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Abstract: Antimicrobial resistance is increasing despite new treatments being employed, so novel
strategies are required to ensure that bacterial infections remain treatable. Bacteriophages (phages;
bacteria viruses) have the potential to be used as natural antimicrobial methods to control bacterial
pathogens such as Salmonella spp. A Salmonella phage, Wara, was isolated from environmental water
samples at the Subaé River Basin, Salvador de Bahia, Brazil. The basin has environmental impacts in
its main watercourses arising from the dumping of domestic and industrial effluents and agricultural
and anthropological activities. The phage genome sequence was determined by Oxford Nanopore
Technologies (ONT) MinION and Illumina HiSeq sequencing, and assembly was carried out by Racon
(MinION) and Unicycler (Illumina, Illumina + MinION). The genome was annotated and compared
to other Salmonella phages using various bioinformatics approaches. MinION DNA sequencing
combined with Racon assembly gave the best complete genome sequence. Phylogenetic analysis
revealed that Wara is a member of the Tequintavirus genus. A lack of lysogeny genes, antimicrobial
resistance, and virulence genes indicated that Wara has therapeutic and biocontrol potential against
Salmonella species in healthcare and agriculture.
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1. Introduction

Diarrheal disease is the second leading cause of death in children under five years of
age and was responsible for the deaths of 370,000 children in 2019 [1]. Salmonella is one of
the leading causes of this disease and more than 2600 serotypes have been identified [2].
More than 50% of serotypes belong to S. enterica subsp. enterica and they are one of the main
pathogens associated with food contamination; considered to be responsible for around 94
million cases of gastrointestinal illnesses and 155,000 annual deaths worldwide [2]. In Brazil,
during the period 2000–2011, Salmonella spp. were reported as the major cause of foodborne
illness (42.27%), followed by Staphylococcus aureus (20.34%) and Escherichia coli (10.46%) [3].
The most isolated serotypes associated with non-typhoidal Salmonella infections worldwide
are S. Enteriditis (65%), followed by S. Typhimurium (12%) and S. Newport (4%) [2].

The first surveillance data on resistance to antibiotics released by the WHO revealed
high levels of resistance in bacterial infections in high- and low-income countries. Ac-
cording to the Global Antimicrobial Surveillance System [4], there was widespread oc-
currence of antibiotic resistance among 2,164,568 people tested for bacterial infections in
28 countries. The most reported antibiotic-resistant bacteria were Acinetobacter spp., E. coli,
Klebsiella pneumoniae, S. aureus, Streptococcus pneumoniae, Shigella spp., Neisseria gonorrhoeae,
and Salmonella spp. Antibiotic-resistant infections are also associated with greater mor-
bidity and mortality, which increases healthcare costs [4]. In low-income countries, the
affordability of second-line drugs and reduced access to healthcare can restrict the use of
newer broad-spectrum antibiotics, and as a result, increase morbidity and mortality from
antibiotic-resistant infections in these countries [5].

The increasing levels of antibiotic resistance in many bacterial infections have renewed
interest in the exploitation of bacteriophages (phages) as therapeutic and biocontrol agents
and the study of the molecular mechanisms underpinning productive infection [6–9].
Similarly, our understanding that prophages (the genomes of temperate bacteriophages
either integrated into bacterial chromosomes or maintained as extrachromosomal replicons)
can alter the fitness, phenotype, and global metabolism of bacteria necessitates careful
identification and genomic characterization of phages. There is also significant potential
for genetic engineering of phages, with applications that include transforming lysogenic
phages into purely lytic phages, extending host ranges, increasing antibiotic sensitivity, and
improving the lytic activity of phages via removal of repressor genes [10,11].

The identification of the life cycle of phages and their virulence and antimicrobial
resistance genes through genomic characterization is essential for the application of phage
therapy and biological control. Whole-genome sequencing (WGS) has proven very useful
in foodborne outbreak investigations and phage identification. Illumina short-read sequenc-
ing technology has proven to be robust for characterizing pathogens of clinical care [12],
but it is unable to resolve repetitive and GC-rich regions, thus producing unresolvable
regions in the underlying genome assembly [13]. In comparison to the Illumina sequencing
platform, there are also relatively few reports of phages sequenced by single-molecule
real-time (SMRT) technologies such as those provided by Oxford Nanopore Technologies
(ONT) or PacBio [9]. We are not aware of any studies that have tested hybrid genome
assembly, which combines short-read Illumina and SMRT sequencing data, for Salmonella
phages, so this is an aspect we wished to explore.

