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Abstract: Replant syndrome (RS) is a global problem characterized by reduced growth, production
life, and yields of tree fruit/nut orchards. RS etiology is unclear, but repeated monoculture plantings
are thought to develop a pathogenic soil microbiome. This study aimed to evaluate a biological
approach that could reduce RS in peach (Prunus persica) orchards by developing a healthy soil
bacteriome. Soil disinfection via autoclave followed by cover cropping and cover crop incorporation
was found to distinctly alter the peach soil bacteriome but did not affect the RS etiology of RS-
susceptible ‘Lovell’ peach seedlings. In contrast, non-autoclaved soil followed by cover cropping and
incorporation altered the soil bacteriome to a lesser degree than autoclaving but induced significant
peach growth. Non-autoclaved and autoclaved soil bacteriomes were compared to highlight bacterial
taxa promoted by soil disinfection prior to growing peaches. Differential abundance shows a loss of
potentially beneficial bacteria due to soil disinfection. The treatment with the highest peach biomass
was non-autoclaved soil with a cover crop history of alfalfa, corn, and tomato. Beneficial bacterial
species that were cultivated exclusively in the peach rhizosphere of non-autoclaved soils with a cover
crop history were Paenibacillus castaneae and Bellilinea caldifistulae. In summary, the non-autoclaved
soils show continuous enhancement of beneficial bacteria at each cropping phase, culminating in an
enriched rhizosphere which may help alleviate RS in peaches.

Keywords: plant performance; replant syndrome; rhizosphere; soil bacteriome

1. Introduction

Replant syndrome (RS), commonly referred to as replant disease, is a global soil-
related challenge induced in trees newly planted upon old orchard sites where repeated
monoculture leads to stunted tree growth and reduced yields [1–4]. RS etiology is not
fully understood, but reduced orchard productivity due to RS is caused by a microbial
complex of phytopathogens/competitors [5]. Replant symptoms are nonspecific, affect
multiple genera of fruit trees, and often correlate with pathogenic generalists such as
root-lesion nematodes and Fusarium spp. [6–8]. Biotic factors such as microorganisms
contribute to RS, which is supported by studies where Prunus persica (peach tree) biomass
is higher in autoclaved soils than in non-autoclaved soils [9]. Nonetheless, abiotic factors
such as decreased soil fertility, poor soil structure, and nonoptimal pH can exacerbate
RS [5,10]. The consensus that the previous plant of a similar genotype is responsible for
initiating RS has supported the notion of intraspecific allelopathy, known as autotoxicity,
is a contributing factor [10,11]. However, RS can persist in soils for several years, and it
is unknown whether these chemicals are stable for years [9]. Recent understanding of
RS and autotoxicity suggests these chemicals are rapidly degraded by rhizosphere and
soil microbes but may induce a microbial composition shift in the soil from beneficials to
pathogenic or nutrient competitors [10].
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The soil microbiome is highly connected, and disturbances can affect bacteriome
composition and functionality [12]. Cover crops, tillage, solarization, and fumigation can
change microbial communities. Previous management of RS involved chemical fumigation
of orchard soils before planting seedlings [4,13]. Soil fumigation induced a growth response
for trees in RS soils which lasted one year, but RS symptoms reappeared within two growing
seasons [14]. Environmental regulations restrict the use of fumigants that restrict their use
in orchards [4]. Thus, sustainable soil practices are needed to alleviate RS.

Cover cropping is a sustainable soil strategy where crops are planted to regenerate soil
health rather than to be harvested for economic value. Cover cropping can conserve soil,
decrease water runoff, and enhance soil organic matter content [15]. Since cover crops affect
the chemical and physical properties of the soil, they also modify the biological properties of
the rhizosphere, i.e., the narrow region of soil where root–microbial associations occur [16].
Root–microbial associations within the rhizosphere can potentially improve soil fertility
and degrade toxic chemicals [17]. Furthermore, beneficial associations in the rhizosphere
can influence pathogen populations [18].

In the current study, alfalfa, fescue, corn, and tomato were tested as cover crops
for the purpose of reducing RS symptoms in peach. Additionally, autoclaving was used
to determine if the benefits of soil disinfection could complement those of cover crops.
Previous studies focused on the identification of reoccurring phytopathogenic instigators
of RS, such as fungi, oomycetes, and nematodes. The scope of this study was to emphasize
sustainable agricultural techniques that promoted peach health and to identify potential
plant growth promoting rhizobacteria for future inoculation studies. These findings show
some drawbacks of soil disinfection with cover cropping as a favorable soil regenerative
strategy. Furthermore, correlations between microbial taxa and RS alleviation in peaches
were identified.

2. Materials and Methods
2.1. Soil Sampling Site and Disinfection

RS soil for the experiment was acquired from a peach orchard research block, which
was established in 2007 at the Colorado State University’s experimental orchard at the
Western Colorado Research Center in Orchard Mesa, CO. This peach orchard was es-
tablished using Prunus persica (peach) ‘Cresthaven’ scions with grafted peach ‘Lovell’
rootstocks. The soils from this area have been described as Billings silty clay loam (calcare-
ous, mesic Typic Torrifluvents). RS soils were transported to Colorado State University’s
Horticultural Center.

In the Horticultural Center, soils were passed through a metal sieve (2 cm wide) and
homogenized. Samples of the replant soil were collected before and after autoclaving and
stored at −80 ◦C to be used as controls for soil bacteriome analysis. Soil was placed in
autoclave bags and then in a STERIS brand steam autoclave set on the 40 min liquid cycle
at 121 ◦C, which was run three times. In between cycles, bags carrying the soil were shaken
to redistribute the soil before being returned to the autoclave for a second and third time.

