media for the remainder of the assay.
When macrophages are infected with equal numbers of H10407 compared to a selection of other E. coli
isolates, recovered intracellular H10407 CFUs at one-hour post-infection were significantly greater
than those recovered from the other isolates assessed (A). H10407 was infected in equal numbers as
H10407P, which is an H10407 variant that has lost the CFA/I-containing virulence plasmid (p948).
H10407 was recovered from macrophage lysates in greater numbers than H10407p, but the addition
of CFA/I (1 µg) rescued the ability of H10407p to be phagocytosed (B). Data in (A,B) have been
aggregated from three individual experiments containing 2–4 replicates per experiment. Error bars
represent the standard deviation of log transformed data. Each dot represents a single well following
a gentamicin protection assay. Data in (A,B) were analyzed in Prism 9 via one-way ANOVA with
Dunnett’s test for multiple comparisons, ****, p < 0.0001; **, p < 0.05, *, p < 0.05.

3.2. LT Intoxication of Macrophages before ETEC Infection Decreases Recoverable ETEC Burden

LT intoxication suppresses TNFα proinflammatory cytokine production following
TLR4 and IL-1 receptor stimulation in macrophages [21]. Thus, it would be reasonable to
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expect that LT intoxication also suppresses the ability of macrophages to phagocytose ETEC.
To understand the effect of ETEC enterotoxins on macrophage-mediated ETEC phagocyto-
sis, we pretreated macrophages with ETEC enterotoxins, ST, LT, and ST + LT (1 µg each) for
24 h before performing 1 h gentamicin protection assays following ETEC H10407 or ETEC
214-4 inoculation at an MOI of 1. We used ETEC H10407 and ETEC 214-4 as an LT-ETEC
strain and non-LT-ETEC strain, respectively. We show that exogenous LT intoxication
significantly suppresses the ability of Raw 264.7 macrophages to phagocytose both ETEC
H10407 (p < 0.0001) (Figure 2A) and ETEC 214-4 (p < 0.05) (Figure 2B). We also demon-
strate that LT intoxication suppresses the ability of BMMs to phagocytose ETEC H10407
(Supplemental Figure S1). On the other hand, ST does not affect the ability of macrophages
to phagocytose ETEC H10407 (Figure 2A) or ETEC 214-4 (Figure 2B). This is expected,
since immune cells predominantly do not express the ST receptor, guanylyl cyclase C.
As expected and similar to the results obtained following LT intoxication, simultaneous
ST + LT intoxication significantly suppresses the ability of macrophages to phagocytose
ETEC H10407 (p < 0.0001) (Figure 2A) and ETEC 214-4 (p < 0.001) (Figure 2B). These
data demonstrate that LT intoxication significantly decreases the ability of macrophages
to phagocytose ETEC, particularly ETEC H10407. This suggests that LT may function to
decrease the perceived infectious dose of ETEC, which may be important for ETEC strains
that are robustly phagocytosed like ETEC H10407.
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Figure 2. Pretreatment of macrophages with LT, but not ST, decreases phagocytosis of ETEC H10407
and ETEC 214-4. Raw 264.7 macrophages (5 × 105 cells) were plated in 24-well cell culture plates
as above. Cells were pretreated for 24 h with 2 µg/mL (1 µg/well) of the noted toxins; then, a
gentamicin protection assay was performed as above. Pretreated macrophages were infected with
H10407 (A) or 214-4 (B) at an MOI = 1. Pretreatment with LT alone and LT and ST together, but not
ST alone, decreased recovered intracellular bacteria when infected with either isolate. Data in (A,B)
have been aggregated from three individual experiments containing 2–4 replicates per experiment.
Error bars represent the standard deviation of log transformed data. Each dot represents a single
well following a gentamicin protection assay. Data in (A,B) were analyzed in Prism 9 via one-way
ANOVA with Dunnett’s test for multiple comparisons. *, p < 0.05; ***, p < 0.001; ****, p < 0.0001.

