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Abstract: Plant-microbe interactions are of rising interest in plant sustainability, biomass production,
plant biology, and systems biology. These interactions have been a challenge to detect until recent ad-
vancements in mass spectrometry imaging. Plants and microbes interact in four main regions within
the plant, the rhizosphere, endosphere, phyllosphere, and spermosphere. This mini review covers
the challenges within investigations of plant and microbe interactions. We highlight the importance
of sample preparation and comparisons among time-of-flight secondary ion mass spectroscopy (ToF-
SIMS), matrix-assisted laser desorption/ionization (MALDI), laser desorption ionization (LDI/LDPI),
and desorption electrospray ionization (DESI) techniques used for the analysis of these interactions.
Using mass spectral imaging (MSI) to study plants and microbes offers advantages in understanding
microbe and host interactions at the molecular level with single-cell and community communication
information. More research utilizing MSI has emerged in the past several years. We first introduce
the principles of major MSI techniques that have been employed in the research of microorganisms.
An overview of proper sample preparation methods is offered as a prerequisite for successful MSI
analysis. Traditionally, dried or cryogenically prepared, frozen samples have been used; however,
they do not provide a true representation of the bacterial biofilms compared to living cell analysis
and chemical imaging. New developments such as microfluidic devices that can be used under a
vacuum are highly desirable for the application of MSI techniques, such as ToF-SIMS, because they
have a subcellular spatial resolution to map and image plant and microbe interactions, including
the potential to elucidate metabolic pathways and cell-to-cell interactions. Promising results due to
recent MSI advancements in the past five years are selected and highlighted. The latest developments
utilizing machine learning are captured as an important outlook for maximal output using MSI to
study microorganisms.

Keywords: mass spectrometry imaging; plant-microbe interactions; MALDI; SIMS; metabolomics;

sample preparation; metabolites; machine learning; multivariant analysis

1. Introduction

A mass spectrometer consists of at least three components: a desorption/ionization
source, mass analyzer, and ion detector. The mass analyzer and ion detector in mass
spectral imaging (MSI) are under a vacuum; some desorption/ionization sources are a
under vacuum, while others operate at atmospheric or intermediate pressures [1]. Ion
generation is accomplished when material from the sample surface is volatilized and
ionized into the gas phase. This process can be performed in multiple ways. Once the ions
are created, they then move through the mass analyzer to the mass detector, where the
ion signal is converted into an electrical signal. The mass spectrum is generated by the
interpretation of the electrical signal generated [2].

Mass spectrometry has advanced significantly within the past decade, and it is one of
the most widely used analytical platforms. Among MS techniques, MSI or imaging mass
spectrometry has advanced the field further and led to wide applications in geological, bio-
logical, and medicinal research [3,4]. Matrix-assisted laser desorption ionization (MALDI)
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mass spectrometry and secondary ion mass spectrometry (SIMS) are two of the leading
MSI techniques used in investigations in biology and microbiology. Other techniques, such
as desorption electrospray ionization (DESI), laser ablation electrospray ionization (LAESI),
laser desorption postionization (LDPI) [5], and secondary neutral ionization (SNMS), are
also used in biology and microbiology research [3,6-10].

In MSI, an image is created by collecting spectra from different parts of the sample
surface in succession. This can be achieved by moving the target specimen so that the
desorption/ionization source may examine or investigate different sections of the sample.
Moving of the sample is typically accomplished by mounting the sample on a motorized
stage, movement of the sample using a piezo stage, manually, or by translating the desorp-
tion/ionization probe (i.e., focused laser or ion beam) while the sample remains in place.
Once ions are generated, they are extracted into the mass analyzer and detected using
a mass analyzer and ion detector, which can vary with the specific configuration of the
instrument. Unlike MS used in the analysis of bulk samples, each mass spectrum collected
for individual spots analyzed corresponds to pixels that are used in mass spectral images.
A range of pixels can be chosen in MSI data acquisition. The detection area, or image area,
is also defined by the user and is set before experiments. Rastering over a large area and
having smaller spaces between pixel generation will lead to the development of a spatially
resolved image that contains sample specific information [6]. Private and public source
software allows users to interact with these data by assigning relative distributions to a
map of mass spectra for visualization, containing different intensities of mass-to-charge
(m/z) ratios [6].

MSI has become an important tool for biologists and microbiologists alike over the
past two decades due to the molecular information collected and contained within the
spectral images [11,12]. MSI is powerful because it offers enhanced visualization and spatial
resolutions, offering specificity, sensitivity, and temporal information [6,7,13]. Figure 1
shows the main MSI techniques and their corresponding spatial resolutions. Plant-microbe
interactions have evaded intact molecular analyses for many years due to the nature and
scale in which these interactions occur. MSI, on the other hand, can offer a solution to
most, if not all, of the problems encountered with more traditional approaches. A growing
concern, as population growth continues to rise, is biomass production and crop sustain-
ability, which is a subject that has a close dependence on plant-microbe interactions. It is
estimated that >100 bacterial cells exist per gram of soil [14]. Bacteria form microbiomes
for the surrounding plant species, typically colonizing the rhizosphere, rhizoplane, phyllo-
sphere, spermosphere, and endosphere [14,15]. The plant-microbe interactions can either
be mutualistic or parasitic depending on the plant-soil feedback [16]. Mapping the bio-
logical metabolic pathways and understanding the interactions that microbes have with
plants at the molecular level is possible with the use of MSI. The information gained, either
quantitative or qualitative, can be far more valuable and relevant compared to standard
mass spectrometry measurements of a homogeneous bulk sample [17].

MSI has been used to study plant-bacteria interactions and gained more interest in
recent years. Specifically, there have been approximately 35 articles covering this topic
of plant-microbe interactions since 2004 and six reviews since 2014, according to Web of
Science survey results. Confocal laser scanning microscopy (CLSM) is the primary method
used for imaging plant-microbe interactions due to its ease of access and reasonable spatial
information [18]. Boughton et al.’s review of MSI for plant biology offered a comprehensive
overview of MSI capabilities and advances made with the different imaging techniques up
to 2015 [3]. Musat et al. tracked microbial interactions with different hosts, plant or animal,
via NanoSIMS in a review in 2016 [19]. In 2017, Ho et al. covered the different applications
of MSI and detailed microbe-microbe interactions as well as plant-microbe interactions [20].
While MSI has not been a mainstream method for the study of plant-microbe interactions,
MSI can provide insights into metabolic pathways, metabolite identification, plant-growth-
promoting bacteria, and biotic stress.
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Figure 1. Overview of the different desorption/ionization methods used for mass spectrometry
imaging (MSI) to map plant-microbe interactions. The scale bar shows the spatial resolution of each
technique, from sub-micrometer (um) to greater than 200 um. A higher spatial resolution corresponds
to higher-quality mass spectral images.