Then, 4 L black plastic pots (n = 100) were lined with Vigoro weed control fabric
medium duty, placed on Vigoro 15.24 cm plastic plant saucers, and filled with c. 2.1 kg of
either untreated RS soil (n = 50) or autoclaved RS soil (n = 50).

2.2. Seed Sterilization and Density for Cover Crops

Four crops were selected for this study: natural sweet F1 OG hybrid bicolor Sh2
corn (Zea mays), hybrid cherry tomato SUN gold F1 (Solanum lycopersicum), ranger alfalfa
(Medicago sativa), and a fine fescue species mixture of chewing fescue (Festuca rubra ssp.
Commutate), hard fescue (Festuca longifolia), and creeping red fescue (Festuca rubra). Alfalfa
and fescue were selected since these cover crops are known to successfully establish in
Colorado soils [19,20]. Tomato and corn have been shown to induce microbial shifts in RS
soils under autoclaved conditions, which could potentially create a beneficial microbiome
for the incoming peach crop cycle [9]. All cover crops were considered genetically distant
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from peaches. Seed densities were calculated by using recommended crop seed count or
weight per square meter and adjusted by the 0.0222 m2 surface area of a 4 L pot. Corn
and tomato treatments had one plant per pot [21,22]. For fescue, the recommended use
of 50 lbs of seed per acre for high elevation soil in the western United States was used to
calculate 0.54 g of fescue seeds per pot [23]. For alfalfa, the recommended use of 75 seeds
of alfalfa per square foot was used to calculate 0.038 g of alfalfa seeds per pot [24]. For seed
sterilization, 15 mL falcon tubes with seeds were filled with 3% NaOCl and vortexed at
max speed (setting 10: 600–2700 RPM) for one minute. NaOCl was removed and seeds
were then rinsed with autoclaved distilled water and vortexed at max speed for one minute,
with this rinse step being repeated 5 times. Seeds were immediately planted into the soil.
Each crop treatment had 10 replicates for autoclaved and non-autoclaved soils. Pots with
only autoclaved and non-autoclaved soils served as a no-plant control and were watered to
water-holding capacity daily.

2.3. Establishing the Cover Crops in a Greenhouse

The experiment was factorial with two factors: soil disinfection (2 levels: autoclave
and non-autoclaved) and cover crops (5 levels: corn, tomato, alfalfa, fescue, and a no-plant
control). Pots (n = 100) were set in a completely randomized design (5× 20) using an online
random block design generator (https://www.randomizer.org accessed on 26 February
2021) with one treatment per row. Pots were watered at water-holding capacity (c. 200 mL)
for six days per week for 12 weeks. After 12 weeks, bulk soil samples were collected with
a hand-sized soil probe either in the center of the pot or 2 cm from the base of the plant
at a depth of 7 cm. Above ground crop biomass was cut into <2 cm pieces using scissors
that were washed in 3% NaOCl followed by heat sterilization using a Bacti-Cinerator III™
from Monoject (St. Louis, MO, USA) in between samples. Above ground fresh biomass of
cover crops was recorded, immediately incorporated into the soil within the first 3 cm of
the same pot in which the crops had been grown, and left to decompose. After two weeks,
bulk soil samples were collected.

2.4. Continued Greenhouse Experiment with Peaches

‘Lovell’ (Prunus persica) rootstock cultivar was grown from seeds in liners using pro-
mix potting media in a greenhouse for 28 days. This RS-susceptible ‘Lovell’ was selected
since this rootstock cultivar was grown in the orchard where the RS soil was collected.
These four-week-old peach seedlings were transplanted into the pots that previously had
cover crops and no-cover-crop controls. Peach seedlings were watered daily with c. 150 mL
of tap water. Weeds and cover crops were continuously removed, and no fertilizer was
added. Peaches grew for 22 weeks. For microbial analysis, bulk soil and rhizosphere soil
was collected. Using a soil probe, bulk soil samples were collected from the top 7 cm of soil
within 2 cm of the base of the tree trunk and immediately stored at −20 ◦C. Rhizosphere
was defined as the soil adhering to the roots after the removal of bulk soil and gently
shaking the root system. Rhizosphere soil was taken from light colored roots, placed into
15 mL falcon tubes, and immediately stored at −20 ◦C. Remaining soil on root systems
were removed with tap water. Biomass was separated as either above- or below-ground
and its weight was recorded. Fresh biomass samples were oven-dried at 90 ◦C for 72 h and
were weighed for above- and below-ground dry biomass. Greenhouse experiments ran
between 20 June and 1 August, humidity set point was 70%, cool set point was 24–26.5 ◦C,
heat set point was 18–21 ◦C, relative humidity ranged from 21–80% (average = 55.5%), and
actual temperature ranged from 18.9–38.3 ◦C (average = 25.4 ◦C).

2.5. Soil Analysis

Soil analysis (total nutrient digest and Haney H2O extract) was performed by WARD
Laboratories, Inc. (Kearney, NE, USA) [25] on three bulk soil samples per treatment. Total
nutrient digest analysis quantified the total values of elements in a soil (C, N, P, K, Ca, S,
Mg, B, Zn, Mn, Fe, Cu, Mo). The Haney test uses different extracts from traditional soil test
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labs, and the extract analysis quantifies nutrients within the soil that are available to soil
microorganisms by measuring soil respiration, water-soluble organic carbon, and nitrogen.
Soil analyses of total nutrient digest and Haney H2O extract by soil treatment of autoclave,
cover crop, and control treatments can be found in Table S1.