Phages have been used for the biocontrol of food-borne pathogens, such as Salmonella
in diverse food matrices [12–17]. Also, commercially available phage products such as
SalmoFresh, Armament, and Salmonelex have been used for the biocontrol of Salmonella in
foods [12,18]. Since bacteria and phages have co-evolved for billions of years, bacteria have
developed multiple defense systems against phages [19]. Therefore, to ensure continued
biocontrol efficacy, an ongoing search and identification of new candidate phages with high
lytic activity is warranted.

Considering the great potential of phages as antimicrobial agents in Salmonella bio-
control, this study was undertaken to isolate phages from the Subaé River in Brazil able
to infect S. enterica. The Subaé River was previously characterized as highly polluted,
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including the presence of Salmonella, so the probability of finding Salmonella phages was
thought to be higher than other regions [20]. Phenotypic and genetic analyses were used to
characterize one of the Salmonella phages identified with the aim of testing its safety and
suitability for further development as a biocontrol agent for this key pathogen of interest for
healthcare in Brazil. We also aimed to see if hybrid genomic sequencing provided benefits
in assembling phage genomes for subsequent safety analyses.

2. Materials and Methods
2.1. Isolation and Purification of Salmonella Phages

Environmental water samples were obtained from the Subaé River Basin, Salvador de
Bahia, Brazil. The basin has environmental impacts in its main watercourses arising from
the dumping of domestic and industrial effluents and agricultural and anthropological
activities [20]. Three samples of water (approximately 100 mL) were collected from the
Subaé River, Santo Amaro city, Salvador de Bahia, Brazil (12◦31′46.77′′ S 38◦44′1.24′′ W).

The samples were transported in a refrigerated box (4–8 ◦C) to a laboratory where
phage purification was undertaken immediately.

The water samples (1 mL) were each added to 10 mL of phage buffer (10 mM Tris
HCl (pH 7.5), 68.5 mM NaCl, 10 mM MgSO4 and 5 mM CaCl2), mixed and incubated
for 10 min at room temperature. The suspensions were filtered (0.22 µm, Kasvi, São José
dos Pinhais, Brazil). For enrichment, 2.5 mL of the filtered sample, 2.5 mL of log-phase
Salmonella Typhimurium ATCC 14028, and 10 mL of LB culture media (Kasvi) were mixed
and incubated for 18 h at 37 ◦C. The samples were centrifuged at 3500 rpm for 10 min
and the supernatant was filtered (0.22 µm, Kavsi). The filtrate (100 µL) was mixed with
100 µL log-phase Salmonella Typhimurium ATCC 14028 and 10 mM of CaCl2 (Dinámica,
São Paulo, Brazil), incubated at room temperature for 10 min, added to an LB top-agar
overlay plate, and incubated overnight at 37 ◦C. A single clear plaque was selected and
propagated on the host five times to ensure virulence and purity. Phage buffer (5 mL)
was added to each of the 5 confluent lysis agar plates, and the buffer was recovered and
centrifuged at 3500 rpm for 10 min and filtered (0.22 µm, Kavsi). The filtered suspensions
were ultra-centrifuged at 100,000× g for 1.5 h, and the supernatant was discarded, 500 µL of
SM buffer (50 mM Tris–HCl (pH 7.5), 100 mM NaCl, 8.1 mM MgSO4, and 0.01% (w/v)
gelatin) was added to the pellet and stored at 4 ◦C [21].

2.2. Preparation of High Titer Phage Stocks

The purified phages were diluted serially in SM buffer to give near-confluent lysis
of the host on the LB top-agar overlay plates. SM buffer (5 mL) was added to each plate
and left at room temperature for at least 1 h, and the plates were swirled regularly. The
buffer was decanted and vortex-mixed briefly before shaking for 30 min. The solution was
centrifuged at 11,000× g for 10 min, and 5.8% NaCl was added and incubated at 37 ◦C for
1 h [22]. Then, 10% PEG 6000 was added and incubated overnight at 4 ◦C. The supernatant
was removed by centrifugation at 15,000× g for 1 h and the pellet was suspended in LB.