This mini review covers the advances in plant-microbe interactions with a focus
on the past three to five years but attempts to cover relevant publications over the last
decade. We offer a high-level tutorial of popular MSI techniques and specify the nuances
that each instrument has for imaging plant-microbe interactions. This review emphasizes
what is available with commercial MSI instrumentation and does not cover fs-LDPI-MS or
fs-LDI-MS. We highlight recent advances in sample preparation and imaging applications.
The aspect of soil incubation in the microbiome plays a large role in the plant-microbe
interaction. Representative results are selected based on a literature survey and presented
in this review. Finally, the outlook and recommendations of using MSI in plant-microbe
interaction research are put forth, including a brief section on machine learning (ML) in big
data analysis.

2. Microbial Biosphere and Instrument Considerations
2.1. Microbial Interactions in the Biosphere

MSI has been used to study plant-microbe interactions in the rhizosphere and en-
dosphere, but few studies are available about the phyllosphere and spermosphere. The
latter are also home to microbes and affect plants [15,21,22]. Among the different “spheres,”
there are different and diverse microbiota, which affect the plants in various ways. The
rhizosphere is the thin layer of soil that surrounds the plant roots, hosting most of the
soil microbial growth with complexity under active study [23,24]. Bacilli living within
the soil have been shown to protect their host roots from pathogenic microorganisms [23].
The plant root system has been well described in the literature and its importance lies in
the efficiency of water and mineral uptake, promoting plant growth and sustaining an
environment that allows bacteria to flourish [25]. While the rhizosphere offers bacterial
abundance and activity, there is much lower diversity among the bacteria within this zone
compared to the bulk soil [26]. Figure 2 shows a simplified version of a plant growing from
a seed to a sprouted plant, covering the four main regions in this review.

The endosphere is the inner tissue region of a plant, such as the inner stem, leaves,
and branch system. Bacteria living in the endosphere are referred to as endophytes [27],
which have been categorized into two subgroups: ‘obligate” and ‘facultative’. Obligate
endophytes are defined as bacteria that have a dependence on the plant metabolism for
survival, being spread by vertical transmission or by the activity of vectors [28]. The
facultative endophytes are classified based on whether they have lived outside the host at
any time within their lifecycle or are recruited from nearby microbial communities, such
as those within the rhizosphere [28]. The endosphere bacteria coevolve with the plant by
means of host plant recognition and selection by exudate signaling communication in order
to provide homeostatic association [15].
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Figure 2. Simplified schematic of a plant system that includes the major spheres for which MSI re-
search has been conducted within the past five years. The region of greatest interest is the rhizosphere,
where bacteria and plant root systems interact. Note: The spermosphere here does not accurately
represent the progress with which a plant blossoms.

The phyllosphere comprises any aerial part of the plant and its respective surfaces.
This region of a plant is regarded as a harsh environment for microbes to live in due to
inconsistencies with water availability, nutrient abundance, and high UV exposure [29].
Generally, bacteria in this region are associated with nitrogen fixation, the biosynthesis
of phytohormones, and protection against pathogenic microbes [15,29]. The predominant
area of this region is the leaf surface [30]. The survival of microbial communities in the
phyllosphere is dependent on their capability to develop resistance mechanisms, such as
UV radiation protection, the production of extracellular polysaccharides, and biosurfactants
to promote attachment to surfaces [30].

The spermosphere is the seed surface where interactions take place between the
microbial communities, soil, and seed germination [31]. The spermosphere area is much
smaller compared to the rhizosphere, endosphere, or phyllosphere, but interactions between
the spermosphere and the surrounding microbial communities can dramatically impact the
growth, maturation, and health of the plant [31].

Microbes can be symbiotic, mutualistic, or parasitic when interacting with the host
plant. Symbiotic microbes are also known as plant-growth-promoting microorganisms
and have been known to regulate growth factor concentrations, control pathogens, and
increase nutrient availability within the host plant [21]. Common rhizobacteria are Bacillus,
Pseudomonas, Enterobacter, Acinetobacter, Burkholderia, Arthrobacter, and Paenibacillus, all of
which are also plant-growth-promoting bacteria [26]. The interactions between the host
plant and surrounding microbes are considered some of the most important and complex
aspects when studying microbial communities, because evidence indicates that the growth,
tolerance, and health of plants are dependent on the microbiome associated with the host
plant [21]. Chemical communications between microbes and plants are established by
the release of primary and secondary metabolites, which can alter root-root interactions,
nutrient availability, microbe accumulation, and biofilm formation [26]. Metabolites are
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enzymatic catalysts of biological processes and can have a complex and wide distribution
throughout a plant [32]. Secondary metabolites produced by microbes interacting with the
host plant typically act as nutrient uptake agents [27]. As discussed, there are at least two
main challenges in mapping the microbe and plant interactions. First, there are several
complex biointerphases and each warrants specific attention. Second, the detection and
speciation of metabolites are difficult due to the complexity of microbiomes in nature.
Clearly separating coupled events is challenging to fully understand cell-to-cell interactions
between microbes and host plants.

2.2. MSI Instrumentation for Imaging Bacterial-Plant Interactions

MSl is a field characterized by rapid adaptation, new technological development, and
diverse applications. Some aspects of this group of instruments that continue to improve are
their spatial resolution, detection selectivity, and user software for data interpretations [33].
Resolution and mass accuracy are important parameters when considering a technique for
analyzing plant-microbe interactions. The lateral or spatial resolution, terms that are used
interchangeably, refers to the spacing at which two features of an image are considered
separate and distinct [34], and mass accuracy refers to how close the m/z value peak is to
the correct decimal point. The higher the image resolution and mass accuracy, the clearer
the information within the mass spectrum image. Achieving both a high image resolution
and mass accuracy is often challenging in MSI, yet there have been advances using delayed
image extraction that mitigate this difficulty [35].

