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Abstract: Herpes simplex virus (HSV) is widespread in the population, causing oral or genital ulcers
and, rarely, severe complications such as encephalitis, keratitis, and neonatal herpes. Current available
anti-HSV drugs are acyclovir and its derivatives, although long-term therapy with these agents can
lead to drug resistance. Thus, the discovery of novel antiherpetic compounds merits additional
studies. In recent decades, much scientific effort has been invested in the discovery of new synthetic
or natural compounds with promising antiviral properties. In our study, we tested the antiviral
potential of a novel polyphenol-based nutraceutical formulation (named Taurisolo®) consisting of a
water polyphenol extract of grape pomace. The evaluation of the antiviral activity was carried out
by using HSV-1 and HSV-2 in plaque assay experiments to understand the mechanism of action of
the extract. Results were confirmed by real-time PCR, transmission electron microscope (TEM), and
fluorescence microscope. Taurisolo® was able to block the viral infection by acting on cells when
added together with the virus and also when the virus was pretreated with the extract, demonstrating
an inhibitory activity directed to the early phases of HSV-1 and HSV-2 infection. Altogether, these
data evidence for the first time the potential use of Taurisolo® as a topical formulation for both
preventing and healing herpes lesions.

Keywords: natural compounds; antiviral activity; Taurisolo®; polyphenols; wine extracts; herpes

1. Introduction

Viral infections are becoming more frequent and pose a threat to public health. The
research and identification of new antiviral molecules are necessary to guarantee new
therapeutic options as antiviral drugs become less effective due to the emergence of resistant
viral strains. Herpes simplex virus (HSV) is a member of Herpesviridae, a wide family of
enveloped-DNA viruses able to cause clinically significant syndromes in both adults and
neonates [1,2]. HSV types 1 and 2 cause the most common viral skin infections; therefore,
many scientists test natural products to evaluate their anti-HSV effects in reducing the
infectivity of the virus both in vivo and in vitro [3–5]. Diffusion of these viruses is very
high, about 80% for HSV-1, with a recurrence of 40%. Herpesviruses can persist throughout
the lifetime of the host; then, after the primary lytic infection, the virus hides in the nerve
cells where it establishes a latent infection until viral reactivation. After primary infection
of epithelial cells, the virus becomes latent in neurons of the peripheral nervous system
and reactivates with recurrent episodes [6]. Reactivation of latent HSV, especially during
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the deficiency of immunity, induces recurrent infections and transmission to new hosts.
Usually, antiviral agents acting on viral adsorption, inhibition of viral penetration into cells,
and inhibition of viral release, are used to treat herpes viral infection. The most common
antiviral drugs used in clinical practice are nucleoside or nucleotide analogs affecting
the DNA replication process, including acyclovir, penciclovir, valacyclovir, famciclovir,
ganciclovir, and cidofovir [7]. In addition, non-nucleoside or nucleotide drugs can also
be used to treat herpetic infection. In such a way, Foscarnet interacts with the viral DNA-
polymerase blocking nucleotides from binding and incorporation into the DNA strand.
However, in immunocompromised patients, prolonged treatment with these drugs is more
likely to develop drug-resistant strains.

Natural products have always been an inexhaustible source of new antiviral drugs [8,9].
Many plant extracts have inhibitory activity in the replication of many viruses [10]. Due to
their multifunctional components, plant extracts have also demonstrated broad-spectrum
activity against drug-resistant viruses [11]. Their mechanism of action is focused on the
viral life cycle, including viral entry, fusion, replication, assembly, and specific interactions
between virus–host [12]. Studies conducted with natural molecules such as resveratrol
have demonstrated the possibility of inhibiting HSV infection in vivo and in vitro. When
added within 1 h of in vitro infection, resveratrol has potent anti-HSV activity by activating
NF-κB within the nucleus in Vero cells and modulating the expression of essential genes
in immediate–early, early and late, and viral DNA synthesis [13]. Studies conducted on
mouse models have shown that the topical use of different compositions of resveratrol
significantly inhibits the development of skin lesions induced by HSV-1, limiting erythema
and desquamation.