2.3. Phage Host Range

The host range of the isolated phages was determined by challenging them against
34 strains of bacteria Salmonella (Table 1). Exponential growth phase suspensions of the host
strains were prepared (OD600 = 0.7). LB top-agar overlays were inoculated with 100 µL of
the host and poured on an LB agar base plate previously marked in a grid to allow for
identification of each inoculum [22]. After the solidification of the soft agar, 5 µL drops of
phage from a 2 × 103 PFU/mL suspension (~10 PFU/spot) were placed in triplicate on
double-layered agar LB plates containing each individual host strain [22,23]. Infectivity
was scored positive only when individual plaques were present.
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Table 1. Host range of Wara.

Salmonella enterica Serovar Strain EOP
(cf. 14028) Source */Reference

Enteritidis ATCC 13076 0.88 LCMG/UFMG
Enteritidis SE3 1.12 DBS/UEFS
Enteritidis SE4 0.88 DBS/UEFS
Heidelberg SH1 - DBS/UNIVASF
Heidelberg SH10 - DBS/UNIVASF
Heidelberg SH2 - DBS/UNIVASF
Heidelberg SH3 - DBS/UNIVASF
Heidelberg SH4 - DBS/UNIVASF
Heidelberg SH5 - DBS/UNIVASF
Heidelberg SH6 - DBS/UNIVASF
Heidelberg SH7 - DBS/UNIVASF
Heidelberg SH8 - DBS/UNIVASF
Heidelberg SH9 - DBS/UNIVASF
Minnesota SM1 1.29 DBS/UNIVASF
Minnesota SM10 0.88 DBS/UNIVASF
Minnesota SM2 - DBS/UNIVASF
Minnesota SM3 - DBS/UNIVASF
Minnesota SM4 - DBS/UNIVASF
Minnesota SM5 - DBS/UNIVASF
Minnesota SM6 - DBS/UNIVASF
Minnesota SM7 - DBS/UNIVASF
Minnesota SM8 - DBS/UNIVASF
Minnesota SM9 - DBS/UNIVASF
Typhi I - LCMG/UFMG
Typhi Ia 1.18 LCMG/UFMG
Typhi II - LCMG/UFMG
Typhi III - LCMG/UFMG
Typhi IV - LCMG/UFMG
Typhimurium 14028 1.00 ATCC
Typhimurium 14088 0.88 ATCC
Typhimurium II 1.00 LCMG/UFMG
Typhimurium III 1.29 LCMG/UFMG
Typhimurium IV - LCMG/UFMG

* LCMG (Laboratory of Cellular and Molecular Genetics), UFMG (Universidade Federal de Minas Gerais), ATCC
(American Type Culture Collection), DBS (Department of Biological Sciences), UNIVASF (Universidade Federal
do Vale do São Francisco), and UEFS (State University of Feira de Santana).

2.4. DNA Isolation

To isolate the phage DNA, 2 µL of 1 mg/mL DNAse (Sigma-Aldrich, Burlington, MO,
USA) and 20 µL of 1 mg/mL RNAse (ThermoFisher Scientific, Waltham, MA, USA) were
added to 2 mL of filtered culture supernatant for 30 min at 37 ◦C. Then, 40 µL of 2 M
ZnCl2 (Dinámica) was added and the suspension was incubated for 5 min at 37 ◦C and
centrifuged at 12,000× g for 1 min. The supernatant was discarded, and 1 mL of TES (0.1 M
Tris-HCl pH 8 (Sigma-Aldrich, SAO, Brazil), 0.1 M EDTA (Promega, Madison, WI, USA),
0.3% SDS (Promega) was added to the pellet and incubated for 15 min at 60 ◦C. Proteinase
K (40 µL, 20 mg/mL (ThermoFisher Scientific) was added and incubated for 90 min at
37 ◦C. Subsequently, 1.5 mL of 100% ethanol and 6 M Guanidine-HCl was added to the
1 mL sample. A QIAamp MinElute Virus Kit (Qiagen, Hilden, Germany) columns were
used for DNA isolation and purification.