Table 1 summarizes different mass spectrometry techniques’ lateral resolutions, mass
accuracy, and mass resolutions. Among the known MSI techniques, SIMS offers the highest
lateral resolution. However, the main challenge in biofilm, plant, and microbiome analysis
is that no single technique (e.g., MALDI, DESI, or SIMS) covers the length scale and mass
scale simultaneously. Each technique has its own advantages and disadvantages. SIMS can
provide the highest lateral resolution with a high mass resolution and high mass accuracy.
However, vacuum-based ionization techniques such as SIMS have limitations in terms of
the samples that can be introduced and studied due to outgassing materials, substrates,
or liquid samples. Furthermore, samples under a vacuum are required to be dried before
the analysis takes place, but drying biofilms, for example, can lead to flaking and chipping
from the substrate, as well as loss of the native structure. Atmospheric pressure techniques
(i.e., DESI) overcome these difficulties, but have a significant trade-off in spatial resolution,
namely tens of micrometers compared to the sub-micrometer spatial resolution sometimes
possible in SIMS. Therefore, the choice of MSI technique when planning an experiment
depends on the target information. Knowing the analysis objectives and these MSI key
factors will help to determine the most suitable method to employ.

When designing an experiment, not only is the ionization source important but choos-
ing a mass analyzer is equally important in obtaining the desired mass accuracy and mass
resolution of the data. There are essentially five types of mass analyzers that are currently
popular: quadrupole, ion trap, Orbitrap, time-of-flight, and Fourier transform ion cyclotron
resonance (FT-ICR) [36]. The combination of mass analyzers with additional ion optical
components (i.e., quadrupole time-of-flight or QToF) increases the capabilities for mass
identification by tandem MS (analyses that identify ions via collision-induced dissocia-
tion) [36]. Fourier transform methods, such as Orbitraps or FT-ICR mass analyzers, have
phenomenal mass resolving power [36]. Typically, the time-of-flight (ToF) mass analyzer
is coupled with either MALDI or SIMS due to the broad m/z range, high sensitivity, and
acceptable mass resolving power (see below). Reflectron and multipass ToF mass analyzers
can attain mass resolving power of >50,000 or greater [37]. Commercially available instru-
mentation such as the MALDI ToF and ToF-SIMS, has high sensitivity, tandem MS, and a
high mass resolution, with which home-built instruments cannot compete for the study of
chemically complex biological samples.
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Table 1. MSI ionization sources, mass analyzers, and parameters used for plant, bacterial, biological,
or other related applications within the past decade.

. . Lateral/Spatial Mass Mass Mass Home-Built or .
Analysis Technique Resolution Analyzer Accuracy Resolution Commercial Field of Study References

. Plant, biological,

s SIMS, nanoSIMS, ToF and . unit mass Commercial, bacterial, and = 2a

@ liquid SIMS 0.12-0.5 pm Orbitrap <02-1ppm 240,000 home-built plant-microbe [35,38-46]
interaction research

=

a Geological, biological

I~ fs-LDI, ns-LDP], fs-LDPI 2-100 pm ToF 330-340 ppm 500-30,000 Home-built 4 / [4,33,47-50]

= and bacterial research

—

B Plant, biological,

= MALDI, MALDI-FTICR, = ToF, Orbitrap, . 9000- Home-built, bacterial, and N

3 AP MALDI, MALDI 2 06-150um  pricr QToF ~ -272PPM 160,000 commercial plant-microbe [23,51-56]
interaction research

) . .

m Orbitrap, . Plant, bacterial, and

8 DESI and LAESI 40-200 pim Qtrap, and >5 ppm e Home-built, plant-microbe [10,57,58]

E microToF ! interaction research

Liquid microjunction

3 surface sampling probe, Plant, biological,

o VUV gas discharge lamp, Qtrap, FT-ICR, 10,000- . bacterial, and -

< ) . 4 —

5 laser ablation, and solvent 70-260 pm Q ToF 215 ppm 400,000 Home-built plant-microbe (24,57,59-61]

capture by aspiration/ESI,

and LAAPPI

interaction research

2.3. Data Analysis Considerations for MSI

Data analysis depends on the information that the analyst wishes to receive and
uncover. For example, the quantification and verification of analyte identifications can be
challenging when only using standard mass spectrometry. Tandem MS can increase the
depth of coverage and the sensitivity and verify the identification of a large number of
chemical species [3,62].

Sensitivity can be affected by the noise that is associated with the spectra. Noise can be
introduced from multiple sources, such as the electrical system, ion detection, and chemical
background, as well as the matrix [63]. Adjusting the signal-to-noise ratio is critical for
good spectral results. MS generates large datasets and MSI creates even more data.

There are both public and commercial software programs developed for general MSI
data analysis, such as BioMap (Novartis, Basel, Switzerland) [64] and MSiReader (North
Carolina State University) [65], or instrument-specific codes (i.e., SurfaceLab for ToF-SIMS,
IONTOF, GmbH, Miinster, Germany). Custom software coded in python or MATLAB is
common [3]. The manual processing of large amounts of data and thousands of spectra
is extremely difficult. Multivariant analysis, specifically principal component analysis
(PCA), is typically employed for the analysis of SIMS spectra and spectra obtained by
other MS imaging methods [33,66]. PCA is a mathematical algorithm that looks at the
variation within the MSI data. It decreases the dimensionality inherent within the data
themselves by identifying directions or principal components where the variation in the
data is highest [67]. After PCA is performed, the data can be plotted and visualized to
identify similarities or differences within large datasets [67]. Analysis using PCA has its
benefits by identifying areas within the spectra that are affected by matrix effects so that
other more important features can be uncovered [68]. PCA is a useful tool for deciphering
SIMS imaging and spectral data that pertain to plant-microbe interactions since there
are many inherent variables. For example, PCA has been used to study the effects of
Gram-positive and Gram-negative plant-growth-promoting bacteria on seedlings [68].

3. Sample Preparation Techniques for Plants and Microbes

Sample preparation for MSI of in situ analytes and samples could be a limiting factor
when deciding on ionization and analysis methods [22]. While information for sample
preparation methods regarding plant tissue is known to be limited, the preparation required
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is a critical step associated with the quality and authenticity of the imaging results [69].
Generally, there are three ways that samples can be prepared, namely drying, freezing,
cryo-freezing, or using living samples. Figure 3 gives an overview of these methods and
the general process by which a sample is prepared.

