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Abstract: Background: The global pandemic of COVID-19 is caused by the rapidly evolving severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The clinical presentation of SARS-CoV-2
Omicron variant infection varies from asymptomatic to severe disease with diverse symptoms. How-
ever, the underlying mechanisms responsible for these symptoms remain incompletely understood.
Methods: Transcriptome datasets from peripheral blood mononuclear cells (PBMCs) of COVID-19 pa-
tients infected with the Omicron variant and healthy volunteers were obtained from public databases.
A comprehensive bioinformatics analysis was performed to identify hub genes associated with the
Omicron variant. Hub genes were validated using quantitative RT-qPCR and clinical data. DSigDB
database predicted potential therapeutic agents. Results: Seven hub genes (IFI44, IFI44L, MX1, OAS3,
USP18, IFI27, and ISG15) were potential biomarkers for Omicron infection’s symptomatic diagnosis
and treatment. Type I interferon-related hub genes regulated Omicron-induced symptoms, which is
supported by independent datasets and RT-qPCR validation. Immune cell analysis showed elevated
monocytes and reduced lymphocytes in COVID-19 patients, which is consistent with retrospective
clinical data. Additionally, ten potential therapeutic agents were screened for COVID-19 treatment,
targeting the hub genes. Conclusions: This study provides insights into the mechanisms underlying
type I interferon-related pathways in the development and recovery of COVID-19 symptoms during
Omicron infection. Seven hub genes were identified as promising biological biomarkers for diagnos-
ing and treating Omicron infection. The identified biomarkers and potential therapeutic agent offer
valuable implications for Omicron’s clinical manifestations and treatment strategies.

Keywords: COVID-19; SARS-CoV-2; Omicron; biomarker; type I interferon

1. Introduction

The COVID-19 pandemic, caused by the severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2), has presented an unparalleled global public health challenge.
SARS-CoV-2 infection leads to a spectrum of clinical outcomes, ranging from asymptomatic
cases to severe illness characterized by symptoms such as high fever, cough, fatigue,
and dyspnea, ultimately leading to respiratory failure [1,2]. Since 2019, there have been
more than 755 million cumulative cases of COVID-19 globally and more than 6.83 million
deaths [3]. No specific antiviral therapy for the pandemic COVID-19 exists yet, particularly
for the milder-seeming Omicron variant. Numerous vaccines are under development, and
several previously FDA-approved drugs have been repurposed to slow the progression of
COVID-19 [4].
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Recent real-world studies indicate that the Omicron variant, which is currently pre-
dominant, may exhibit milder clinical manifestations compared to earlier variants, with
lower hospitalization rates and shorter lengths of stay observed in certain regions [5–8].
The formation of multinucleated syncytia, reflecting cell–cell fusion during viral infection,
represents a crucial pathological step in SARS-CoV-2 infection [9,10]. In vitro, assays have
demonstrated the reduced formation of multinucleated syncytia by the Omicron variant
compared to previous variants, along with higher cell viability [11–13]. This evidence
supports the notion that the Omicron variant manifests with reduced severity compared to
its predecessors. However, it is crucial to recognize that thousands of deaths continue to
occur worldwide, particularly in developing countries where underreporting is common
due to factors like limited testing capacity [14]. Furthermore, the highly transmissible
Omicron variant continues to strain healthcare systems significantly [15,16]. Therefore,
gaining a comprehensive understanding of the underlying pathogenesis of the SARS-CoV-2
Omicron variant and its association with symptomatic presentation remains a paramount
research priority.

Type I interferons (IFN-I), including IFN-α and IFN-β, play a pivotal role in the
pathogenesis of COVID-19, acting as crucial antiviral factors [17]. Upon activation of the
JAK-STAT pathway by the IFN-I receptor complex, the inhibitory effect of type I interferon
on SARS-CoV replication suggests its potential for viral clearance [18]. The timing of
the IFN-I response varies, with an early response observed in mild cases and a delayed
response in severe cases of COVID-19 [19,20]. Single-cell RNA analysis of peripheral blood
mononuclear cells from severe COVID-19 patients has revealed up-regulation of IFN-I and
other inflammatory cytokines [21]. Thus, the IFN-I pathway may contribute to symptom
development, and early administration of IFN-I could potentially enhance viral clearance.
A meta-analysis has supported the potential of JAK inhibitor baricitinib as a candidate
drug against COVID-19 [22]. The current research on COVID-19 has extensively covered
various variants’ clinical manifestations and transmission dynamics, including the Omicron
strain [23,24]. However, despite the prevalence of symptomatic infections caused by the
Omicron variant, there still exists a gap in understanding the specific molecular mechanisms
driving symptom development and potential therapeutic interventions. Unraveling this
association could unveil potential therapeutic targets for Omicron-dominant COVID-19
cases [25–27].