3.3. ETEC Can Persist Inside Macrophages

Since LT suppresses the ability of macrophages to phagocytose ETEC at an MOI = 1,
we assessed whether the dose of ETEC H10407 affected phagocytosis and macrophage-
mediated inflammation. We characterized two markers of inflammation, nitrite (as a proxy
for bactericidal NO production) and LDH (as a proxy for tissue damage) in ETEC-H10407
infected macrophage cultures. For this experiment, Raw 264.7 macrophages were treated
with ETEC H10407 at an MOI of 1, 5, or 10 and then were assessed in gentamicin protection
assays kinetically for 1, 4, 8, and 24 h post-infection, as shown in Figure 3. Our data
demonstrate that the severity of ETEC infection (e.g., dose or MOI) may determine whether
macrophages mount inflammatory responses against ETEC. Surprisingly, we found that
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the CFUs of intracellular ETEC H10407 recovered from macrophages infected at an MOI of
1 were not significantly different at 1, 4, 8, and 24 h post-infection in gentamicin-containing
media (Figure 3A, black circles). On the other hand, at an MOI of 5 or 10, macrophages
begin to kill ETEC H10407, as shown by the decrease in intracellular CFUs 4, 8, and 24 h
post-infection (Figure 3A, MOI = 5, blue squares; MOI = 10, green triangles). We show that
macrophages infected with ETEC H10407 for 24 h at an MOI of 10 have significantly more
nitrite than macrophages infected with ETEC H10407 for 24 h at MOI values of 1.0 and
5.0 (Figure 3B). This suggests that macrophages are initiating NO-mediated killing, as has
been demonstrated for other enteric pathogens [38]. Furthermore, we demonstrate that
macrophages infected with ETEC H10407 for 24 h at an MOI of 5 or 10 have significantly
higher LDH activity than macrophages infected with ETEC H10407 for 24 h at an MOI of 1
(Figure 3C). We also show that macrophages permit the persistence of ETEC 214-4 when
inoculated at an MOI of 1, but macrophages begin to kill ETEC 214-4 when inoculated at
an MOI of 5 or 10 (Supplemental Figure S2). These data suggest that at low infecting doses,
ETEC are phagocytosed by macrophages but escape proinflammatory killing responses.
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Figure 3. Lower infectious doses of H10407 show stable persistence within macrophages without
inflammation. Macrophages incubated with ETEC H10407 at an MOI = 1 showed increased CFUs of
intracellular ETEC H10407 at 8 and 24 h post-infection, while macrophages incubated with ETEC
H10407 at an MOI = 5 or MOI = 10 showed reduced CFUs of intracellular ETEC H10407 at 8 and 24 h
post-infection (A). Nitrite levels, a proxy measurement for nitric oxide production, were higher in the
macrophages infected at MOI = 5 or MOI = 10 than in the MOI = 1 group (B). LDH activity was also
elevated in the supernatants of the cells infected at higher MOIs at 24 h (C). Data are representative of
three individual experiments containing 3 replicates per experiment. Each dot represents a single well
following a gentamicin protection assay. Data were analyzed via two-way ANOVA with timepoints
matched with Sidak’s test for multiple comparisons. *, p < 0.05; ***, p < 0.001; ****, p < 0.0001.