Dehydrate

A. l.

b

Ml Living Cell /
Microfluidics

N\ S
.

Figure 3. Schematics showing (A) culturing the bacterial biofilm on the sample substrate or overlaying

it later; (B) securing the plant and biomaterial onto an analysis plate or coupon before analysis
preparations that include drying, freezing, or the use of microfluidic devices; (C) three common
methods for plant-microbe sample preparation, including the dehydration of the biofilm on the
plant (I), cryo-freezing both the plant and biofilm (II), and native (live) sample preparations for intact
analysis (III).

Drying the sample is a common practice for plant or bacterial MSI analysis. The use of
a nitrogen stream to dry the sample for a designated period has been applied to prepare
Brachypodium seeds before having them sectioned into segments for ToF-SIMS analysis [35].
Nonetheless, a necessary step before drying is the desalination of bacteria and biofilms.
Desalination is crucial, especially for SIMS, because any salts left over from the media
can have a strong matrix effect. In other words, intense signals from the salts could mask
signals of biological importance.

Another method of fixing a sample prior to analysis is embedding it in resin. This
sterilizes and dries the sample so that a cross-section can be cut, and analysis can take
place at an interface—for example, the plant-microbe biofilm interface. Distortion of
ultrafine cellular structures and microbe colonies is avoided by gradual dehydration and
infiltration when performing resin embedding [39]. Vacuum drying is another method
recently used for SIMS. Liu et al. used the load lock to dry the sample under a vacuum
before introducing/loading it into the main analysis chamber [40]. Although convenient,
drying in the load lock can have negative effects on the instrument and is not the best
practice for sample preparation. Drying inside a laminar flow hood is the preferred option
for drying biofilms and plant species [70].

Freeze drying and cryo-freezing are other approaches used for sample preparation in
SIMS, MALD], and LDI. Rapid freezing with liquid nitrogen quickly secures a sample that
has been used—for example, on M. polymorpha plant samples, where the biological samples
were allowed to dry on the MALDI sample plate under a laminar flow hood before adding
the matrix [51]. Peltier cooling stages can also be used to freeze leaf sections before MSI for
analyses performed at atmospheric pressure [10].
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The difference between regular drying and freezing/cryo-freezing is whether the
water molecules are trapped within the sample to be analyzed. Freezing preserves the
water molecules but distorts them as ice crystals form. Drying dehydrates the sample,
leading to a distorted biofilm or plant species. Ideally, the optimal way to study how
plants and microbes are interacting is by analyzing and imaging them in their native live
state. Some techniques, such as DESI and LAESI, can analyze living samples due to their
operation in atmospheric pressure. Typically, living biofilms in the liquid state are difficult
to study using vacuum techniques; thus, mostly dried or frozen samples have been used
for various MSI analyses [46].

Yu and coworkers developed a microfluidic device to overcome this challenge [71].
The device, termed SALVI, a system for analysis at the liquid—vacuum interface, is capable
of maintaining liquids and living biological specimens with high vapor pressure in high-
vacuum instruments, such as a scanning electron microscope or a time-of-flight mass
analyzer [71]. The SALVI microfluidic device has been used to study plant-microbe
interactions by mass spectrometry imaging [35,42,46,68,72]. While the main peaks between
dry samples and viable samples in liquid using SALVI were demonstrated to be similar,
there was a reduction in mass accuracy and resolution when using the SALV], in part
because the ToF-SIMS imaging mode was used [46]. When using SALVI in liquid SIMS, the
imaging mode with a finely focused capability is necessary. The ToF-SIMS imaging mode
has an inherently lower mass resolution and mass accuracy compared to the spectral mode.
The latter has much a higher mass resolution and mass accuracy, and it is often used in
studying cells and organics in static SIMS applications.

One major issue that arises with sample preparation and analysis is the matrix effect
when utilizing MSI. Matrix effects arise differently within each desorption/ionization
technique, but often arise interfering with the ionization intensity signal within the mass
spectrum. Ion yields for solutes depend on the matrix as well as the identity of the solute
and its contribution to the sample surface, ultimately leading to non-linearity with the
solute concentration, which results in quantification difficulties [73-77]. Another aspect
causing matrix effects is the charge transfer event, which occurs in SIMS, MALDI, and
DESI. For example, analyte molecules competing for charge or changes within the matrix
caused by cation concentrations have been observed in MSI [76]. Mitigation of the matrix
effect is critical for MSI data to obtain accurate spatial distributions of the molecules within
the sampled region and to provide accurate mass spectrometry images. In relation to
matrix effects, when performing bacterial-based sample analysis, external conditions such
as humidity also affect how matrix co-crystallization is produced when using MALDI [78].

One aspect that is often overlooked during MSI sample preparation is sample ster-
ilization and disinfection. This is always a necessary step that usually is not mentioned
because it is considered to be arbitrary. However, the recent literature has shown that
methods for sterilization and disinfection, such as autoclaving, dry heating, ethanol sub-
mersion, and other advanced methods including plasma cleaning and UV irradiation, are
not fool-proof methods. Sterilizing the sample holder, sample plate, and the sample itself
is often necessary to prevent contamination from other strains of bacteria. Kummer et al.
showed, for two strains of Staphylococcus, that UV treatment and ethanol sterilization left
behind ~1 x 10° CFUs/mL of live cells, while an autoclave left behind ~2 x 10° CFUs/mL
after heat treatment for 2 h at 500 °C [79]. The live vs. dead bacteria were imaged by
introducing fluorescent staining and showed that UV and ethanol, after heat treatment,
were more effective methods for sterilization than autoclaving for these Staphylococcus
strains. Another study by Kasmaei et al. tested several sterilization methods on grass
samples with epiphytic microflora: ethanol, cold shock, ethanol/sodium hypochlorite,
a neutral detergent, and both moist and dry heat [80]. Their results suggested that dry
heating samples at 121 °C for 20 min was the best method of sterilization, while ethanol and
the neutral detergent were only effective against lactic acid bacteria. The cold shock was
ineffective and treatments using ethanol and NaClO were inconclusive. A study conducted
by Chansoria et al. found that the autoclaving of samples was effective for sterilizing
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biomaterials, alginate in this study, irrespective of the bacterial type, whereas ethanol and
UV sterilizations were dependent on the bacteria type and load [81]. Sterilization is an
important aspect for reliable sample preparation and standard methods should not be all
lumped together as 100% effective. Understanding the biochemical characteristics of the
strains of bacteria used during studies is necessary in choosing the appropriate method to
apply for the sterilization of samples such that contamination is not an issue. Moreover, the
use of more than one method of sterilization and disinfection is encouraged.