2.6. DNA Extraction

Total genomic DNA (gDNA) was extracted from 0.25 g of bulk and peach rhizosphere
soil in a QIAcube instrument (Qiagen, Germantown, MD, USA) using PowerSoil® DNA
kits by Qiagen. All DNA extractions were performed according to Qiagen’s instructions
with a final elution volume of 100 µL. DNA concentration was quantified using a Qubit
with broad range assay solutions. Of the ten replicates used for biomass, a subset of
five replicates were used for bacterial DNA microbial analysis. Bulk soil samples were
taken after cover crops were grown for 12 weeks, after cover crops had been incorporated
for two weeks, and after peach trees had been growing for 22 weeks. The controls used
were pre-extracted Zymo gDNA (Zymo Research Corporation, Irvine, CA, USA) (n = 4),
HPLC water (n = 3), stock soil (n = 4), non-autoclaved soil (n = 5), and autoclaved soil
(n = 4). In total, 220 samples were extracted.

2.7. Oxford Nanopore Library Preparation, Sequencing, and Bioinformatics Pipeline

Based on Qubit concentrations (ng/µL), extracted DNA was diluted 10× with HPLC
water to lower DNA concentrations and minimize potential PCR inhibitors. Mastermix
consisted of 10 µL Phusion HSII master mix, 7.2 µL H2O, 0.4 µL forward primer, and 0.4 µL
reverse primer for a total of 18 µL Mastermix per 2 µL sample. Bacterial primers used were
Bact_27F-Mn (5′-TTTCTGTTGGTGCTGATATTGCAGRGTTYGATYMTGGCTCAG-3′) and
Bact_1492R-Mn (5′-ACTTGCCTGTCGCTCTATCTTC TACCTTGTTACGACTT-3′). Poly-
merase chain reaction (PCR) settings were 98 ◦C for 30 s, 98 ◦C for 15 s, 50 ◦C for 15 s, and
72 ◦C for 60 s for 25 cycles, and 72 ◦C for 5 min. After PCR, equal volumes of DNA and
beads were mixed. A 96-pronged magnetic stand moved beads with adhering DNA into
two 30 s rinses of 70% EtOH. DNA was eluted in a 96-well plate with 40 µL PCR grade
water and beads were removed using a magnetic stand. DNA was quantified using a Qubit
with high sensitivity assay solutions. The second PCR settings were 98 ◦C for 30 s, 98 ◦C
for 15 s, 62 ◦C for 15 s, and 72 ◦C for 60 s for 25 cycles, and 72 ◦C for 5 min.

After a second PCR, DNA and barcodes were pooled in AMPure bead solution in a
96-well plate. Wells with suspended DNA and barcodes were pooled into a clean Lo-Bind
tube. MinION sequencer was loaded with a flow cell (R9.4.1) and was prepared for DNA
loading. To prepare the flow cell, air (c. 20 µL) was removed using a pipette. The flow cell
was then primed with flush buffer, and pooled DNA was loaded into the sampling port.
MinKNOW software (v23.04.5) was used to sequence the pooled library for 48 h. Raw data
were downloaded and converted into fastq file format using Guppy_basecaller (v6.0.1).
Barcodes were sorted by de-multiplex using Guppy_barcoder using barcode kit EXP-
PBC096, trimmed, and reads were then filtered by quality and length (Filtlong minimum
length: 1000 and mean quality: 70) (Cutadapt: -m 1000 -M 2000). Chimeras were identified
and removed by Vsearch. Bacterial taxa were identified using EMU NCBI Reference
Database. EMU error correction removed identified bacterial taxa based on alignment and
abundance profiles. Bacterial taxa with <one per 10,000 reads were removed. Sequencing
data came from three separate sequence runs, which were pooled for data analysis.

2.8. Statistical Analysis

All statistical analyses were performed in RStudio Version 1.4.1103. A non-parametric
test, the Kruskal–Wallis rank sum test, was used to analyze fresh cover crop biomass
and peach dry biomass by soil treatment (autoclaved vs. non-autoclaved). Pairwise
comparisons using the Wilcoxon rank sum exact test was used to infer differences between
plant biomass and soil treatment. For regressions analyzing soil nutrients from the end of
the peach experiment, peach dry biomass was used. The Lagrange multiplier test was used
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for the regressions fit with broom and tidyverse packages in RStudio. The vegan package
was used to test for significant differences between treatments with perMANOVA and
visualized with a constrained principal coordinate analysis (PCoA). Bray–Cutis was used
to determine distance for PCoAs. Homogeneity of multivariate dispersions was measured
using betadisper from the vegan package. Differential abundance analysis was based on
bacterial species counts that were transformed using a log2 fold-change and the Benjamini
and Hochberg statistical method using the false discovery rate function (FDR) and 0.05 as
the accepted threshold for the adjusted p-value.

3. Results
3.1. Effect of Soil Disinfection on Cover Crop Biomass

The Kruskal–Wallis test for cover crop above-ground biomass shows the soil treatment
(autoclaved vs. non-autoclaved) is significant, χ2 = 16.398 (df = 1, p-value < 0.001). All cover
crops grown in autoclaved soils have a higher biomass than cover crops grown in non-
autoclaved soils. Biomass of corn (p < 0.001), fescue (p < 0.001), and tomato (p < 0.001) are
significantly different between their respective autoclaved and non-autoclaved treatments.
However, alfalfa crop biomass is not significantly different (p = 0.459) between the auto-
claved and non-autoclaved soil treatments (Figure 1). Alfalfa’s biomass in non-autoclaved
soils shows a 34.6% reduction compared to alfalfa grown in autoclaved soils. Corn grown
in autoclaved soils has the highest biomass out of all autoclaved and non-autoclaved cover
crop treatments. In this study, tomato plants grown in untreated soils (RS soils) have a
biomass reduction of 85.8% compared to tomato plants grown in autoclaved soils. This
supports the trend that soil disinfection improves plant health.
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Figure 1. Above-ground fresh biomass of cover crops. Pairwise comparisons using Wilcoxon rank
sum exact test to infer significance for each cover crop by autoclaved and non-autoclaved soil
treatment. Error bars use the equation ymin/ymax = mean ± standard deviation. Significance
(p < 0.01) for pairwise comparisons were denoted with *.