Addressing existing gaps in the literature, this study employed various methods
to investigate the uniqueness of COVID-19 infection with the Omicron variant. These
methods included the analysis of gene expression datasets [28], functional annotation using
bioinformatics tools, pathway analysis, and construction of protein–protein interaction
networks [29–32]. The obtained results were validated using clinical samples. By applying
a bioinformatics approach, this study is the first to identify differences in hub genes and
pathways associated with COVID-19 symptoms. Given the heterogeneity of COVID-19
symptoms and the ongoing uncertainty regarding its pathogenesis, our findings hold
significant value in contributing to the diagnosis and prognosis of COVID-19.

2. Materials and Methods
2.1. Data Collection and Differential Expression Analysis of Genes

Microarray gene expression datasets were acquired from the GEO database (accessi-
ble at https://www.ncbi.nlm.nih.gov/gds, accessed on 10 January 2023) for COVID-19
patients and their matched controls. The search in the GEO database utilized the keywords
“COVID-19”, “symptoms”, “SARS-CoV-2”, and “Omicron”. The selection of the COVID-19
microarray dataset followed specific criteria, including human PBMC samples, mRNA gene
expression profiles, a minimum of three samples per group, and array-based expression
profiling as the study type. Three datasets, namely GSE201530, GSE179627, and GSE167930,
were identified and included in this study.

The GSE201530 dataset, consisting of 39 COVID-19 patients infected with the SARS-
CoV-2 Omicron variant and 8 healthy controls, was utilized for the analysis and identifi-
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cation of hub genes. To validate the diagnostic efficacy of the hub genes, the GSE179627
dataset was used as an independent validation set. Furthermore, the GSE167930 dataset,
comprising 21 healthy controls, 7 asymptomatic infected patients, 13 symptomatic infected
patients, and 15 recovering patients, was utilized to identify central genes associated with
COVID-19 symptoms. A schematic representation of the study design can be found in
Figure 1.
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Figure 1. A visual representation of the study design.

To ensure the quality of the dataset samples, we utilized the R package “arrayQuali-
tyMetrics”. Data standardization was performed using the “affy” or “limma” packages,
renowned for their application in linear models for microarray data. The identification
of statistically significant differentially expressed genes (DEGs) between COVID-19 and
control samples in each dataset was performed using the “limma (version 3.40.6)” package
in R. DEGs with adjusted p-values < 0.05 and |log2 Fold change (logFC)| > 2 were con-
sidered statistically significant. To visualize the results, volcanic and thermal maps were
generated using the R packages “ggplot2 (version 3.3.6)” and “heatmap”, respectively.

2.2. Functional Enrichment Analysis

Gene ontology (GO) is widely used for gene annotation, including molecular functions
(MF), biological pathways (BP), and cellular components (CC). Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analysis provides valuable insights into gene
functions and high-level genomic functional information. To gain a comprehensive under-
standing of the role of target genes, we utilized the “clusterProfiler (version 4.4.4)” package
in R for analyzing GO functions and performing KEGG pathway enrichment analysis. The
results of the enrichment analysis were visualized using the “ggplot2 (version 3.3.6)” pack-
age. Visualizations such as string and bubble plots were generated to depict the joint logFC
enrichment analysis of GO and KEGG, utilizing the “ggplot2 (version 3.3.6)” package.

2.3. Protein–Protein Interaction (PPI) Analysis of Differentially Expressed Genes and Identification
of Hub Genes

The protein–protein interaction (PPI) network of differentially expressed genes was
examined using the STRING database (accessible at https://string-db.org/, accessed on

https://string-db.org/
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5 March 2023). Hub genes, which exert a significant influence on other genes within
the network, were identified based on their centrality scores. The analysis data from
STRING were imported into Cytoscape software (version 3.8.1). We designated the top
10 scoring genes as hub genes using the MCC algorithm from Cytoscape’s cytoHubba
plugin. Additionally, the co-expression network of DEGs was analyzed using Cytoscape’s
MCODE plugin, and the most significant clusters containing hub genes were visualized.
Further analysis involved a Venn diagram to determine the intersection of hub genes
obtained from these two methods, resulting in the final set of identified hub genes.

2.4. Construction of the miRNA-Target Regulatory Network

To predict the miRNAs and TFs associated with the hub genes, we utilized the miRNet
database (accessible at https://www.miRNet.ca/, accessed on 22 Apirl 2023). Subsequently,
we constructed and visualized regulatory networks involving mRNA–miRNA and mRNA–
TF interactions using Cytoscape software (version 3.8.1).