The preparation of samples should be considered well before an experiment as it can
affect which method of ionization can be used for the analysis. The sample needs to be
conductive otherwise there will be a build up of charge leading to sample charging and
poor ionization. The way that the preparation is handled will also affect the outcome of
the experiment, and it is imperative to carefully consider how drying, freezing, or imaging
under live conditions will achieve the desired analysis goals.

4. MSI Ionization Techniques to Investigate Plant-Microbe Interactions
4.1. Secondary Ion Mass Spectrometry

Secondary ion mass spectrometry (SIMS) is a method that uses a primary ion beam to
desorb analytes from the sample surface, in turn creating a plume of secondary ions and
neutrals. While there are many configurations of SIMS instruments, the fundamental basis
remains the same: the measurement of the mass and intensity of secondary ions produced
while under a vacuum after sputtering the sample surface with an ion beam or neutral
beam [82]. Early experiments with ion desorption can be traced back to R. E. K. Herzog
and F. P. Viehbock, where they experimented with new ion sources and the sputtering of a
sample. Then, in 1957, D.G. Bills demonstrated the desorption of ions from metal surfaces
after the bombardment of the metal surface with nitrogen ions or low-energy electrons,
stemming from earlier works by Herzog [83]. In 1963, the sputtering ion source using
concentrated argon ions to bombard the sample surface for secondary ion desorption was
introduced by Liebl and Herzog [84]. However, it was not until 1972, when Huber, Selhofer,
and Benninghoven demonstrated that the SIMS technique under an ultra-high vacuum
(UHV) was able to measure both positive and negative ions, and to acquire profiles of
multilayer films, that the basis for the modern SIMS instruments was set [85]. SIMS imaging
was not far behind after sputtering sources were announced, and early SIMS imaging could
be attributed to the ion microscope of a special design, which was used to image a surface
region of less than 0.5 mm? [86].

SIMS has been at the forefront of the development of MSI techniques for decades.
Levi-Setti et al. published an article on the progress of high-resolution scanning ion
microscopy and SIMS imaging microanalysis in 1985. Kingham et al. published their work
on three-dimensional SIMS imaging and the depth profiling of biological material, such
as bone tissue, in 1987, showing that the ToF mass analyzer was best for imaging when
compared with a quadrupole or magnetic sector due to its greater sensitivity. However,
the erosion time was several orders of magnitude less, thus limiting this method to thin
films and small area depth profiles [87]. One of the earliest publications on plant-microbe
interactions was from Lorquin et al., where they used HPLC and GC-MS to determine
nodule factors from soil bacteria interacting with host plants [88]. Since then, ToF-SIMS and
another method known as nanoSIMS (see below) have been used for the imaging of plants,
bacteria, and plant-microbe interactions, to analyze carbon and nitrogen assimilation by
soil microbes [89], map nutrient uptake in situ in the rhizosphere [90], and image the
in situ flow of photo-assimilated carbon through arbuscular mycorrhiza into root and
hyphae-associated soil microbial communities [44].

More recently, Zhang et al. showed that ToF-SIMS imaging could be used to study
the effects of plant-growth-promoting rhizobacteria on Brachypodium awn. Plant-growth-
promoting rhizobacteria reside within the rhizosphere [68]. Brachypodium distachyon, a C3
representative plant model, has been used to show plant-microbe interactions, and it is
considered an ideal species for this type of experiment [25,68]. Zhang et al. studied the
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interaction of Arthrobacter chlorophenolicus and Pseudomonas fluorescens, planktonic cells
and biofilms on the Brachypodium seed, which are referred to as awns. They were able to
characterize plant metabolites, such as flavonoids, phenolic acids, fatty acids, and indole-3-
acetic acid, on the awn surface. They also used principal component analysis (PCA) for the
evaluation of the characterized metabolites and their interactions with the awn surface. The
experiment determined that certain fragments of flavonoids, such as kaempferol (1m/z~ 285,
C15HoOg ™) and quercetin (m/z~ 301, C15HoO7 ™), were present in only the Pseudomonas-
treated samples and suggested that flavonoids respond more against pathogenic Gram-
negative species [68]. They also showed that fatty acids’ observed intensity increased
when plant-growth-promoting bacteria were introduced to the seedling or awn. The
PCA results determined that both Gram-negative and Gram-positive bacteria affected
the awns. Figure 4 demonstrates the ability of SIMS imaging to capture the molecular
and morphological information from a small uneven surface to better understand how
plant-growth-promoting bacteria interact at the surface of the spermosphere. ToF-SIMS
imaging here also provides elemental information on the plant-microbe interface with
high sensitivity.

150 um

Negative

341367

200 400

250 300 350

Positive

Figure 4. The negative ion images collected, represented by (a,b), with corresponding spectra (e,f).
(a,b) are Brachypodium awns treated with Pseudomonas and Arthrobacter, respectively. Similarly, (c,d),
with corresponding spectra (g,h), show the positive ion images, where (c,d) are Brachypodium awns
treated with Pseudomonas and Arthrobacter, respectively. Reprinted with permission from Zhang, Y.;
Komorek, R.; Zhu, Z.; Huang, Q.; Chen, W.; Jansson, J.; Jansson, C.; Yu, X.Y. Mass spectral imaging
showing the plant growth-promoting rhizobacteria’s effect on the Brachypodium awn. Biointerphases
2022, 17, 031006, doi:10.1116/6.0001949 [68]. Copyright 2022, American Vacuum Society.
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4.2. Matrix-Assisted Laser Desorption/lonization Mass Spectrometry