3.2. Effect of Cover Crop and Biomass Incorporation on the Soil Microbiome

The bulk soil bacteriome where cover crops had been growing for 12 weeks were
analyzed. The perMANOVA test shows that crop type (p = 0.001), autoclaved and non-
autoclaved (p = 0.001), and the interaction (p = 0.03) between the two factors are significant
and the CAP axes explain a total of 37.9% of the variance for all samples (Figure 2A).
Separation between autoclaved and non-autoclaved soils is clear along axis 1 and explains
29.9% of the variance. For cover crops, autoclaved soils (average distance to median: 0.400)
have a lower dispersion than non-autoclaved soils (average distance to median: 0.411)
(Figure 2A). Within the autoclaved soil treatment, cover crop bulk soil microbiomes overlap
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while cover crop treatment has a greater role in shaping the microbiome in non-autoclaved
soils. Corn grown in autoclaved soils has the highest biomass after 12 weeks of growth,
but its microbiome does not show clear separation from the other cover crops. In the bulk
soil of the cover crops, no-cover-crop controls overlap with the crop treatments in either of
their respective soil treatments.
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Figure 2. Cover crop bulk soil bacteriomes. (A) Constrained principal coordinate analysis (PCoA)
using Bray–Curtis distance for cover crop bulk soil bacteriomes. Circle shape represents autoclaved
and squares non-autoclaved. Colors indicate cover crop treatment: alfalfa (purple), fescue (green),
corn (yellow), tomato (red), and no crop (gray). (B) Differential abundance Venn diagram shows a
count of bacteria species in higher abundancies in autoclaved compared to non-autoclaved cover
crop bulk soils separated by crop. Orange circle indicates common bacteria found to be promoted
within all cover crop treatments. Color gradient displays low bacterial taxa species counts in dark
blue and higher counts in light blue.

Microbes from the autoclaved soil treatment of cover crop bulk soils were of interest
due to the increase in biomass in all cover crops. Although the positive effects of autoclav-
ing on cover crop growth are primarily due to the removal of or reduction in potentially
negative microorganisms, this study aimed to identify beneficial bacteria instead of high-
lighting deleterious bacteria that has been previously studied. Thus, differential abundance
between non-autoclaved and autoclaved cover crop bulk soils highlights bacteria whose
abundances are significantly different (Tables S2 and S3). There are 14 bacterial taxa whose
abundance is driven by autoclaving, since all cover crops and no-cover-crop controls share
these microbes. No common bacteria are found to be promoted within just the four crop
treatments (indicated by the orange circle in Figure 2B). Autoclaved treatments with the
highest unique bacterial taxa are no crop (n = 48) and fescue (n = 33), followed by tomato
(n = 13), corn (n = 7), and alfalfa (n = 3). In addition, non-autoclaved cover crop bulk soil
treatments show 26 bacterial taxa whose abundances are higher than in autoclaved soils
and are shared within all cover crop treatments (Figure S3).

Bulk soils after the cover crop had been incorporated and decomposed for two weeks
continued to show separation between autoclaved and non-autoclaved microbiomes
(Figure 3). The perMANOVA test shows that cover crop history (p = 0.001) and auto-
claved soil treatment (p = 0.001) are significant and explain a total of 35.7% of the variance.
The interaction between cover crop history and autoclaved soil treatment is not significant
(p = 0.105) (Figure 3). Similar as in crop history, the microbiome corresponding to bulk soil
after cover crop incorporation shows a tighter cluster in autoclaved soils (Figure 3). Inter-
estingly, the incorporation of alfalfa biomass in non-autoclaved soils shows an independent
cluster compared to other cover crop treatments. Bacterial drivers (identified by the differ-
ential abundance) of the incorporated cover crop bulk soil microbiome that are found in
all crops and no-cover-crop controls continue to have increased abundance in their respec-
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tive autoclaved soil treatment (Figure 3). In autoclaved cover-crop-incorporated soils, the
bacterial species Tumebacillus soli, Cytobacillus oceanisediminis, and Mesobacillus subterraneus
are found to be bacterial drivers of the microbiome (Figure 3) and these are the same mi-
crobes found in autoclaved cover crop soils (Table S2). In non-autoclaved soil incorporated
with cover crops, the bacterial species Vicinamibacter silvestris, Skermanella stibiiresistens,
Bacillus megaterium, Nostoc sp. HK-01, and Nostoc sp. PCC 7107 are primarily found
(Figure 3), which are also present in non-autoclaved cover crop soils (Table S3).
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Figure 3. Biplot of a constrained principal coordinate analysis (PCoA) using Bray–Curtis
distance for cover-crop-incorporated bulk soil bacteriome. Circles represent autoclaved and
squares non-autoclaved. Colors indicate cover crop treatment: alfalfa (purple), fescue (green),
corn (yellow), tomato (red), and no crop (gray). Bacterial taxa: 1. Vicinamibacter silvestris, 2.
Skermanella stibiiresistens, 3. Bacillus megaterium, 4. Nostoc sp. PCC7107, 5. Nostoc sp. Hk-01, 6.
Cytobacillus oceanisediminis, 7. Mesobacillus subterraneus, 8. Tumebacillus soli.