3.4. LT and LPS Promote Macrophage IL-33 Production

Since LT functions in suppressing otherwise proinflammatory responses in macrophages,
it remains possible that LT polarizes macrophages to the M2 phenotype that allows for
extended intracellular pathogen survival [39]. IL-33 is a mucosal cytokine that promotes M2
polarization and previous studies have demonstrated that BMMs stimulated with LPS and
a cAMP-inducing agent (e.g., forskolin or adenylate cyclase toxin) produce IL-33 [40]. As LT
acts through cAMP induction, we sought to confirm that it similarly induces macrophage
IL-33 in concert with LPS stimulation. Our data demonstrate that LT and LPS synergize to
produce IL-33 in BMMs (Figure 4A). As shown using 1 h gentamicin protection assays, IL-33-
stimulated BMMs are significantly more permissive of ETEC H10407 infection (Figure 4B).
It is important to note that IL-33 was not secreted but found in BMM lysates. Earlier, we
demonstrated that the induction of the proinflammatory M1-like macrophage phenotype,
characterized by secreted TNFα and nitrite production, is dependent on perceived ETEC
burden. It is possible that LT-mediated IL-33 production in macrophages likely stimulates
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an IL-4-independent phenotypic conversion toward an M2 phenotype characterized by
increased aconitate and succinate [28].
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Figure 4. Simultaneous LT and LPS treatment induces IL-33 in macrophages. BMMs were treated
with LPS (50 ng), LT (1.0 µg), LPS + cAMP-inducer forskolin (Fsk, 20 µM), or LPS and LT, and
compared to untreated (untx) controls for IL-33 production. Neither LPS nor LT alone is sufficient to
induce IL-33 alone in BMMs, but the simultaneous exposure of BMMs with LPS + LT causes increased
IL-33 production, as detected in BMM lysates 8 h following exposure. LPS + Fsk is the positive control.
BMMs were stimulated with or without IL-33 (10 ng) for five days before ETEC H10407 infection at
an MOI of 1 in gentamicin protection assays for 1 h (B). IL-33 pretreatment promotes enhanced ETEC
H10407 survival within BMMs. Data in (A,B) are representative of three independent experiments
containing 3–4 replicates per experiment. Each dot represents a single well containing BMMs. Data
in (A) were analyzed via one-way ANOVA with Dunnett’s test for multiple comparisons, *, p < 0.05;
****, p < 0.0001 and data in (B) were analyzed via Student’s t-test, *, p < 0.05.

3.5. Iron Limitation Decreases Macrophage Response to ETEC

Iron is required for the efficient macrophage killing of enteric pathogens [38], and IL-33
has been previously associated with the differentiation of iron recycling macrophages [27].
We next investigated whether iron restriction alters the IL-33/IL-33R signaling of macrophages.
We initially observed that Raw 264.7 macrophages can respond to IL-33 stimulation, and IL-
33 enhances CD80, CD86, CD40, and IA/IE expression (Supplemental Figure S3). Therefore,
we treated macrophages with the siderophore deferoxamine mesylate and measured IL-33R
expression using flow cytometry. We show that deferoxamine significantly induces IL-33R
expression on macrophages (Figure 5A), suggesting that iron restriction promotes alterna-
tive activation. Since macrophages are the principal cells responsible for both iron recycling
and limiting free iron in response to infection [27], we wondered how iron limitation would
affect macrophage-mediated ETEC killing. Using gentamicin protection assays to assess in-
tracellular bacterial burdens, we tested whether 24 h deferoxamine pretreatment altered the
macrophage phagocytosis of ETEC H10407 in vitro. We found decreased intracellular ETEC
H10407 in the deferoxamine-treated macrophages as compared to control macrophages,
following 1 h gentamicin treatment, but extending gentamicin treatment to 4, 8, and 24 h sig-
nificantly decreases viable intracellular ETEC H10407 recovered from macrophage lysates
(Figure 5B). It is important to note that deferoxamine was removed from the cultures before
gentamicin was added, so the decreased ETEC H10407 burden in deferoxamine-treated
macrophages noted following 24 h gentamicin treatment likely reflects ETEC H10407 es-
cape from macrophages and gentamicin-mediated killing. In support, we demonstrate that
deferoxamine treatment significantly decreases the ability of macrophages to secrete TNFα
following 4, 8, and 24 h gentamicin treatment. (Figure 5C). This suggests that deferoxamine
treatment polarizes away from proinflammatory M1 phenotypes. We also demonstrate that
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the deferoxamine-treated macrophages have significantly less nitrite after 24 h gentamicin
treatment as compared to untreated but ETEC H10407-infected macrophages (Figure 5D).
This demonstrates that they are not able to promote oxidative responses that lead to bacte-
rial killing. Furthermore, deferoxamine-treated macrophages have increased LDH activity
(Figure 5E) indicative of increased damage. It is important to note that macrophage viability
was similar between deferoxamine-treated and untreated groups following 1 h gentamicin
treatment. This interpretation accounts for the differences in viability not appearing until
8 h post-infection over 9 h after the removal of deferoxamine from the culture.
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Figure 5. Iron restriction via deferoxamine induces IL−33R and promotes ETEC escape from
macrophages. Raw 264.7 macrophages (5 × 105 cells) were added to each well of a 24-well cell
culture plate and treated with deferoxamine mesylate (1 mg/mL) for 24 h before the addition of
ETEC H10407 at MOI = 1. Deferoxamine induces the expression of IL-33R on macrophages (A).
Macrophages were allowed to phagocytose ETEC H10407 for 1 h in DMEM containing 20% FBS.
Then, the wells were washed with PBS, and gentamicin-containing DMEM was added to kill non-
phagocytosed ETEC. Intracellular CFUs were recovered following 1, 4, 8, and 24 h by osmotically
lysing macrophages. Deferoxamine significantly suppresses macrophage-mediated ETEC H10407
phagocytosis (B). Deferoxamine significantly suppresses macrophage TNFα secretion 4, 8, and 24 h
post ETEC H10407 infection (C). Deferoxamine significantly suppresses the macrophage production
of nitrite 24 h post-ETEC H10407 infection (D). Deferoxamine significantly increases macrophage
LDU activity 8 and 24 h post-ETEC H10407 infection (E). Data have been aggregated from three
individual experiments containing 2–4 replicates per experiment. Data were analyzed via two-way
ANOVA with timepoints matched with Sidak’s test for multiple comparisons. *, p < 0.05; **, p < 0.01;
****, p < 0.0001.