Among the food-derived bioactive compounds, polyphenols emerge for their poten-
tial as antiviral agents with activity against various pathogens such as enterovirus 71 [14],
Epstein-Barr virus [15,16], influenza virus [17], and other viruses responsible for respiratory
infections [18–20], including the pandemic severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) [21]. This evidence suggests the utility to further investigate the effect of
polyphenols, whose antioxidant and anti-inflammatory potential are historically known.
Polyphenols are ubiquitously present in a huge variety of plants and, by extension, in foods
that are commonly used for polyphenol-based nutraceutical formulations. Among these,
grapes are a valid source of polyphenols, mainly represented by resveratrol, procyanidins,
and catechins [22–24]. Interestingly, previous studies investigated the antiviral potential
of grape pomace extracts against a number of human pathogens, including HSV [Grape
Canes from Typical Cultivars of Campania (Southern Italy) as a Source of High-Value
Bioactive Compounds: Phenolic Profile, Antioxidant and Antimicrobial Activities], hep-
atitis A [25] and C [26] viruses, SARS-CoV-2 [27], human enteric virus [28], and human
immunodeficiency virus type 1 [29].

In this study, we evaluated the antiviral activity of Taurisolo® (a novel nutraceutical
formulation based on grape pomace polyphenolic extract) against herpetic infection, show-
ing a significant reduction in the viral infection with its activity directed at the viral particle
in the extracellular and early phases of viral infection. In detail, we selected two members
belonging to the Herpesviridae family (HSV-1 and HSV-2). Both viruses are responsible for
frequent infections in the world. They present a different range of infections; in detail,
HSV-1 is mainly correlated to oral herpes transmitted by oral-to-oral contact, while HSV-2
is principally responsible for genital herpes transmitted sexually.

2. Materials and Methods
2.1. Nutraceutical Formulation

In this study, cells were treated with a novel polyphenol-based nutraceutical formula-
tion (registered as Taurisolo®) consisting of an Aglianico cultivar grape polyphenolic extract.
An initial pilot formulation was provided by the Department of Pharmacy, University of
Naples Federico II, Naples, Italy. Subsequently, MB-Med Company (Turin, Italy) manu-
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factured the large-scale production. For the Taurisolo® production, as well as polyphenol
composition, please see Supplementary Materials.

2.2. Cell and Virus Culture

Vero cells (ATCC CCL-81, Manassas, VA, USA) were grown in Dulbecco’s Modified
Eagle Medium (DMEM) with 4.5 g/L glucose (Microtech, Naples, Italy) supplemented with
antibiotic solution 100× (100 IU/mL penicillin and 100 µg/mL streptomycin; Himedia,
Naples, Italy), and 10% Fetal Bovine Serum (FBS, Microtech). HSV-1 (strain SC16), contain-
ing a lacZ gene driven by the cytomegalovirus IE-1 promoter to express β-galactosidase,
HSV-2 (strain G, ATCC VR-734), and fluorescent HSV-1, containing the GFP reporter in-
serted into the gene coding for the VP22 tegument protein [30], were propagated on Vero
cells, as previously reported [31]. As an unenveloped virus, Enterovirus C (Sb-1, poliovirus
Sabin strain chat, ATCC VR-1562) was cultured on the Vero cell line.

2.3. Cytotoxicity

Vero cells were seeded in 96-well plates (2 × 104 cells/mL) and incubated for 24 h
at 37 ◦C in 5% CO2. The cytotoxicity was evaluated by the 3-(4,5-Dimethylthiazol-2-yl)-
2,5-Diphenyltetrazolium Bromide (MTT, Sigma-Aldrich, St. Louis, MO, USA) assay. The
cells were incubated with several concentrations of Taurisolo® (from 800 to 0.12 µg/mL);
then, after 2 and 24 h, all wells were treated with 100 µL of MTT solution (5 mg/mL) and
incubated at 37 ◦C for 3 h. Subsequently, 100 µL of DMSO 100% (Sigma-Aldrich) was
added to each well to dissolve the formazan salts for 10 min with vigorous agitation at
room temperature (RT), and absorbance was measured at 570 nm. A total of 100 µL DMSO
100% was used for negative control (ctr−), while 100 µL of culture medium represented the
positive control (ctr+). The viability of cells was evaluated compared to the control cells.