3.3. Effect of Soil Disinfection and Cover Crop Incorporation on Peach Growth

The Kruskal–Wallis test for peach dry total biomass shows that the soil treatment
effect (autoclaved vs. non-autoclaved) is significant (χ2 = 35.298, df = 1, p-value < 0.001).
Biomass is higher for peach trees grown in soil that has not been disinfected via steam
autoclave, and it is observed for most soil cover crop treatments, with alfalfa being the
exception (p = 0.095) (Figure 4A). Pairwise comparisons using corn (p = 0.002), fescue
(p < 0.001), and tomato (p < 0.001) cover crops show a significant difference in biomass
within autoclaved and non-autoclaved soil treatment pairs (Figure 4A). Between the two no
crop controls that later had peaches growing, there was no significant difference in biomass
within autoclaved and non-autoclaved soil treatments (p = 0.363) (Figure 4B). Additionally,
autoclaved soils with a cover crop history of fescue (p < 0.001) and corn (p = 0.002) perform
worse than autoclaved soils with a history of no cover crops (Figure 4B). Within autoclaved
soil treatments, peaches grown in alfalfa and tomato have a higher biomass than peach trees
in soils that previously had corn and fescue. In all, peach trees grown in non-autoclaved
soils have the highest biomass compared to peaches grown in autoclaved soils.
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Figure 4. Peach biomass. (A) Total dry peach biomass for peach trees with a cover crop his-
tory. Wilcoxon rank sum exact test was used to infer significance for each cover crop and au-
toclaved soil treatment. Dry peach biomass was recorded. Dry biomass was used since it ac-
counted for the fluctuating water concentrations within plant tissues. Error bars use the equa-
tion ymin/ymax = mean ± standard deviation. (B) Total dry peach biomass for peach trees in
autoclaved and non-autoclaved no-cover-crop controls. Both autoclaved and non-autoclaved
soils were initially set up at the start of the cover crop experiment, meaning these soils experi-
enced fallowness for 14 weeks before having peach seedlings planted. Error bars use the equation
ymin/ymax = mean ± standard deviation. Different superscript letters denote significant difference
(p < 0.01) compared with different cover crop histories and soil disinfection treatments by Wilcoxon
rank sum exact test.

3.4. Nitrogen and Nutrient Analysis

Nutrient analyses were performed to investigate if nutrient cycling could help explain
the differences between autoclaved and non-autoclaved soil treatments. Dry peach biomass
was used in regression plots with several different soil nutrient parameters. Soil nutrient
parameters that are not significant predictors of peach biomass are total organic carbon,
organic nitrogen, organic C/N ratio, total phosphorus (H3A), available phosphorus, potas-
sium (H3A), and available potassium. The only positive correlation between dry peach
biomass is with available organic nitrogen (R2 = 0.144, p-value = 0.038) (Figure 5). Available
nitrogen is statistically different by crop treatment with alfalfa and tomato having higher
available nitrogen than fescue and no cover crop treatments (Figure S4). Overall, alfalfa
and tomato treatments have the highest available nitrogen and are not statistically different
compared to corn treatments. Fescue and no crop treatments have lower available nitrogen
(Figure 5). The only negative correlation between dry peach biomass found to be significant
is with ammonium (Figure S5).

3.5. Effect of Soil Disinfection, Cover Crop Incorporation, and Peach Growth on the Bulk and
Rhizosphere Soil Bacteriome

Shannon index of controls and all treatments separated by soil and cover crop history
shows a trend of non-autoclaved soils having a greater alpha diversity than autoclaved
soils (Figure S1). For beta diversity, the autoclave soil treatment is the driver of cluster
separation. Non-autoclaved and autoclaved soil bacteriomes remain separated for the
entire study (cover crop bulk soil, cover crop incorporation bulk soil, peach bulk soil, and
peach rhizosphere).
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Figure 5. Available organic nitrogen in correlation with total dry peach biomass.

The bacteriome corresponding to bulk soil of peach grown under autoclaved (average
distance to median: 0.402) and non-autoclaved (average distance to median: 0.387) con-
ditions show that dispersion is greater in disinfested soils. The perMANOVA test shows
that cover crop history (p = 0.001) and autoclaved soil treatment (p = 0.001) is significant
and the CAP axes explain a total of 32.5% of the variance. The interaction between cover
crop history and autoclaved soil treatment is not significant (p = 0.369) (Figure 6A). This
result indicates how the autoclaved bacteriome continues to be prone to change, and the
separation along axis 2 supports clustering by cover crop history (Figure 6A). Under both
soil treatments, it is observed that previous cover crop histories create bacterial associ-
ations. Peaches grown in non-autoclaved soils with a cover history of alfalfa create a
unique bacteriome and have the highest shift from the non-autoclaved centroid than other
non-disinfested treatments (average distance to median for: alfalfa, 0.356; fescue, 0.343;
tomato, 0.340; no cover crop, 0.327; corn, 0.279).
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Figure 6. Peach bulk soil bacteriomes. (A) Constrained principal coordinate analysis (PCoA) using
Bray–Curtis distance for peach bulk soil bacteriomes. Circles represent autoclaved and squares
non-autoclaved. Colors indicate cover crop treatment: alfalfa (purple), fescue (green), corn (yellow),
tomato (red), and no crop (gray). (B) Differential abundance Venn diagram shows a count of bacteria
species in higher abundancies in non-autoclaved and autoclaved peach bulk soils separated by crop.
Orange circle indicates common bacteria found to be promoted within all cover crop treatments.
Color gradient displays low bacterial species counts in dark blue and higher counts in light blue.