MALDI mass spectrometry is a laser desorption ionization technique that involves
treating the sample with a matrix substance, either solid or liquid, to enhance the ioniza-
tion of the sample. The matrix is typically compounds such as dihydroxybenzoic acid
(DHB) [91], sinapinic acid (SA) [92], or a-cyano-4-hydroxycinnamic acid (CHCA) [93].
MALDI has been used in several publications involving microbial interactions and it can
provide information on the molecular species of the microbial communities [94]. However,
MALDI analysis is highly dependent on the selection of the correct matrix for the sample,
how well the laser interacts with the matrix, and the details of the sample preparation prior
to analysis. It is critical when selecting the matrix that one understands the absorption
range so that it is compatible with the laser. Incompatible matrix treatment will provide
little to no useful ion signal from the sample. The absence of ion signal can result from
insufficient desorption and/or ionization of the analyte, and one often does not know
the reason for the failure. Additionally, it is crucial when a matrix is applied that there
is co-crystallization with the sample, so that the laser pulses will desorb and ionize not
only the matrix but the sample molecules as well [92]. Co-crystallization provides an equal
distribution of sample and matrix and allows the laser to easily desorb the material from
the sample surface, thus increasing the ionization and ion yield. CHCA is typically used
for small molecules and peptide samples, whereas DHB is used for lipids. The latter can be
used for small molecules and SA is primarily used for protein analysis [17].

MALDI is most commonly coupled to a ToF mass analyzer, which works by extracting
the ions generated under a vacuum in the sample chamber and introducing them into the
flight tube. Here, ions can be steered and directed with ion optics such as Einzel lenses while
varying the applied voltages. As the ions travel through the flight tube, they will begin
to separate based on their mass and charge ratios (/z), leading smaller, lighter m/z ions
to reach the detector first and the larger, heavier ions to follow. Orbitrap mass analyzers
are also used in MALDI [52-54,95,96]. Orbitraps operate by trapping an ion radially
around a centralized spindle electrode. As the trapped ions rotate around the spindle
electrode, independent of the energy and spatial spread, the harmonic oscillations displayed
as electromagnetic radiation are measured and converted into m/z values by Fourier
transforms [97]. Orbitrap mass analyzers have high resolving power—for example ~160,000
at m/z 750—and mass accuracy, which enhances the chemical information obtained from
the mass spectra [53].

MALDI MSI has been used for the quantification and spatial localization of organic
acids in root exudates. Low-molecular-weight organic acids from root exudates were
examined for their roles in plant nutrition and pH modification in the rhizosphere, and as
bio-stimulants and chemoattractants, by Gomez Zepeda et al. [51]. Organic acid exudation
from the plant roots to the rhizosphere was previously determined as a mechanism by which
plants cope with cation toxicity. Creating methods for the rapid and precise quantification
and localization of the organic acids in the plant roots has improved the understanding of
their role in response to phosphate deficiency and toxic cations [51].

As shown in Figure 5, MALDI was used to determine the spatial distribution and
localization of malate and citrate within the plant roots of Arabidopsis wild-type seedlings,
aluminum activated malate transporter 1 (OX.ALMT1), and positive transcriptional regula-
tor sensitive to proton rhizotoxicity 1 (OX.STOP1), which are the transgenic lines that the
Arabidopsis genome expresses. It was determined that the wild-type malate signal had no
distribution differences in phosphate abundance or restriction. OX.ALMT1 and OX.STOP1
tended to have a wider spread in the rhizosphere and higher intensity with both phosphate
abundance and restriction compared to the wild type, corroborating the findings that the
overexpression of ALMT1 and STOP1 enhances malate exudation from the roots [51]. This
work demonstrates that MALDI can be used to analyze and understand nutritional stresses,
metal toxicity, responses to pH, and plant-microbe interactions [51].
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MALATE CITRATE

OX.ALMT1-2
OX.STOP1-1
OX.ALMT1-2
OX.STOP1-1

Figure 5. MALDI-MSI images showing the spatial distribution of malate and citrate in Arabidopsis
thaliana roots under phosphorus abundance or reduction in wild-type and selected transgenic lines.
The scale bar shown is 1 mm. Reprinted with consent from John Wiley & Sons, Inc [51].

4.3. Laser Desorption/lonization Mass Spectrometry and Related Methods

LDI mass spectrometry has been around since the early 1960s, shortly after the inven-
tion of the laser in the 1950s. Levine, J. F. Ready, E. Bernal, W. L. Linlor, R. E. Honig, and
J. R. Woolston were some of the researchers who first explored desorption plume dynamics
and used this technique to develop high-sensitivity mass spectrometers [98-103]. As time
passed and the adaptations and improvements to LDI developed, more researchers began
to use it and, incidentally, it became the foundation of MALDI after early experiments
from Hillenkamp et al. [104]. Since then, laser desorption has developed into an enormous
field, with areas of interest in microbial and biofilm analysis [49,50,94,105,106], elemental
and molecular analysis for biomaterials [33,47,57,61,107], cellular analysis [59,108], drug
analysis [9,109], geological analysis [4,110], and elemental analysis and instrumentation
design [48,111]. LDI is achieved by exceeding a substance’s ablation/ionization threshold,
albeit by a mechanism still subject to debate: thermal vaporization, nonthermal melting,
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electron-lattice heating, shockwave propagation, plasma expansion, and proton or cation
transfer have all been discussed as LDI mechanisms [112].

Laser desorption has prospered since its inception and many different methods and
adaptations have become available. A key development is laser desorption postionization
(LDPI). It employs two nanosecond (ns) or femtosecond (fs) pulsed laser systems for sepa-
rate desorption and photoionization steps. For example, fs laser desorption postionization
mass spectrometry (fs-LDPI-MS) utilizes laser pulses <100 fs for the “cold” ablation or
thermal vaporization of a sample, meaning that as the energy excites the atom or molecule,
the electrons will release before the energy relaxation event, allowing this to be a universal
ablation method causing minimal sample damage. The desorption laser releases primary
ions and neutrals into a plume and a second vacuum ultraviolet (VUV) ns laser is used
to ionize the neutrals within the plume, creating positions, while the primary ions are
suppressed via a biased voltage grid [4,5]. The postions are then introduced to the mass
analyzer for analysis. LDPI has been used for microbial and biofilm analyses [49,50] as well
as geological analyses [4].