2.5. Whole-Genome Sequencing by MinION

Nanopore WGS sequencing was carried out at the Molecular and Computational
Biology of Fungi Laboratory, Federal University of Minas Gerais (UFMG). The DNA
library was prepared with a ligation sequencing kit (SQKRAD004, Oxford Nanopore
Technologies, Oxford, UK) according to the manufacturer’s instructions. Libraries were
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sequenced with qualified FLO-MIN106 flow cells for 16 h on a MinION (Oxford Nanopore
Technologies) [24,25].

The quality of the sequencing was verified through the FastQC v0.11.9 program
(https://github.com/s-andrews/FastQC, accessed on 15 January 2022). The Porechop
v0.2.4 program (https://github.com/rrwick/Porechop, accessed on 15 January 2022) was
used for the detection and elimination of the adapters and the demultiplexing of the
Nanopore reads. Canu v2.1.1 was used to monitor and correct possible sequencing er-
rors [26]. The de novo assembly, based on de Bruijn graphs, of the corrected readings was
performed using Flye v2.8.3 [27]. Contigs were polished with Racon v1.4.22 [28] which
previously took the reads mapped by BWA v0.7.17 [29].

2.6. Whole-Genome Sequencing by Illumina

The library was prepared using 1 µg of purified phage DNA with the NEBNext
Fast DNA Fragmentation and Library Preparation Kit (New England Biolabs, MA, USA)
following the manufacturer’s recommendations. The library quality was assessed using
Agilent 2100 Bioanalyzer equipment, and paired-end DNA sequencing was carried out on
an Illumina HiSeq 2500 platform. After sequencing, the raw read quality was assessed using
FastQC v0.11.5 (https://github.com/s-andrews/FastQC, accessed on 15 January 2022).
The reads were assembled using SPAdes v3.15.3 [30]. Hybrid assemblies using [26] both
Illumina and MinION reads [31] were performed using Unicycler Genome quality, and the
completeness for each assembly was evaluated using QUAST v4.6.0 [32].

2.7. Genome Annotation and Analysis

Automated annotation of genes was performed via Prokka v1.14.6 [33] followed by
manual curation. The completeness of the phage genome sequences was tested using
checkV [34]. Preliminary identification of the closest relatives of the Wara phage was com-
pleted using PhageClouds (http://phagecompass.dk/, accessed on 2 January 2023). Phage-
Leads was used to assist in the prediction of therapeutic suitability (http://phagecompass.
dk/, accessed on 2 January 2023). Abricate was used to identify antimicrobial resistance and
virulence genes [35]. Genomic comparison of the Wara phage genome was performed using
the reference of Salmonella phage s131 (NC_048009.1) using BRIG (http://brig.sourceforge.
net/ (accessed on 2 January 2023)) [36] and CorelDRAW (https://www.coreldraw.com/la/
(accessed on 2 January 2023)).

2.8. Proteome-Based Clustering and Phylogenetic Analysis

To investigate the phage taxonomy assignment of Salmonella phage Wara, we per-
formed a shared proteome clustering analysis using the vConTACT2 tool [37]. The re-
sulting network graph was visualized and annotated with Gephi [38]. Further, we down-
loaded 71 genomes of the Markadamsvirinae subfamily from the NCBI RefSeq database
on December 2022. Comparative genome analysis of the Markadamsvirinae subfamily was
performed by annotating the RefSeq genomes with Prokka [33], followed by analysis with
Roary v.3.6, using an identity threshold of 80% to determine the gene clusters [39]. The core
genes were aligned with MAFFT v.7.394 [40], and a maximum-likelihood phylogenetic tree
was inferred with IQ-tree v.1.6.12 [41], using the best-fitting model GTR + F + I + G4. The
bootstrap support was evaluated using the ultra-fast bootstrap method with 1000 replicates.
The resulting phylogenetic tree was visualized and modified using iTOL v4 [42]. All-against-
all average nucleotide identity based on MUMmer alignment (ANIm) was performed with
pyani v.0.27 [43].