4. Discussion

Children can be infected with similar strains of ETEC without developing long-term
protective immunity [10]. For LT-expressing ETEC infections, LT intoxication should boost
the immune response to co-delivered bacterial antigens and protect against subsequent
infection. However, long-term asymptomatic ETEC persistence has been documented
in patients without mechanisms that explain how ETEC subvert immune responses to
establish intestinal residence [2–4]. Here, we present a model in which macrophages may be
exploited by ETEC via alterations to phagocytosis and macrophage-mediated inflammation.
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Macrophages are a highly diverse subset of myeloid cells that patrol the intestinal lamina
propria, where they reside underneath a layer of epithelial cells and phagocytose ETEC
through projections between the epithelial cell junctions [14,15].

Our data show that ETEC H10407, a diarrheagenic and burdensome ETEC isolate, is
unique in that it has an elevated ability to be phagocytosed by macrophages. Currently, it
is unclear if this ability is a virulence determinant, but it suggests that other wild ETEC
isolates may also be preferentially phagocytosed by macrophages. However, we also
demonstrate that LT, but not ST, decreases the perceived ETEC burden, potentially by
inhibiting macrophage phagocytic activity. LT also polarizes cytokine responses and in-
duces the production of surface-bound activation markers in monocytes, macrophages [21],
dendritic cells [41], and mast cells [42]. Therefore, besides diarrhea, LT may suppress or
prevent the initiation of otherwise robust proinflammatory responses to ETEC.

We have previously demonstrated that both ST and LT enterotoxins induce IL-33
production in T84 colonic epithelial cells and in the small intestinal mucosa of intoxicated
mice [20,21]. Here, we also demonstrate that the combination of LPS and LT induces
IL-33 production in macrophages. Although classically considered a pro-type 2 polarizing
cytokine, IL-33 induces the production of reactive oxygen species in human monocytes
in vitro [26]. We speculate that enterotoxin-mediated IL-33/IL-33R signaling initiates path-
ways that lead processes to sequester and restore the mucosal iron balance following enteric
infection. Intestinal macrophages require constant replenishment by circulating mono-
cytes, which suggests that enterotoxin-mediated IL-33/IL-33R signaling could promote
the differentiation of incoming monocytes, potentially to promote iron recycling via red
pulp macrophage phenotypes [27]. IL-33 induces the production of mitochondrial reac-
tive oxygen species that leads to mitophagy and a shift from TNFα and CXCL-10 (e.g.,
M1 phenotype) production to CCL22 (e.g., M2 phenotype) production in THP1 cells [26].
Furthermore, IL-33 promotes anemia during chronic inflammation by inhibiting the differ-
entiation of erythroid progenitors [43]. Ultimately, ETEC must compete with other microbes
and the host for nutrient acquisition, and these data suggest that the prevalent childhood
anemia in low- and middle-income countries [7] may also be an emerging co-morbidity of
ETEC and other enteropathogens.