2.5. Validation of the Diagnostic Value of Hub Genes

To assess the sensitivity and specificity of the target genes, we conducted ROC curve
analysis using HiPlot software (version 0.1.0). Multigene ROC analysis was performed
by calculating the predicted probability of multiple genes contributing to the results in
each sample based on a binary Logit model. This analysis was conducted using SPSS 25.0
software. The results were quantified as the area under the ROC curve (AUC), considering
genes with an AUC > 0.6 as diagnostically significant.

2.6. Immune Infiltration Analysis

The proportion of 22 immune cell types in the samples was estimated using “CIBER-
SORTx” (accessible at https://cibersortx.stanford.edu/, accessed on 20 May 2023). CIBER-
SORTx is an analytical tool that utilizes gene expression data to provide mixed estimates of
the abundance of different immune cell types within a cell population.

2.7. Retrospective Analysis of Blood Counts in COVID-19 Patients

Demographic and clinical information of COVID-19 patients, including gender, age,
and symptoms, were collected using an electronic case system. Each isolate was cultured
and verified. Continuous variables were presented as median (interquartile range [IQR]).
Differences in continuous variables between two groups were assessed using the Mann–
Whitney Wilcoxon rank-sum test. A p-value < 0.05 was considered statistically significant.

2.8. Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) Verification

To validate the findings obtained from the bioinformatics analysis, peripheral blood
mononuclear cell (PBMC) samples were collected from 20 COVID-19 patients infected with
the Omicron variant and 20 healthy individuals as controls. Total RNA was extracted using
TRIzol reagent (Invitrogen, Carlsbad, CA, USA), and approximately 2 µg of total RNA was
reverse transcribed using the iScript cDNA Synthesis Kit (Bio-Rad, Hercules, CA, USA).
RT-qPCR was performed on a CFX Connect Real-Time PCR detection system (Bio-Rad)
using ChamQ SYBR Color qPCR Master Mix (Vazyme, Nanjing, China). The relative mRNA
expression was calculated using the 2−∆∆Ct method. The primer sequences used in the
experiment are provided in Table 1. Statistical analysis was performed using one-way
analysis of variance with SPSS 25.0 software (IBM, Armonk, NY, USA), and statistical
significance was defined as a p-value < 0.05.

https://www.miRNet.ca/
https://cibersortx.stanford.edu/
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Table 1. Primer sequences used for RT-qPCR.

Gene Sequence (5′ -> 3′) Length Tm Location
IFI27 Forward Primer TGCTCTCACCTCATCAGCAGT 21 62.9 12–32

Reverse Primer CACAACTCCTCCAATCACAACT 22 60.2 126–105
IFI44 Forward Primer ATGGCAGTGACAACTCGTTTG 21 61.1 1–21

Reverse Primer TCCTGGTAACTCTCTTCTGCATA 23 60 212–190
IFI44L Forward Primer AGCCGTCAGGGATGTACTATAAC 23 61 133–155

Reverse Primer AGGGAATCATTTGGCTCTGTAGA 23 60.8 248–226
ISG15 Forward Primer CGCAGATCACCCAGAAGATCG 21 62.6 89–109

Reverse Primer TTCGTCGCATTTGTCCACCA 20 62.4 240–221
MX1 Forward Primer GTTTCCGAAGTGGACATCGCA 21 62.9 7–27

Reverse Primer CTGCACAGGTTGTTCTCAGC 20 61.2 128–109
OAS3 Forward Primer GAAGGAGTTCGTAGAGAAGGCG 22 62.1 66–87

Reverse Primer CCCTTGACAGTTTTCAGCACC 21 61.4 179–159
USP18 Forward Primer CCTGAGGCAAATCTGTCAGTC 21 60.4 21–41

Reverse Primer CGAACACCTGAATCAAGGAGTTA 23 60 220–198
GAPDH Forward Primer GGAGCGAGATCCCTCCAAAAT 21 61.6 108–128

Reverse Primer GGCTGTTGTCATACTTCTCATGG 23 60.9 304–282

2.9. Prediction of Potential Therapeutic Agents

The DSigDB database (available at http://tanlab.ucdenver.edu/DSigDB, accessed
on 30 May 2023) was utilized to predict potential therapeutic agents for COVID-19 based
on protein–drug interaction data. The thresholds set for selection were FDR < 0.05 and
composite score > 5000.

2.10. Statistical Analysis

Statistical analyses were performed using GraphPad Prism 9 and R software (ver-
sion 4.2.2). The data were presented as mean ± standard deviation, and a comparison
between groups was conducted using an unpaired Student’s t-test. A p-value less than 0.05
was considered statistically significant.