2.9. Electron Microscopy

The high titer phage stocks were prepared in LB media (see Section 2.2), and the solu-
tions were placed on electron microscopy (EM) grids and stained with 1% phosphotungstic
acid (Vetec, Bs. As., AR). Micrographs were taken at 135,000× at 120 kV using a Tecnai
G2-12-FEI Spirit Biotwin EM instrument [22] at the microscopy center at UFMG.

https://github.com/s-andrews/FastQC
https://github.com/rrwick/Porechop
https://github.com/s-andrews/FastQC
http://phagecompass.dk/
http://phagecompass.dk/
http://phagecompass.dk/
http://brig.sourceforge.net/
http://brig.sourceforge.net/
https://www.coreldraw.com/la/
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3. Results
3.1. Isolation of Salmonella Phages

Samples of water from the Subaé River located in Santo Amaro, Brazil, were analyzed
for the presence of phages able to infect Salmonella enterica sv. Typhimurium using en-
richment and top-agar overlay techniques. After the isolation and purification of many
candidate phages, one phage was identified for further study as it consistently produced
clear plaques; this phage was named Salmonella phage Wara (Figure 1).
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3.2. Electron Microscopy of Wara

Structural analysis of Wara was undertaken using transmission electronic microscopy
(TEM). The average dimensions of the phage Wara were a capsid diameter of 90.28 nm and
a tail length of 274.31 nm (Figure 1). The Wara capsid was of icosahedral type and the tail
appeared flexible, and these morphological features and dimensions corresponded to the
Siphovirus T5-type [4].

3.3. Wara Host Range

To determine the host range of Wara, 34 local and overseas strains of S. enterica of
some of the key serotypes of concern for Brazil were tested for infectivity using a top-agar
assay. Wara showed activity against nine of these strains, including infectivity on Salmonella
serovars Enteritidis, Typhimurium, and Minnesota but not Heidelberg. (Table 1). Efficiency
of plating on the susceptible strains did not indicate any correlation to serovar and was in a
narrow range (0.88–1.29, relative to strain 14028).

3.4. Wara Whole-Genome Sequencing and Assembly

The genome of Wara was analyzed using two next-generation sequencing platforms:
ONT MinION and Illumina HiSeq. Two platforms were used as we wished to compare the
effectiveness of these different approaches for sequencing the phages. After pre-processing,
the number of reads from HiSeq was 40,000 and the number of reads from MinION was
4000. The sequencing depth for HiSeq was >100× and for MinION, it was 30×. The number
of reads was 2,829,936 bp for Illumina HiSeq and 22,541 bp for MinION.

Three assembly strategies were tested for the sequence data from the two platforms:
(1) SPAdes assembly on HiSeq data, (2) Racon assembly on MinION data, and (3) Unicycler
hybrid assembly on both HiSeq and MinION data (Table 2). QUAST evaluations of the
genome assemblies’ suggested MinION with Racon assembly showed the best performance,
producing 1 contig with a total length of 112,042 bp and N50 of 112,042 bp (Table 2). Accord-
ing to the BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 15 January 2022)
analysis, for 92% of the query cover, a 0 E-value was reported for the Wara phage using
the three assemblies, 94.48% of identity using MinION, 96.37% of identity using HiSeq
assembly, and 96.36% of identity using hybrid assembly to the same phage, Salmonella
phage S131 (NC_048009.1).

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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Table 2. Summary statistics for the assembled genome of Wara.

Assembly Method Racon SPAdes Unicycler

Sequencing Platform MinION HiSeq MinION/HiSeq Reference
NC_048009.1

Number of contigs ≥ 0 bp 1 112 1 1
Number of contigs ≥ 50,000 bp 1 1 1 1
Largest contigs (bp) 112,042 110,012 110,012 110,091
Total length ≥ 50,000 bp 112,042 110,012 110,012 110,091
GC (%) 39.15 39.17 39.17 39.22
N50 112,042 110,012 110,012 110,091
L50 1 1 1 1

3.5. Wara Genome Annotation and Analysis

Annotation of the three Wara phage genome assemblies and the reference phage
genome S131 was undertaken using Prokka with the Caudovirales database (Table 3). The
Racon assembly of the MinION data identified the highest number of coding sequences
(CDS; 170), but all three assembly methods produced the same number of tRNAs (21).
These results and the assembly statistics led us to undertake the phage Wara genome
assembly using Racon on the MinION reads to compare with the reference genome S131.
Genes encoding the major phage proteins such as the terminase, major capsid, receptor b,
tail tube, DNA polymerase, DNA ligase, and protein A1 were identified, along with
hypothetical unknown proteins, and the genome structure compared with Salmonella phage
S131 (Figure 2).