Hieta et al. 2021 used laser ablation atmospheric pressure photoionization mass
spectrometry (LAAPPI-MS) imaging with a 70 um lateral resolution to analyze Arabidopsis
thaliana’s leaf trichome and vein structures for metabolite identification and mapping [59].
LAAPPI-MS utilizes an ns pulsed mid-IR laser, the same as used in LAESI, to ablate the
leaf surface to generate a plume that is intercepted by the nebulized solvent spray and
photoionized by a VUV lamp, both directed towards the mass analyzer inlet. A portable
version of LAAPPI-MS was demonstrated using a handheld laser and an ion trap mass
spectrometer [113].

Hieta et al. expanded the LAAPPI-MS strategy to image single trichome cells and
map the trichome base, leading to the mapping of different metabolite compounds, such
as kaempferol, quercetin, isorhamnetin, rhamnose, and glucose [59]. They acquired mass
spectra for many lipids within the leaf lamina region and they differed from the trichome
region. Most noticeably, they were able to show that LAAPPI-MS can perform the accurate
depth profiling of plant material and accurately spatially resolve different structures at
different depths within the leaf. Not only do the spectra results show that there is a
difference between depth profile peak scans P1 and P2, but the images show that trichomes
can be clearly seen at different depths at m/z 423.42, which further promotes this as a
suitable imaging technique (see Figure 6).

4.4. Electrospray lonization, Desorption Electrospray lonization, and Laser Ablation Electrospray
Ionization Mass Spectrometry

Electrospray ionization (ESI) is the most widely used ionization method for non-
volatile organic and biomolecules that are introduced by a liquid feed by direct injection or
a liquid chromatograph [22]. The liquid sample is introduced into a hypodermic needle
held at a high voltage under atmospheric pressure, and the resulting field at the tip of
the needle disperses the sample as a charged spray driven by Columbic forces [114]. The
charged spray passes into a mass spectrometer interface containing ion optical components
and a series of stages of reduced pressure ending in the mass analyzer. A counter current
bath gas flowing around the hypodermic needle is used to expedite the charged droplet’s
evaporation, causing the droplet to become smaller, leading to an increased surface charge,
as the droplets and ions then pass into a vacuum. Once the critical Rayleigh limit is reached,
a Coulomb explosion event takes place, shredding the droplet and producing smaller
droplets. They are sometimes referred to as daughter droplets, which then evaporate and
create quasi-ions that can be analyzed [50,114]. ESI is considered a soft ionization technique
since it leads to less sample fragmentation than electron impact ionization (used on gas
feeds from a gas chromatograph).
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Figure 6. The extracted ion chromatogram demonstrated in (a). The different peak scans, P1 and
P2, display clear differences in mass spectra, as shown by (b,c). (d) shows the images collected at
different depths. Reprinted from Hieta, J.P.; Sipari, N.; Raikkonen, H.; Keinanen, M.; Kostiainen,
R. Mass Spectrometry Imaging of Arabidopsis thaliana Leaves at the Single-Cell Level by Infrared
Laser Ablation Atmospheric Pressure Photoionization (LAAPPI). ] Am Soc Mass Spectrom 2021, 32,
2895-2903, doi:10.1021 /jasms.1c00295 [59]. Creative Commons attribution, no alterations made.

Desorption electrospray ionization (DESI) impinges a steam of highly charged solvent
droplets from an ESI source onto a solid sample: the scattered species containing the
analyte are then captured by the mass spectrometry interface [32,58]. Samples analyzed
by DESI are held at atmospheric pressure, whereas MALDI, SIMS, and LDI/LDPI are
operated typically under a vacuum [13]. DESI has become increasingly used for the
analysis of the plant rhizosphere since it is not limited to sample preparation for vacuum
analysis. However, DESI has a relatively poor lateral resolution when compared to the
other ionization techniques [22,57]. Laser ablation electrospray ionization (LAESI) was
developed by Vertes and coworkers by combining a mid-infrared pulsed laser that excites
water in a sample, leading to the ablation of neutrals in a plume [115]. The ablation plume
then crosses an electrospray flow, which postionizes the neutrals in a manner similar to
traditional ESI. LAESI is conceptually like MALDI, except that water inherent in the sample
acts as the matrix. LAESI has a higher lateral resolution than DESI, but a lower lateral
resolution than MALDI. A variant is laser ablation atmospheric pressure photionization
(LAAPPI), which uses a different method for the postionization of the neutrals in the
ablation plume [22,57]. Plant analysis is amenable to LAESI and LAAPPI, but the signal
can vary with the water content (i.e., a lower signal is expected from regions of samples
with higher cellulosic content).

Taylor et al. used high-resolution MSI to obtain 40 pm spatial resolution images of
Fittonia argyroneura leaves, and they were able to identify chemical species specific to the
physical structure within the plant leaf [10]. The mass detector used for this experiment
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was an Orbitrap, which allowed for a mass resolution of ~60,000 but only slow image
acquisition times. Taylor et al. were able to desorb and analyze samples from distances of
6-80 mm. The Fittonia argyroneura leaf was sectioned into 1.5 cm? pieces, which included
the veins and mesophyll, for MSI detection. The analysis produced metabolite-rich spectra
and identified catechol, furoic acid, phthalide, lysine, and glycinamide ribonucleotide. As
shown in Figure 7, all the metabolites identified were shown within the veins, except lysine,
which was present only in the mesophyll. Lysine within the mesophyll could contribute to
the lysine acetylation of proteins during photosynthesis [10]. Overall, these results show
that LAESI is a versatile method for the analysis of metabolites from plant species using
MSI, with the ability to analyze plant-microbe interactions.
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Figure 7. Laser ablation electrospray ionization (LAESI) MS images of Fittonia argyroneura leaf with
spatial resolution of 40 pm. Figure 4a is an optical image post-mass spectrometry imaging, showing
the lighter region to be the region of interest. Figure 4b—f show the ion images for catechol, furoic acid,
phthalide, lysine, and glycinamide ribonucleotide. All ions are emitted from within the vein, except
for lysine, which is from the parenchyma. Scale bar is 200 pum. Reprinted (adapted) with permission
from Taylor, M.J.; Liyu, A.; Vertes, A.; Anderton, C.R. Ambient Single-Cell Analysis and Native Tissue
Imaging Using Laser-Ablation Electrospray Ionization Mass Spectrometry with Increased Spatial
Resolution. | Am Soc Mass Spectrom 2021, 32, 2490-2494, doi:10.1021 /jasms.1c00149 [10]. Copyright
2023 American Chemical Society.
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5. Machine Learning for ToF-SIMS and MALDI Data Analysis