3. Results
3.1. Screening and Functional Enrichment Analysis of Differentially Expressed Genes in PBMC of
Omicron Infection

The differential gene analysis of the GSE201530 dataset was conducted using the
“limma” package in R, resulting in the identification of 73 differentially expressed genes
(33 up-regulated and 40 down-regulated), as shown in Figure 2A (Supplementary Table S1).
The screening criteria applied were |log2(FC)| > 2 and adj. p-value < 0.05.

To evaluate the reproducibility of the data within the group, UMAP analysis was
performed, demonstrating satisfactory reproducibility, as depicted in Figure 2B. Volcano
plots illustrating the differentially expressed genes were generated using the “ggplot2
[3.3.6]” package in R, with the parameters Log2FC > 2 and adj. p-value < 0.05, as shown in
Figure 2C.

GO and KEGG enrichment analyses were conducted on the differentially expressed
genes (Supplementary Table S2). The results revealed significant GO enrichments related
to virus response, defense response to symbiont, defense response to virus, response to
type I interferon, regulation of viral life cycle, cellular response to type I interferon, and the
type I interferon signaling pathway. In the KEGG enrichment analysis, the differentially
expressed genes were primarily associated with diseases such as COVID-19, Influenza A,
and Chagas disease, as depicted in Figure 2E–H.

http://tanlab.ucdenver.edu/DSigDB
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Figure 2. Comprehensive analysis of gene expression and functional annotation in COVID-19.
volcano plot (A); GSE201530UMAP plot (B); heat map of DEGs (C); GO/KEGG categories and
pathways (D,E); chord diagram describing the relationship between GO/KEGG terms of genes and
biological processes (F–H).

3.2. Gene Screening and Functional Enrichment Analysis of PBMC Hub Genes in
Omicron Infection

The differentially expressed genes obtained earlier were used to construct a protein-
protein interaction network using the STRING database (accessible at https://string-db.
org/, accessed on 5 March 2023) (Figure 3A). The data from STRING were imported into
Cytoscape software (version 3.8.1), and the MCODE plugin was utilized to analyze the
co-expression network of the differentially expressed genes. The visualization of the most
significant clusters revealed the hub genes: IFI44L, RSAD2, IFI27, MX1, OAS1, LY6E,

https://string-db.org/
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IFIT1, OAS3, EPSTI1, IFITM3, CMPK2, IFI44, ISG15, and USP18 (Figure 3B). Furthermore,
the cytohubba plugin in Cytoscape, employing the MCC algorithm, identified the top
10 scoring genes as hub genes: OAS1, IFI44, IFI44L, MX1, OAS3, USP18, IFIT1, RSAD2,
IFI27, and ISG15 (Figure 3C). VENN plots confirmed that these 10 genes exhibited common
differential expression in the gene set, thus confirming their status as the final identified
hub genes: OAS1, IFI44, IFI44L, MX1, OAS3, USP18, IFIT1, RSAD2, IFI27, and ISG15
(Figure 3D). The visualization of the hub genes was presented in a volcano plot generated
using the “ggplot2” package in R software (version 4.2.2) (Figure 3E).
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Figure 3. Identification and validation of hub genes. STRING (A); MCODE hub genes (B); cytohubba-
MCC hub genes (C); VENN of MCODE hub genes and cytohubba-MCC hub genes (D); heatmap of
10 hub genes (E); GO/KEGG categories and pathways (F–I).

Following the hub genes analysis, GO and KEGG enrichment analyses were per-
formed (Supplementary Table S3). The results demonstrated significant enrichment in
GO terms associated with the response to virus, response to type I interferon, cellular
response to type I interferon, type I interferon signaling pathway, and regulation of type I
interferon-mediated signaling. The KEGG analysis revealed the involvement of multiple
viral infectious diseases, including COVID-19 (Figure 3F–I).

3.3. Confirmation of Hub Genes Expression and Diagnostic Value in GSE179627

GSE179627 was utilized to verify the expression levels of the selected target genes.
The results demonstrated consistent expression patterns between COVID-19 patients with
Omicron infection and healthy individuals for the 10 hub genes (OAS1, IFI44, IFI44L, MX1,
OAS3, USP18, IFIT1, RSAD2, IFI27, and ISG15) (Figure 4A–J).