Iron restriction has also been found to reduce the inflammatory response of macrophages
to LPS exposure [28,44], and we demonstrate that deferoxamine treatment allows ETEC
to escape macrophages. The blockade of Na+/H+ exchangers (e.g., NHE3) abolishes
deferoxamine-mediated IL-8 production [45], and it remains plausible that LT could sup-
press inflammation by mediating a blockade of intestinal NHE3. Furthermore, the IL-33
stimulation of macrophages results in mitochondrial uncoupling and an increased pro-
duction of TCA metabolites itaconate, succinate, and fumarate [19], which are known to
increase the virulence of enteric pathogens [46]. Recent studies on V. cholerae demonstrated
that cholera toxin (CT), which is highly homologous to LT, provides CT-expressing Vibrios a
competitive advantage over non-CT-expressing Vibrios for iron and long-chained fatty acid
acquisition [47]. While we did not see direct effects of ST on macrophage phagocytosis, we
have previously observed that ST causes a depletion of mucosal iron [48], suggesting that
the host may carefully control iron availability following ETEC pathogenesis. Furthermore,
ST binds iron under anaerobic conditions [29], which suggests that both enterotoxins are
involved in pathways that implicate iron as a virulence factor for ETEC.

It may not be surprising that the outcomes of enterotoxin exposure (e.g., IL-33 pro-
duction and subsequent IL-33/IL-33R signaling) seek to enhance the host’s ability to
withhold iron resources that ultimately prevent ETEC from fully thriving in the intoxi-
cated mucosa. In support, IL-33-stimulated BMMs produce significantly more lipocalin-2
(Lcn2) transcripts, which is an innate protein that obstructs the bacteria’s ability to acquire
iron-containing siderophores and limits bacterial growth [49].

It is important to further our understanding of macrophages and other innate immune
cells during ETEC infection. Here, we provide evidence that ETEC may use their enterotox-
ins to directly (via cAMP) and indirectly (via IL-33 and iron depletion) promote alternatively
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activated macrophages. LT provides ETEC with a colonization advantage [50,51], but it
also reprograms the mucosal immune response. Our data suggest that LT decreases the
perceived ETEC dose, suppresses deleterious inflammatory processes, and promotes ETEC
persistence. This suggests that LT may provide an ETEC with a temporary niche that
enables their trafficking among non-intestinal tissues [11] where they eventually emerge
from to cause repeated symptomatic or asymptomatic infection.

Limitations

This study provides evidence that ETEC can evade macrophage-mediated killing. This
study is limited by using two different macrophage models in vitro. This study is limited
by the lack of in vivo animal data.

5. Conclusions

Although in vitro co-culture experiments have shown that macrophages can project
through a layer of intestinal epithelial cells to phagocytose ETEC, little is known about
the role of macrophages in ETEC infection. To address this gap in understanding, we first
assessed whether ETEC interacts with macrophages in a manner distinct from other E. coli
pathotypes. Macrophages infected with ETEC H10407 demonstrate a significantly higher
burden of intracellular bacteria than those infected with other E. coli pathovars. Using
gentamicin protection assays, we show that LT intoxication, alone or in combination with
ST, reduced macrophage-mediated ETEC phagocytosis. We demonstrate that ETEC may
employ LT to lower the perceived ETEC dose to prevent the initiation of inflammatory
responses to ETEC. This then allows ETEC to survive within macrophages for some time.
The combination of LPS and LT induces IL-33 production in macrophages, and macrophages
treated with IL-33 allow increased ETEC persistence. Given the known relationship of
macrophages and iron, we show that iron chelation with deferoxamine allows ETEC to
escape macrophages. This suggests that macrophages may be able to transport ETEC to
different tissues and lead to increased asymptomatic ETEC carriage.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/microorganisms11082121/s1, Figure S1: LT intoxication decreases
macrophage-mediated phagocytosis; Figure S2: Kinetics of ETEC 214-4; Figure S3: IL-33 stimulation
significantly increases the expression of activation markers.
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