Peach seedlings with the highest biomass correspond to non-autoclaved soil treat-
ments. Therefore, microbes from non-autoclaved peach bulk soils are of the most interest.
Within all non-autoclaved treatments (cover crop history and the no-cover-crop history
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control) for the peach crop cycle, there are seven bacterial species (Bacillus megaterium,
Brevitalea aridisoli, Brevitalea deliciosa, Gaiella occulta, Nitrospira japonica, Skermanella rosea,
Skermanella stibiiresistens) whose abundance increases compared to autoclaved peach bulk
soils (Table S4). Soils with cover crop histories have no additional bacterial species in
common that do not increase in the no cover crop treatment (indicated by the orange
circle; (Figure 6B). Non-autoclaved treatments with the highest unique bacterial species
that increase compared to autoclaved soil correspond to no crop and fescue.

In contrast to the peach bulk soil, the rhizosphere soil corresponding to non-autoclaved
treatment shows a tighter cluster than the rhizosphere soil of autoclaved soils (Figure 7A).
Peaches grown in autoclaved soils (average distance to median: 0.319) loosely cluster based
on previous cover crop and show overlap. Within non-autoclaved soils (average distance
to median: 0.36), peaches that previously had a cover crop of alfalfa or fescue samples have
the greatest shift away from the no crop control. The constrained PCoA shows that cover
crop history (p = 0.001) and autoclaved soil treatment (p = 0.001) are significant and explain
a total of 50.6% of the variance. The interaction between crop history and autoclaved soil
treatment is not significant (p = 0.267) (Figure 7A). Similar to the peach bulk soil, the soil
history of alfalfa grown in non-autoclaved soils develops a distinct bacteriome.
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separated by crop. Orange circle indicates common bacteria found to be promoted within all cover
crop treatments. Color gradient displays low bacterial taxa species counts in dark blue and higher
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From the differential abundance of non-autoclaved peach bulk soil, out of the
seven microbes found in all treatments, six of these bacterial species (Bacillus megaterium,
Brevitalea aridisoli, Brevitalea delicios, Gaiella occulta, Nitrospira japonica, Skermanella rosea) are
found again in all non-autoclaved peach rhizosphere soil treatments, with Skermanella
stibiiresistens being the exception (Tables S4 and S5). Differential abundance of non-
autoclaved peach rhizosphere soil per crop shows that there are 11 shared bacterial species
that increase in abundance by soil treatment, regardless of cover crop (Figure 7B). Soils
with cover crop histories have two additional bacteria species, Paenibacillus castaneae and
Bellilinea caldifistulae, in common (Figure 7B). Bacterial species that are in higher abundan-
cies in non-autoclaved peach rhizosphere soils with a cover crop treatment and not found in
the RS symptomatic non-autoclaved soils without a crop control are Bacillus cereus (alfalfa,
fescue, and corn), Paenibacillus xylanilyticus (fescue, corn, and tomato), Baekduia soli (corn
and tomato), Terrimonas suqianensis (corn and tomato), Desulfobulbus propionicus (fescue and
corn), Paenisporosarcina indica (alfalfa and corn), Desulfopila inferna (alfalfa and fescue), and
Desulfotalea psychrophile (alfalfa and fescue) (Table S1). Non-autoclaved no-crop treatments,
notably, have the highest unique bacterial taxa (n = 53). Of the cover crops, corn (n = 10)
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and fescue (n = 10) have the highest counts of unique bacterial taxa in higher abundances,
with tomato (n = 8) and alfalfa (n = 5) having the least (Figure 7B).

4. Discussion
4.1. Cover Crop Biomass and Bulk Soil Bacteriome

Biomass for all cover crop treatments is significantly higher in autoclaved soils.
Pathogen accumulation in soils has been observed in continuous monocultures of a wide
range of crops [11]. Steam autoclave as a soil disinfection method has been shown to
increase crop biomass by having decreased bacterial populations, particularly those that
could have competed for nutrients and are pathogenic to the plant [9,26–28]. Although the
mycobiome was not assessed in this study, conceptually, disinfestation would also reduce
deleterious or pathogenic fungi. This coincides with the premise that non-native plants can
acquire higher yields due to the low amount of specialized soil microbial pathogens and
nutrient competitors [29]. Tomato’s biomass reduction in non-autoclaved soils suggests
that they are less tolerant to RS-associated microbes than alfalfa, whose biomass reduction
is less severe. Plant fitness is dependent on the strong associations with soil microbiota,
and the biomass results show a strong biological component in RS soils.

Microbes associated with peach RS negatively affect cover crop biomass of genetically
distant crops. However, cover crops do not appear to establish their own distinct bene-
ficial bacteriome, as all cover crop and no crop control bacteriomes overlap (Figure 2A).
Beneficial bacterial taxa are identified in autoclaved cover crop soils, most of which fall
into the categories of antimicrobial, toxic metal bioremediation or uptake, and nitrogen-
related activities (Table S2). Microbes in autoclaved cover crop bulk soils with antimicrobial
properties are Janthinobacterium sp. strain Marseille (antifungal), Pseudomonas koreensis (anti-
fungal), Paenibacillus typhae (antifungal), Cytobacillus oceanisediminis (antibiotic), Fictibacillus
phosphorivorans (nematicidal), Fictibacillus arsenicus (nematicidal), and Verrucomicrobium
spinosum (nematicidal) [30–36].