ROC curves were generated using the data from COVID-19 patients with Omicron
infection and healthy individuals to assess the diagnostic value of these 10 genes. The
results indicated that these genes hold significant diagnostic value for COVID-19 patients.
The AUC values were as follows: OAS1, 0.8352 (95% CI: 0.6697 to 1.000); IFI44, 0.8409 (95%
CI: 0.6974 to 0.9844); IFI44L, 0.8561 (95% CI: 0.7306 to 0.9815); MX1, 0.9091 (95% CI: 0.8048
to 1.000); OAS3, 0.8371 (95% CI: 0.6585 to 1.000); USP18, 0.9375 (95% CI: 0.8576 to 1.000);
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IFIT1, 0.7424 (95% CI: 0.5451 to 0.9397); RSAD2, 0.8864 (95% CI: 0.7744 to 0.9984); IFI27,
0.9867 (95% CI: 0.9591 to 1.000); and ISG15, 0.8504 (95% CI: 0.6896 to 1.000) (Figure 4K–T).
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3.4. Investigation of the Relationship between Hub Genes and Omicron Infection

To examine the impact of hub genes on the symptoms manifested after SARS-CoV-2
infection in humans, we utilized GSE167930, which included healthy individuals, asymp-
tomatic infected individuals, symptomatic infected individuals, and recovering patients.
The analysis revealed no statistically significant difference in the expression of the 10 hub
genes between asymptomatic infected individuals and healthy individuals. However, a no-
table statistically significant difference or a trend towards elevated expression was observed
for all 10 hub genes in symptomatic infected individuals compared to both healthy and
asymptomatic infected individuals (although the difference was not statistically significant
in the latter case). Importantly, during the recovery period of COVID-19, 7 out of the 10 hub
genes (IFI44, IFI44L, MX1, OAS3, USP18, IFI27, and ISG15) exhibited a significant decrease,
reaching levels comparable to those of healthy individuals (Figure 5A–J).

Furthermore, we conducted GO and KEGG enrichment analyses for the seven hub
genes related to COVID-19 symptoms (Supplementary Table S4). The results indicated that
the most significant GO enrichment was observed for multiple type I interferon-related
categories, including response to virus, response to type I interferon, cellular response to
type I interferon, and type I interferon signaling pathway. The KEGG analysis demonstrated
the involvement of various viral infectious diseases, including COVID-19. Based on the
identified DEGs and the enrichment analyses of the hub genes, the results highlighted the
involvement of seven potential biomarkers in abnormal signaling pathways associated
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with COVID-19 symptom production and recovery, primarily related to type I interferon
signaling pathways (Figure 5K,L).
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3.5. Validation of Hub Genes Expression by RT-qPCR

To validate the findings derived from the bioinformatics analysis, PBMC samples were
collected from 20 COVID-19 patients infected with the Omicron variant and 20 healthy
individuals as controls. The expression levels of the hub genes, namely IFI44, IFI44L, MX1,
OAS3, USP18, IFI27, and ISG15, were examined using RT-qPCR. The results revealed a
significant upregulation of these genes in the COVID-19 group compared to the control
group, which aligns with the patterns observed in the microarray analysis (Figure 6). This
validation provides strong support for the reliability of the bioinformatics analysis and
reinforces the evidence suggesting the dysregulation of these hub genes in COVID-19.
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3.6. Construction of mRNA-miRNA and mRNA-TF Regulatory Networks

The miRNet tool was utilized to integrate the results of the seven COVID-19 symptom-
related hub genes with the miRNA interaction network, resulting in the identification of
150 miRNAs and 305 mRNA-miRNA pairs. Subsequently, Cytoscape was employed to
construct co-expression networks of mRNA and miRNAs (Figure 7A). Notably, there were
63 miRNAs found to regulate IFI27 (e.g., hsa-mir-146a-5p), 36 miRNAs regulating IFI44
(e.g., hsa-mir-26b-5p), 79 miRNAs regulating IFI44L (e.g., hsa-mir-124-3p), 29 miRNAs
regulating ISG15 (e.g., hsa-mir-1-3p), 46 miRNAs regulating MX1 (e.g., hsa-mir-204-5p),
57 miRNAs regulating OAS3 (e.g., hsa-mir-143-3p), and 23 miRNAs regulating USP18 (e.g.,
hsa-mir-26b-5p) (Supplementary Table S5).

Furthermore, the results of the seven COVID-19 symptom-related hub genes were
integrated with the transcription factor (TF) interaction network to identify 89 TFs and
179 mRNA-TF pairs. Cytoscape was then employed to construct co-expression networks
of mRNA and TFs. The analysis revealed that 3 TFs were involved in regulating IFI27 (e.g.,
NR2C2), 36 miRNAs regulated IFI44 (e.g., ZNF143) (Figure 7B), 3 TFs regulated IFI44L (e.g.,
EED), 80 TFs regulated ISG15 (e.g., ZKSCAN1), 1 TF regulated MX1 (WRNIP1), 4 TFs regulated
OAS3 (e.g., TRIM22), and 9 TFs regulated USP18 (e.g., MBD1) (Supplementary Table S6).
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Figure 7. mRNA-miRNA and mRNA-TF interaction networks in COVID-19 symptom-related hub
genes. mRNA and miRNAs co-expression network. The network depicts the interaction between
the seven hub genes (IFI27, IFI44, IFI44L, ISG15, MX1, OAS3, and USP18) and their corresponding
miRNAs. Various miRNAs, such as hsa-mir-146a-5p and hsa-mir-26b-5p, regulate the expression
of these hub genes (A); mRNA and TF co-expression network. The network shows the interaction
between the seven hub genes and transcription factors (TFs). TFs, including NR2C2 and ZNF143, are
involved in regulating the expression of these hub genes (B).