Table 3. Prokka annotation analyses using the Caudovirales database.

Feature Reference
NC_048009.1

Racon/
MinION

SPAdes/
HiSeq

Unicycler/
HiSeq + MinION

CDS 155 170 161 156
tRNA 23 21 21 21Microorganisms 2023, 11, x FOR PEER REVIEW 8 of 14 
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Figure 2. Genome organization and structural representation of Salmonella phage Wara based upon
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To determine genome completeness, CheckV was applied to the three assemblies. The
results showed high quality: a lower completeness of 88.16% and an upper completeness
of 100%, no host contamination was detected, and 137 genes were predicted. PhageLeads
analysis of the Wara genome did not find any predicted temperate lifestyle genes. Antimi-
crobial resistance and virulence genes were searched in the Wara genome using Abricate,
but no genes of these types were detected. PhageClouds analysis of the Wara genome
suggested that Phage_NBSal003 was the closest nucleotide match, with a distance of 0.0376.

3.6. Proteome-Based Clustering and Phylogenetic Analysis of Wara

Proteome clustering and network analysis using vConTACT2 [37] assigned the Wara
genome to a viral cluster with 24 known phages, all of them currently classified as De-
merecviridae (Figure 3). To further refine the phylogeny, we compared the Wara genome
with members of the Markadamsvirinae family, and we downloaded all these genomes
from the RefSeq database (n = 71, December 2022). The core genome (genes present in
at least 96% of the genomes) of the 72 Markadamsvirinae genomes was determined us-
ing Roary [39] comprising a total of 46 core genes. To infer evolutionary relationships
between the Wara isolate and the RefSeq genomes, we performed a maximum-likelihood
phylogenetic reconstruction using the 46 core genes. Our results showed that Salmonella
phage Wara belongs to the monophyletic clade containing 34 phages of Tequintavirus
(Figure 4A), representing a new member of this genus. These results are supported by ANI
analysis, which showed a pairwise genomic identity above 90% of the Wara phage with
other Tequintavirus genomes (Figure 4B).
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significant similarity between proteomes of connected phages.
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Figure 4. Phylogeny analysis and genomic diversity of the Markadamsvirinae subfamily. (A) Phy-
logenetic tree of Markadamsvirinae genomes highlighting two phylogenetic clades that correspond
to the genera Epseptmavirus and Tequintavirus. The Salmonella phage Wara genome is in bold and
highlighted with an orange star. A total of 46 core genes were used to build a maximum-likelihood
phylogenetic tree using IQ-tree (see methods for details). Bootstrap values below and above 70% are
represented by orange and black dots, respectively. (B) Pairwise average nucleotide identity (ANI)
was calculated with 72 Markadamsvirinae genomes. Colors depict the degree of genome identity. The
Salmonella phage Wara genome is highlighted with a black star.

4. Discussion

The Subáe River frequently has livestock in and around it and appears to have high
loads of organic waste. Recently, our group has described the isolation of Salmonella from
the banks of this waterway [8]. In this study, a Salmonella phage, Wara, was isolated from the
water of the river and the phage produced clear plaques on top-agar overlay plates which
suggested that the phage was virulent rather than temperate. Visualization of the phage
structure by TEM suggested that Wara was a Siphovirus of the T5 type [44]. T5 phages
typically consist of an icosahedral capsid containing a large molecule of double-stranded
DNA (dsDNA) (121.75 kbp) attached to a long flexible noncontractile tail [45], which is
very similar to the morphological and molecular data we obtained for Wara.

The host range is an important property to determine for phages, particularly if they
are to be used for biocontrol. The Salmonella phage Wara infected several serotypes of
Salmonella such as Enteritidis, Typhi, and Typhimurium and only a few types of Minnesota,
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with no Heidelberg serovars infected. Similarly, Ref. [46] reported that Salmonella phages
Salmacey-1, Salmacey-2, and Salmacey-3 had lytic activity on multiple serovars including
Typhimurium, Enteritidis, Kentucky, and Typhi. It is likely that the receptor genes iden-
tified, receptor b and the tail protein, are responsible for the host specificity of the Wara
phage. Further study of these receptors and detailed investigations of phage kinetics on
these hosts would be valuable for increasing the knowledge of Wara phage–host interac-
tions, the ecology and evolution of phages in general, and their application in health and
veterinary care.