2.4. Antiviral Activity

The antiviral activity of the Taurisolo® and maltodextrins was evaluated through
plaque assays. Vero cells were seeded in 24-well plates (1 × 105) and incubated overnight at
37 ◦C. Four treatment assays were performed, as previously described (co-treatment, virus
pretreatment, cell pretreatment, and post-treatment assays) [32]. Noncytotoxic concentra-
tions of Taurisolo® and maltodextrins were tested in all assays and infected with the virus
at a multiplicity of infection (MOI) of 0.01 PFU/mL (plaque forming units per milliliter).
After the time of infection, for each treatment, cells were washed with citrate buffer (pH 3),
overlaid with DMEM supplemented with carboxymethylcellulose (CMC, Sigma, C5678,
C5013) 5% for 48 h, and fixed and stained with 4% formaldehyde and 0.5% crystal violet.
Plaques were counted and the percentage of viral inhibition was calculated in relation to
the nontreated control (ctr−). Two additional assays were performed to understand viral
attachment and entry. In the former, the cell monolayer was infected with HSV-1 at MOI
0.01 and treated with compounds simultaneously for 1 h at 4 ◦C. In the entry assay, cells
were infected with the virus for 1 h at 4 ◦C and after were treated with Taurisolo® for 1 h.

2.5. Evaluation of Viral Gene Expression

Vero cells were seeded in the same conditions as previously reported. The virus
pretreatment assay was performed in the range from 800 to 0.12 µg/mL. The RNA genome
was collected by TRIzol reagent (Thermo Fisher Scientific, Waltham, MA, USA) after 48 h
and quantified through the absorbance at NanoDrop (NanoDrop 2000, Thermo-Fisher
Scientific). RNA was retrotranscribed to cDNA by 5× All-In-One RT Master Mix (Applied
Biological Materials, Richmond, VA, Canada), and through a quantitative polymerase chain
reaction, cDNA was amplified. The expression of specific viral genes, UL54 (immediate
early gene), UL52 (early gene), and UL27 (late gene), was evaluated. The relative target
threshold cycle (Ct) values were normalized using a housekeeping gene, the glyceraldehyde
3-phosphate dehydrogenase (GAPDH). Finally, the mRNA levels were calculated using
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the 2-∆∆Ct method. All the synthetic and experimental details are summarized in Table 1.
Oligos were provided by Eurofins (Ebersberg, Germany).

Table 1. Oligos sequences for viral genes and thermal conditions used for real-time PCR.

Gene Symbol Forward Sequence Reverse Sequence

HSV-1 UL54 TGGCGGACATTAAGGACATTG TGGCCGTCAACTCGCAG
HSV-1 UL52 GACCGACGGGTGCGTTATT GAAGGAGTCGCCATTTAGCC
HSV-1 UL27 GCCTTCTTCGCCTTTCGC GCCTTCTTCGCCTTTCGC

GAPDH CCTTTCATTGAGCTCCAT CGTACATGGGAGCGTC

Thermocycler condition

95 ◦C for 10 min
95 ◦C for 15 s

60 ◦C for 1 min
72 ◦C for 20 s

(40 cycles)

2.6. Virus Purification and Morphological Analysis by TEM

HSV-1 was purified by density gradient ultracentrifugation with cesium chloride
(CsCl). Transmission electron microscopy (TEM) analysis was performed using an FEI
TECNAI G2 S-twin 200 kV apparatus operating at 120 kV (LaB6 source) microscope.
Taurisolo® (at 25 µg/mL) and purified virus were incubated for 1 h at 37 ◦C. Next, 10 µL
of the mixture was transferred onto a formvar/carbon TEM grid (Merck, Readington
Township, NJ, US) and then left at RT until complete evaporation of the solvent. Finally, the
sample was stained using 2% phosphotungstic acid (pH 6.5) for 30 s to obtain the contrast.