3.7. Analysis of PMBC Immune Infiltration in Omicron Infection

Based on the GSE201530 dataset, “CIBERSORTx” (https://cibersortx.stanford.edu/,
accessed on 20 May 2023) compared the different immune infiltration patterns of COVID-19
patients and normal controls. The results showed that the proportion of monocytes, T
cells CD4 memory activated, and Mast cells resting was significantly increased in COVID-
19 patients with Omicron infection, while T cells CD4 memory resting was significantly
decreased (Figure 8A). Cell types with an expression of 0 that were not present in the
sample were further excluded. The PBMC-associated immune cells were selected and the
results of correlation analysis between immune cells are shown in Figure 8B.

https://cibersortx.stanford.edu/
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3.8. Validation of Retrospective Blood Analysis and Immune Infiltration Results in
Omicron Infection

Neutrophil (NEU%), monocyte (MONO% and MONO), mean corpuscular volume
(MCV), mean platelet volume (MPV), platelet large cell ratio (PLCR) and C-reactive protein
(CRP) were significantly increased in COVID-19 patients than that in healthy controls
(p < 0.05) (Table 2). Lymphocytes (LYM and LYM%), eosinophils (EOS and EOS%), ba-
sophils (BASO and BASO%), red blood cell (RBC), hemoglobin (HGB), hematocrit (HCT),
mean corpuscular hemoglobin concentration (MCHC), blood platelet (PLT), platelet dis-
tribution width (PDW), plateletcrit (PCT) and platelet large cell ratio (PLCR) were lower
in COVID-19 patients (p < 0.05). The elevated monocytes in the COVID-19 group were
consistent with the results of the immune infiltration fraction in clinical blood tests.
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Table 2. Basic information of healthy controls and COVID-19 patients.

Healthy Controls COVID-19 p

N 20 20
Age 47.5, (32.75, 60.25) 49.45, (29.5, 69) 0.736

WBC, 109/L 5.98, (5.3, 6.75) 5.53, (4.15, 7.05) 0.304
NEU% 57.64, (53.08, 62.3) 64.29, (56.83, 73.28) 0.012
LYM% 32.08, (27.58, 37.4) 22.08, (13.05, 32.1) 0.001

MONO% 6.86, (6.23, 7.6) 11.93, (8.73, 14.63) <0.001
EOS% 2.86, (1.53, 4) 1.22, (0.23, 1.38) <0.001

BASO% 0.71, (0.5, 0.98) 0.49, (0.33, 0.6) 0.010
NEU, 109/L 3.56, (3.05, 3.7) 3.64, (2.6, 4.67) 0.790
LYM, 109/L 2.06, (1.65, 2.48) 1.16, (0.69, 1.54) <0.001

MONO, 109/L 0.44, (0.33, 0.5) 0.65, (0.42, 0.87) 0.006
EOS, 109/L 0.18, (0.15, 0.22) 0.06, (0.01, 0.1) <0.001

BASO, 109/L 0.09, (0.06, 0.12) 0.03, (0.02, 0.03) <0.001
RBC, 1012/L 4.78, (4.6, 4.9) 4.38, (3.98, 4.67) 0.001

HGB, g/L 139.35, (124.25, 149) 125.35, (118.25, 136.75) 0.012
HCT% 0.42, (0.4, 0.44) 0.4, (0.37, 0.43) 0.025

MCV, fL 87.3, (85.23, 90.68) 91.46, (89.85, 94.9) <0.001
MCH, Pg 29.93, (28.03, 31.58) 29.4, (28.7, 31) 0.838

MCHC, g/L 341.55, (332.25, 349.75) 321.08, (315.25, 327) <0.001
RDW-SD, fL 42.55, (39, 45.75) 43.65, (41.1, 46) 0.293

RDW-CV 12.92, (12.53, 13.35) 13.16, (12.23, 13.68) 0.621
PLT, 109/L 244.2, (132, 358.75) 171.8, (123.25, 219.25) 0.010

MPV, fL 8.56, (7.6, 9.5) 11.25, (10, 12.6) <0.001
PDW 20.6, (18, 24.25) 14.12, (10.58, 16.8) <0.001
PCT 0.26, (0.2, 0.32) 0.19, (0.15, 0.22) <0.001