Microbes in autoclaved cover crop bulk soils with toxic metal bioremediation or uptake
properties are Thermincola potens, Arthrobacter sp. PGP41, Brevundimonas diminuta, and
Ensifer adhaerens [37–41]. Microbes in autoclaved cover crop bulk soils with nitrogen-related
activities are Bacillus dakarensis, Nostoc punctiforme, and Pseudomonas koreensis [33,42,43]
Autoclaving the soil temporarily reduces RS symptoms and maintains beneficial microbes.

4.2. Higher Peach Biomass in Non-Autoclaved Soil and Its Bacteriome

Biomass is higher in autoclaved soils for the cover crop portion of the study; however,
the peach seedlings show the highest biomass results when grown in soils that have never
been autoclaved. Soils of the autoclaved treatment were only autoclaved once, which
was immediately before the plantings of the cover crops. Cover crops were incorporated
into the same soil in which they had been grown, and peach seedlings were then planted.
Non-autoclaved treatments with a cover crop history of alfalfa, corn, and tomato show a
higher peach seedling biomass than the non-autoclaved treatments with no history of a
cover crop (Figure 4). Autoclaved treatments with a cover crop history do not outperform
autoclaved treatments with no-cover-crop history in terms of peach seedling biomass. The
benefit of autoclaving the soil is lost after the cover crop cycle. In all, peach biomass is cover
crop treatment-dependent, and the benefit of soil disinfection increasing crop biomass is
short term.

Autoclaving soils show slight changes in nutrient accumulation with some changes
in plant macronutrients being inconsistent [9,44,45]. In this study, trends such as a slight
increase in nitrate in autoclaved soils and in ammonium in non-autoclaved soils by crop
treatment are observed. Available nitrogen is positively correlated with peach biomass.
Additionally, available nitrogen is significantly higher in tomato and alfalfa compared
to fescue and no cover crop treatments (Figure S3). Field studies show that increasing
crop biomass enhances weed suppression, decreases nitrate leaching (improved C/N
ratio) and above-ground biomass N. However, a study found an increase in crop biomass
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negatively impacted inorganic N availability and the following cash crop’s (corn) yield
was decreased [46]. Similarly, in this study, a decrease in ammonium is correlated with
an increase in peach seedling biomass. Overall, nutrients in the soil do not explain the
decrease/increase in peach biomass between the autoclaved and non-autoclaved soils.

In the present study, while autoclaving the soil increases cover crop biomass, these
same autoclaved soils do not increase peach biomass as the following crop cycle. This
could be due to the non-bacterial RS pathogens recuperating to previous microbial com-
positions pre-disinfection. The benefits of soil disinfection are temporary, even if the
impact of the overall bacteriome persists. For instance, methyl bromide treatments pro-
duce yield increases for crop cycles following the disinfection of the soil, but strategies
are needed to augment the duration of these benefits [47,48]. This would indicate that
populations of pathogenic and nutrient-competing microbes recover over time to induce
replant symptoms anew. In non-autoclaved peach soils with a cover crop history, which
show the highest peach biomass, the beneficial bacterial taxa identified have either antimi-
crobial, iron-reducing, or nitrogen-related capabilities. Bacterial species with antimicrobial
capabilities are Fimbriiglobus ruber (antifungal), Peribacillus simplex (antifungal), Bacillus
altitudinis (antifungal), Stigmatella aurantiaca (antifungal/antibiotic), Bacillus halotolerans
(antifungal), Bacillus megaterium (antibacterial), Bacillus cereus (antifungal), Bacillus pumilus
(antibiotic), Paenibacillus castaneae (nematicidal), and Bacillus pumilus (nematicidal) [49–59].
Bacterial taxa with iron-reducing capabilities are Desulfuromonas michiganensis, Desul-
furomonas soudanensis, Pelobacter carbinolicus, Geobacter sp. M2, Aciditerrimonas ferrireducens,
Geobacter bemidjiensis, Pedomicrobium Americanum, Geobacter uraniireducens, Geobacter psy-
chrophilus, Pseudomonas sagittaria, Paenibacillus guangzhouensis, and Pseudarthrobacter sp.
NIBRBAC000502772 [60–67]. Bacterial taxa with nitrogen-related capabilities (nitrogen
fixer, nitrogen reducer) are Gaiella occulta, Nitrospira japonica, Clostridium magnum, Can-
didatus Saccharibacteria, Geobacter sp., Microvirga ossetica, Azospira restricta, Nitrosospira
multiformis, Paenibacillus massiliensis, Paenibacillus xylanilyticus, Microvirga zambiensis, Aro-
matoleum aromaticum, and Bacillus megaterium [50,59,68–78]. For the non-autoclaved cover
crop treatment, alfalfa’s rhizosphere bacteriome is the treatment that overlaps with the no
crop control the least (Figure 7A), and the lack of bacteria species in higher abundancies
that are common among multiple cover crops of three or more are few, indicating that there
are multiple bacteriomes that can alleviate RS with relatively minimal shifts.

To highlight the loss of key beneficial bacterial species that do not recover their abun-
dancies post-autoclaving, Bacillus megaterium is used as an example (Figure S6). This
well-documented plant-growth-promoting rhizobacteria has been known to use phytohor-
mones (auxins, gibberellins, and cytokinins), penicillin amidase for biocontrol, and could
contain the nifH gene for nitrogen-fixing capabilities [50,58,59,79]. Although bacterial abun-
dancies are affected long term in autoclaved soils, RS-causing microbes are re-established
while beneficial bacteria, as identified in non-autoclaved soils, fail to recover.