Mass spectral images can have thousands of pixels, each associated with a complete
mass spectrum, leading to gigabyte-sized data files [116]. Researchers often apply multi-
variate analysis to MSI data, including techniques such as principal component analysis
(PCA), multivariate curve resolution (MCR), maximum autocorrelation factors (MAF),
and non-negative matrix factorization (NMF) [33,66,116,117]. These statistical methods,
which belong to the matrix factorization approach, reduce the MSI dataset to observed
trends within the data, allowing the user to gain insight into the underlying meaning and
structure of the MSI data [118]. Recently, more sophisticated methods of machine learning
(ML), such as t-distributed stochastic neighbor embedding (t-SNE), uniform manifold
approximation, projection (UMAP), and self-organizing maps (SOMs), have been used
when datasets exhibit a non-linear pattern in MSI research on biological or polymeric
samples [116]. ML techniques such as SOM are becoming increasingly popular, being used
instead of traditional multivariate analyses such as PCA, although PCA has been utilized
more widely [119].

PCA and NMF techniques are often employed with ToF-SIMS analysis in the surface
analysis and one-dimensional spectral analysis of sample layers [66,120]. Recently, Gardner
et al. and Madiona et al. used the ML artificial neural network technique of SOMs to
interpret complex ToF-SIMS data [116,119]. Gardner et al.’s results showed that SOMs
revealed accurate information relating to polymer surface chemistries and offered an
intuitive approach for the visualization of the complex relationships of individual pixels and
the spectra display for MSI [116]. Madiona et al. were able to highlight the discrimination
of high-weight polymers with a similar structure and composition [119]. This type of
discrimination could be potentially beneficial in analyzing microbe—plant interactions, with
the potential to determine the metabolite secretion composed of heavy amino acids, lipids,
and fatty acid chains.

A recent study by Zhang et al. used 14 ML statistical algorithms in combination with
MALDI-TOF to differentiate among thermal degradation biological materials through its
intact peptidome with bovine milk [38]. Their results showed that the top four algorithms
used had values of accuracy, prediction, and recall above 0.96. This finding indicates that
using ML techniques in tandem with MALDI-MS can provide fast and accurate methods to
classify and identify biological products under different thermal treatment conditions [38].
ML techniques have also been used in antimicrobial resistance screening for Campylobacter
and Staphylococcus bacterial strains by MALDI [121,122]. Both experiments yielded high
accuracy and precision, and the methods could be used for rapid antimicrobial resistance
screening.

6. Conclusions and Outlook

The elucidation of plant-microbe interactions can improve the understanding of
their impacts on the environment and agriculture, as well as their roles in microbial
sustainability and survivability mechanisms. However, such interactions are difficult to
analyze or characterize. MSI has been shown to be a useful tool in deciphering some of
these processes, to map nutrient flows and metabolite distributions. The different regions
of a plant contain diverse varieties of microbes, each with distinguishing effects on the
plant. The interpretation of the ways in which the plants interact with bacteria can be
accomplished using MALDI, LAESI, SIMS, DESI, LDI, and other MSI techniques.

MSl s a field that is constantly adapting, and new innovations are made continuously.
Until the past decade, there was no suitable method to image the vacuum-liquid interface,
which has increased the amount of useful information gained from these plant-microbe in-
teractions. New laser-based systems and atmospheric pressure instruments have continued
to develop, leading to more applications for the analysis of these types of samples. Tan-
dem mass spectrometry and multimodal imaging methods are becoming more frequently
used in conjunction with one another for problems central to plant-microbe interactions.
Combining transmission electron microscopy (TEM) or confocal laser scanning microscopy
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(CLSM) with MSI has shown the benefits of multimodal imaging and continues to push
the boundaries of imaging sciences. There has been a surge in recent efforts to explore
existing machine learning models in the analysis of MSI datasets. Upcoming developments
to machine learning and artificial intelligence models are expected to accelerate the analysis
of large MSI datasets in a more efficient manner.

MSI provides molecular information about the bacterial-host interface, metabolite
mapping and identification, and depth analysis, all while having a spatial resolution of
0.2-200 um. When compared with the more established bulk omic techniques or opti-
cal imaging techniques (e.g., CLSM), MSI offers valuable spatial chemical mapping and
molecular-level information from the community to the single-cell level. Although no single
technique can cover the entire spatial scale or accomplish every task, it is anticipated that
MSI techniques will continue to evolve to expand the understanding of these interactions.
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AP Atmospheric Pressure

CHCA Cyano Hydroxycinnamic Acid

CLSM Confocal Laser Scanning Microscopy

DESI Desorption Electrospray Ionization

DHB Dihydroxybenzoic Acid

ESI Electrospray Ionization

fs Femtosecond

FT-ICR Fourier Transform Ion Cyclotron Resonance
GC-MS Gas Chromatography Mass Spectrometry
HPLC High-Pressure Liquid Chromatography

IR Infrared

LAAPPI Laser Ablation Atmospheric Pressure Photoionization
LAESI Laser Ablation Electrospray Ionization

LAPPI-MS  Laser Ablation Atmospheric Pressure Photoionization Mass Spectrometry
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LDI Laser Desorption Ionization

LDPI Laser Desorption Postionization

m/z Mass-to-Charge Ratio

MAF Maximum Autocorrelation Factors

MALDI Matrix-Assisted Laser Desorption Ionization
MCR Multivariate Curve Resolution

ML Machine Learning

MS Mass Spectrometry

MSI Mass Spectrometry Imaging

NMF Non-Negative Matrix Factorization

ns Nanosecond

PCA Principal Component Analysis

QToF Quadrupole Time-of-Flight

SA Sinapinic Acid

SALVI System for Analysis at the Liquid—Vacuum Interface
SIMS Secondary Ion Mass Spectrometry

SNMS Secondary Neutral Mass Spectrometry

SOM Self-Organizing Map

TEM Transmission Electron Microscopy

ToF Time-of-Flight

ToF-SIMS  Time-of-Flight Secondary Ion Mass Spectrometry
t-SNE t-Distributed Stochastic Neighbor Embedding
UHV Ultra-High Vacuum

UMAP Uniform Manifold Approximation Projection
uv Ultraviolet

\400% Vacuum Ultraviolet
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