P-LCR 24.25, (16.25, 29) 34.57, (22.93, 46.13) 0.006
CRP 0.27(0.1, 0.4) 17.1, (1.97, 14.16) <0.001

WBC: White blood cell; NEU: Neutrophil; LYM: Lymphocyte; MONO: Monocyte; BASO: Basophil; EOS:
Eosinophils; NRBC: Nucleated red blood cell; HGB: Hemoglobin; HCT: Hematocrit; MCV: Erythrocyte mean
corpuscular volume; MCH: Mean corpuscular hemoglobin; MCHC: Mean corpuscular hemoglobin concentration;
RDW-SD: Red blood cell distribution width-standard deviation; RDW-CV: Red blood cell distribution width-
coefficient of variance; PLT: Blood platelet; MPV: Mean platelet volume; PCT: Plateletcrit; PLCR: Platelet large cell
ratio; CRP: C-reactive protein; PDW: Platelet distribution width.

3.9. Target Drug Prediction

The DSigDB database was used to predict potential target drugs associated with seve
target hub genes that may treat Omicron infection by modulating the hub genes. A total
of 123 target drugs were finally predicted; the composite scores and corresponding target
genes are listed in Supplementary Table S7. The top 10 predicted target drugs according to
the composite scores are shown in Figure 9 The top 10 predicted targets according to the
composite score are shown in Figure 9. Among them, acetohexamide is expected to be a
potential drug for the treatment of Omicron infection.
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4. Discussion

The emergence of novel coronaviruses and their potential global impact on public
health have become a major concern in recent years [3]. With the ongoing challenges posed
by the SARS-CoV-2 Omicron variant, it is crucial to identify potential biomarkers and
explore associated mechanisms using bioinformatics approaches to enhance the diagnosis
and treatment of this variant.

In this study, we analyzed the PBMC microarray dataset (GSE201530) from the GEO
database to identify differentially expressed genes (DEGs) associated with SARS-CoV-2
Omicron variant infection. Through this analysis, we identified 10 hub genes through the
construction of a protein–protein interaction (PPI) network. These findings were validated
using an independent PBMC dataset of COVID-19 patients (GSE179627), which consistently
demonstrated the expected expression patterns of these 10 genes and their diagnostic
value. Additionally, we analyzed a dataset comprising healthy individuals, asymptomatic
infected individuals, symptomatic infected individuals, and recovered infected individuals
(GSE167930) to identify seven target hub genes (IFI44, IFI44L, MX1, OAS3, USP18, IFI27,
and ISG15) that showed correlations with symptom onset and recovery from COVID-19.
Further GO and KEGG pathway analyses at different stages of genetic screening revealed
significant enrichment in pathways related to virus response, defense response to virus,
response to type I interferon, cellular response to type I interferon, and the type I interferon
signaling pathway. Moreover, we analyzed the miRNAs corresponding to these seven
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target hub genes and constructed interaction networks with transcription factors (TFs)
using the miRNet tool.

In the analysis of the GSE201530 dataset with the “CIBERSORTx” tool, we observed
a significant increase in the proportion of monocytes, activated memory CD4 T cells and
resting mast cells in COVID-19 patients. Conversely, we observed a notable decrease in
the proportion of resting memory T cells CD4. Furthermore, we identified a correlation
between elevated monocyte levels and decreased proportions of resting memory T cells
CD4. To support these findings, we reviewed blood counts recorded in hospital medical
records of symptomatic COVID-19 patients with Omicron infection, which demonstrated
that abnormally elevated monocyte ratios and higher monocyte counts were associated
with an increased risk of developing symptomatic COVID-19 compared to normal subjects,
aligning with the results obtained from immune infiltration analysis.

Moreover, we conducted RT-qPCR to validate the up-regulated expression levels of
these seven genes in PBMCs of COVID-19 patients infected with the Omicron variant.
The consistent up-regulation of these genes supports their potential crucial role in the
progression of COVID-19. The expression trends of many key DEGs found in this study
align with previously reported results, further validating the reliability of the database and
our data analysis.

Among the seven target hub genes, MX1, OAS3, USP18, IFI27, and ISG15 are char-
acterized as type I interferon-related genes [33]. MX1 acts as an effector protein of the
IFN system and plays a crucial role in responding to SARS-CoV-2 infection, with its ex-
pression significantly increasing with viral load escalation [34]. Importantly, MX1 directly
impacts the viral ribonucleoprotein complex, and its antiviral function relies on the es-
sentiality of its gTPase activity [35]. The interferon-induced antiviral enzyme known as
2′-5′-oligoadenylate synthase (OAS) encompasses OAS1, OAS2, OAS3, and OASL [36].
OAS3 serves as a key player in antiviral action and signal transduction [37]. Additionally,
IFI27 (also referred to as ISG12 or p27), an interferon α-inducible gene (and to a lesser
extent, interferon γ), exhibits nuclear membrane localization and contributes to diverse
biological processes [37]. Notably, a cohort study demonstrated that IFI27 expression was
observed in the blood of COVID-19 patients and positively correlated with elevated viral
load [38].