However, phage host range is not always genera restricted, and the selection of
subpopulations of phages capable of amplification in alternative genera may provide a tool
for the selection of broad-hostrange phages for the pathogen of interest [47]. The selection
of non-pathogenic host isolates to support the replication of Salmonella bacteriophages may
also allow improved safety for phage applications to farmed animals because this would
reduce the purification requirements of the phages(s) [47]. Another study showed that
the E4 phage can infect different Salmonella enterica serovars, including all tested motile
serovars and non-motile Salmonella pullorum [48]. It could not infect other Gram-negative
and Gram-positive bacteria, comprising lactobacilli, which are part of the normal flora [48].
Even though host specificity occasionally restricts their practical application, it is still
considered one of the significant advantages of using phages as this causes the balance
of microflora not to be disturbed during treatment, which in turn prevents secondary
infections and accelerates the treatment process [49]. Nonetheless, broad-host-range phages
are, on the other hand, regarded as valuable tools in some uses. In respect to phage therapy,
a broad-host-range phage that eliminates various bacterial pathogen species would be
analogous to a broad-spectrum antibiotic [50]. According to these features, Wara can be a
candidate for biological control and phage therapy.

The genome sequence of Wara was determined using both MinION and Illumina
technologies, either alone or in combination (hybrid assembly). The sequencing and
assembly quality data indicated that MinION data alone, with Racon assembly, gave the
best results and identified the most coding sequences. Although, no major differences were
detected between the different assemblies and the reference Salmonella phage S131 [51].
However, it could be that the pipeline used for hybrid assembly in this study needs to be
improved because this pipeline is optimized for bacteria and not phages. In comparison
to Illumina sequencing, there are relatively few reports of phages sequenced solely by
MinION or other single-molecule sequencing technologies such as PacBio. However, both
MinION and PacBio were successfully applied for the detection of phages with modified
nucleotides or phages shown to be refractory to conventional sequencing approaches [9].

Phage genome analysis is essential in order to identify potential toxin-encoding,
antibiotic, and virulence genes before further characterization and development of phages
for biocontrol or phage therapy. Therefore, the use of the best sequencing, assembly, and
annotation tools is vital for this process.

Most of the protein-coding sequences identified in the Wara genome were hypothetical
proteins. Rivera et al. [52] described Salmonella phage STGO-35-1, and Wara-like receptor-
binding proteins and tail tube proteins were identified, along with structural protein major
capsid and DNA polymerase. A Salmonella phage, SSBI34, was reported by Sattar et al., [53]
and like our study, it encoded a DNA ligase and DNA polymerase I and III, indicating inde-
pendence from host polymerases for DNA replication. The A1-protein-encoding gene was
detected in Wara, which is involved in the degradation of host DNA and the shutoff of host
genes and phage pre-early genes (https://www.uniprot.org/uniprotkb/Q6QGT3/entry,
accessed on 15 January 2022).

Phylogenetic and network analysis showed Salmonella phage Wara belonged to the
Markadamsvirinae subfamily, Tequintavirus genus. Moreover, proteome analysis revealed
the Wara genome had similarity with phages belonging to the Markadamsvirinae sub-
family associated with bacterial hosts in the enteric genera Salmonella, Escherichia, Shigella,
and Yersinia.

https://www.uniprot.org/uniprotkb/Q6QGT3/entry
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A genomic biosafety analysis indicated that the Wara phage did not have a lysogenic
cycle, and no antimicrobial resistance or bacterial virulence genes were detected. Therefore,
the Wara phage has the potential to be considered for use in phage therapy and biological
control applications for Salmonella and potentially other species.

5. Conclusions

We isolated and characterized a Salmonella phage from the water of the Subáe River
in Santo Amaro, Brazil. TEM and genome analysis indicated that Wara was a member of
the Tequintavirus genus. We demonstrated that MinION sequencing and Racon assembly
were the best tools for the assembly of the genome sequence. The lack of lysogeny genes,
antimicrobial resistance. and virulence genes indicated that Wara has therapeutic and
biocontrol potential against Salmonella species in healthcare and agriculture.
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