4.3. Reduced Peach Biomass Treatments Show Beneficial Bacteria Instead of a Myriad of Phytopathogens

RS symptoms are observed in all peach seedlings, but these symptoms are exacerbated
in peach seedlings grown in soils with a history of autoclaving. It is expected that peaches
that have the lowest biomass have bacteriomes that overlap with that of the original RS
soils, however, this is not the case. Autoclaved soils with a history of fescue and corn
are the treatments with the lowest biomass, and their bacteriomes do not overlap with
the initial non-autoclaved bulk soils (Figure S2). These distinct bacteriomes that show
RS symptoms indicate that the microbial composition of RS soils is not dominated by an
identical community of pathogenic and nutrient-competing microbial taxa, but that the
abundancies of only a few taxa are required to cause RS symptoms, such as a decrease
in biomass. Li et al. (2019) showed that even a slight shift away from the RS bacteriome
of peaches reduced RS symptoms, indicating that a large shift away from the replant soil
bacteriome was not required to reduce RS symptoms.
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Although the control (non-autoclaved soil with no history of cover crops) has the
lowest peach biomass out of the non-autoclaved treatments, the control shows the highest
count of unique bacterial taxa (n = 53), many of which have previously been associated
with beneficial traits. Antimicrobial bacteria are Bacillus halotolerans (antifungal) Bacillus
pumilus (nematicidal), and Paenibacillus castaneae (nematicidal) [49,57]. Also, Microvirga
zambiensis and Aromatoleum aromaticum have previously been associated with the nitrogen
cycle [72,77]. Additionally, Azotobacter chroococcum and Bacillus halotolerans have been
known to aid in plant nutrition [80]. Multifunction microbes such as Bacillus pumilus, which
is capable of gibberellins and antibiotics production, and Peribacillus simplex (previously
Bacillus simplex), which has been shown to synthesize auxin and has anti-fungal activity, are
also found in non-autoclaved soils with a no-cover-crop history [54,56,81–83]. Although
these bacteria have previously been shown to be beneficial, further studies are needed to
prove their direct influence on RS.

5. Conclusions: A Healthy Peach Bacteriome Progression

A robust population of beneficial bacteria are needed to remedy RS soils. Non-
autoclaved soil cultivated with alfalfa, corn, and tomato as cover crops developed the
best conditions for peaches to withstand RS in this study. This further supports the
idea that certain cover crops may be deployed to reduce RS, specifically for peaches.
Paenibacillus castaneae and Bellilinea caldifistulae, which were cultivated exclusively in the
rhizosphere of non-autoclaved soils by peaches for only cover crop histories, may be benefi-
cial and further study could shed light on their role as general colonizers that can possibly
reduce RS. Non-autoclaved bulk soils and peach rhizospheres also have an increased
abundance of Bacillus megaterium, Gaiella occulta, and Nitrospira japonica. However, these
bacterial taxa are also present in the non-autoclaved and no-cover-crop control, which did
not outperform the non-autoclaved cover crop treatments (alfalfa, corn, and tomato) in
terms of biomass. Nonetheless, further research should be conducted to determine the
role of these bacteria in alleviating RS, as these bacteria could be specifically recruited
by peaches since abundances are present in the peach rhizosphere in all non-autoclaved
treatments. Future studies should use mock community inoculations to investigate the
robustness of these bacterial species, since bacteriomes function as a consortia and may
require one another to reduce RS.

In contrast, soil disinfection instigates the loss of bacterial species with populations
unable to recover within the time frame of this study. This gives an insight into the possible
consequences of effective soil disinfection techniques. The Shannon index shows how the
newly autoclaved RS bulk soil control has a drastically reduced alpha diversity compared
the initial untreated RS bulk soil control. However, the Shannon index supports the fact
that many bacterial populations are able to recover by the time the cover crops have grown
(Figure S1). This is in line with previous studies that saw benefits of reducing microbial
load using soil disinfection techniques and immediately planted peach trees [9,84]. Here, it
is proposed that moderate soil disinfection should be used to avoid removing beneficial
microbes by using temperatures that are high enough to be lethal to poor soil competitors
such as phytopathogens, but low enough for beneficial bacteria to recolonize. The present
study shows that cover crops can help ameliorate RS symptoms, but not all cover crops
provide equal benefit, with soil disinfection benefits being temporary.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/microorganisms11061448/s1. Table S1. Soil analysis of autoclaved
and non-autoclaved soils by treatment. Figure S1. Shannon index of controls and all treatments
separated by soil and cover crop history. Figure S2. Principal coordinate analysis (PCoA) of bacterial
DNA using Bray–Curtis distance for bacteriomes of all samples sorted by crop cycle. Table S2.
Differential abundance of bacterial taxa with increased abundance in autoclaved cover crop bulk
soil compared to non-autoclaved cover crop bulk soil. Table S3. Differential abundance of bacterial
taxa with increased abundance in non-autoclaved cover crop bulk soil compared to autoclaved
cover crop bulk soil. Figure S3. Differential abundance Venn diagram of non-autoclaved cover crop
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bulk soils compared to autoclaved cover crop bulk soils separated by crop. Figure S4. Available
organic nitrogen in correlation with total dry peach biomass (autoclaved/non-autoclaved). Figure S5.
Ammonium (NH4) in correlation with total dry peach biomass, soil extractant (H3A-1) correlation
was positive (R2 = 0.1852, p-value = 0.01761). Table S4. Differential abundance of bacterial taxa
with increased abundance in non-autoclaved peach bulk soil compared to autoclaved peach bulk
soil. Table S5. Differential abundance of bacterial taxa with increased abundance in non-autoclaved
peach rhizosphere soil compared to autoclaved peach rhizosphere soil. Figure S6. Bacillus megaterium
relative abundance by crop phase (a) autoclaved soils and (b) non-autoclaved soils.
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