IFI44L, an IFN-inducible protein with similarities to IFN-I, is induced by various
viruses [39]. As an IFN-I negative regulator, IFI44L mitigates antimicrobial inflammatory
factors by negatively regulating the NF-κB pathway and inhibiting STAT1 activation,
thereby inhibiting IFN-I and ISG production [40]. Acting as a feedback regulator of the
IFN response, IFI44L potentially promotes viral replication by modulating the innate
immune response following viral infection [41]. Interestingly, our study reveals a significant
overlap between these seven target hub genes and the results obtained from bioinformatics
analyses of diseases such as dengue fever [42]. Previous studies have demonstrated
shared pathophysiological pathways between dengue fever and COVID-19, including
fever, plasma leakage, low platelet count, and coagulation disorders [43]. Therefore, further
discussions are warranted to explore potential therapeutic approaches to symptomatic
COVID-19 by referencing strategies employed against dengue fever.

The initial defense against viral infection is the interferon I (IFN-I) response, which
induces the activation of hundreds of interferon-stimulated genes (ISGs) through the
JAK/STAT signaling pathway [44]. Severe lung inflammation leading to respiratory failure
in SARS coronavirus type 2-infected patients is primarily attributed to cytokine dysregula-
tion. Severe cases of COVID-19 exhibit impaired production of both IFN-I and interferon
II (IFN-II) and downregulation of ISGs [45,46]. The hub genes identified in this study
have the potential to counteract COVID-19 development by modulating interferon ac-
tivity. To identify potential compounds, we conducted a screening process based on the
DSigDB database. Among the ranked p-values, acetohexamide emerged as a promising
candidate for COVID-19 patients with Omicron infection treatment. A study utilizing
three molecular docking programs aimed to repurpose FDA-approved drugs targeting the
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functional structural domain of csBiP, specifically the BiP functional domain, as antivirals
against COVID-19, and acetohexamide was among the selected ligands [47]. The potential
therapeutic role of acetohexamide in the treatment of COVID-19, particularly in the context
of Omicron infection, warrants further investigation and validation through in vitro and
clinical studies. Such studies will help elucidate its mechanism of action and assess its
safety and efficacy in combating the virus. This research direction represents a promising
avenue for the development of targeted therapies to mitigate the impact of COVID-19,
especially in the context of emerging variants like the Omicron variant.

Compared to previous studies on Omicron variants, this study brings innovation by
specifically focusing on targets associated with symptom development and outcomes. The
identification of hub genes related to the Type I interferon pathway highlights their critical
role as key therapeutic targets. The validation of our results using patient samples in a
clinical setting enhances the accuracy and scientific validity of our findings. However, this
study has several limitations that should be acknowledged and taken into consideration.
Firstly, there is still a lack of sufficient transcriptomic research related to Omicron variant
infection, particularly concerning the differential expression of genes in individuals with
different symptoms, leading to a scarcity of available datasets. Secondly, the diagnostic
value of research findings such as hub genes and predicted drugs needs to be further
verified by additional experimental exploration and clinical trials to establish their potential
clinical relevance and utility, which is the direction of future research.

Despite these limitations, this study provides valuable insights into the molecular
mechanisms underlying the pathogenesis of the SARS-CoV-2 Omicron variant and its
association with the symptomatic presentation. The identified hub genes and enriched
pathways offer potential targets for further investigation and the development of therapeu-
tic interventions for Omicron-dominant COVID-19 cases. Further research in this area will
be crucial for advancing our understanding of the virus and improving the management of
COVID-19 patients.

5. Conclusions

In this study, our investigation successfully identified seven hub genes (IFI44, IFI44L,
MX1, OAS3, USP18, IFI27, and ISG15) associated with antiviral activity and the type I
interferon response as potential biomarkers for the diagnosis and treatment of COVID-19
in individuals infected with the Omicron variant. Through the construction of a com-
prehensive network of mRNA–miRNA and mRNA–TF interactions, we gained valuable
insights into the regulatory mechanisms underlying Omicron infection. Our immune
infiltration analysis and retrospective clinical data analysis provided compelling evidence
of a correlation between elevated monocytes and the development of Omicron infection.
We also identified ten agents as promising drug candidates that specifically target these
hub genes for treating Omicron infection. These findings significantly advance our under-
standing of COVID-19 symptom development and recovery and highlight the potential of
further investigating type I interferon-related pathways to identify therapeutic targets and
biomarkers for COVID-19 patients, particularly those infected with the Omicron variant.
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