2.7. Statistical Analysis

All tests were performed in triplicate and indicated as mean ± standard deviation (SD)
evaluated by GraphPad Prism (version 8.0.1). One-way ANOVA followed by Dunnett’s
multiple comparisons test was used; a value of p≤ 0.05 was considered significant.

3. Results
3.1. Cytotoxicity

The effect of Taurisolo® and maltodextrins was evaluated on cell viability by incu-
bating VERO cells with different concentrations of each compound for 2 and 24 h (2 h for
resembling the time of compound incubation on cells and 24 h used as a long exposure
indicator). Cytotoxicity activity was analyzed by the MTT assay. Different concentrations
of compounds were tested in the range from 800 to 0.012 µg/mL. The cell viability was
expressed as a percentage of viability compared to the non-treated cells. No toxicity was
observed at all concentrations tested (Supplementary Material, Table S1). Only Taurisolo®

at the highest tested concentration (800 µg/mL), showed 40% of toxicity (Supplementary
Table S1).

3.2. Antiviral Activity

The antiviral activity of Taurisolo® and maltodextrins was investigated against differ-
ent types of viruses. To better understand the mechanism of action, we performed several
in vitro plaque assays against enveloped and non-enveloped viruses.

In brief, all noncytotoxic concentrations were examined in four schemes of treatment
in which what changed was the time of addition of the compound. In the co-treatment
assay, the cell monolayer was treated simultaneously with compounds and infected with
the virus. To evaluate the interaction of Taurisolo® with the cellular or viral surface, the cells
or virus were first pretreated with Taurisolo®, in cell pretreatment or virus pretreatment
assay. Finally, a post-treatment assay was carried out to evaluate the interference of the
compound with intracellular targets or phases of infection. In this case, the cells were
infected with the virus and then treated with the compound.
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In the first test, carried out to understand if the compound had an inhibitory action,
the cells were treated with Taurisolo® and simultaneously infected with the viruses (co-
treatment). As reported in Figure 1A,C, the compound showed 50% inhibition at the
concentrations of 0.024 and 0.0975 µg/mL against HSV-1 and HSV-2, respectively. To
exclude that this action could be due to maltodextrins, plaque assays were carried out in
the same conditions previously described. We observed antiviral potential of maltodextrins,
confirming that Taurisolo® was endowed with an antiherpetic effect (Figure 1B,D).
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against HSV-2; (D) maltodextrins against HSV-2. **** p < 0.0001; *** p < 0.0001; ns: nonsignificant.

Furthermore, to better investigate which phase of the viral life cycle the extract was
able to interfere with, additional tests were executed. The virus pretreatment and cell
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pretreatment tests indicated whether the extract could act in the extracellular phase of
infection, directly with the virus or with the cell membrane, respectively. Figure 1A,C
showed the high inhibitory effect of Taurisolo® in the virus pretreatment assay, with an IC50
of 0.097 and 0.024 µg/mL for HSV-1 and HSV-2, respectively. Comparatively, a reduction
in infection was observed in the cell pretreatment assay indicating that Taurisolo® did not
interact with the cell surface, but rather with the viral envelope.

Finally, the post-treatment suggested whether the extract could prevent intracellular
stages of infection. A moderate inhibition of viral infection was detected, particularly at
concentrations of 50 and 25 µg /mL for both viruses (Figure 1A,C).

The inhibitory activity of Taurisolo® was further investigated against a nonenveloped
viral model. Poliovirus type 1 (PV-1), an enterovirus with a single-stranded RNA genome,
was used. Plaque assays were carried out under the same conditions. The data shown in
Figure 2 demonstrate that the extract did not reduce the infection, evidencing that it was
able to interact with the viral lipid membrane.
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Figure 2. Antiviral activity against PV-1. Co-treatment, virus pretreatment, cell pretreatment, and
post-treatment assays were performed to evaluate the inhibitory power of Taurisolo® against po-
liovirus type 1. **** p < 0.0001; ns: nonsignificant.

3.3. Molecular Analysis
Evaluation of Viral Gene Expression

To confirm the data obtained in vitro by plaque assays, the Taurisolo® antiviral effect
was analyzed by quantifying the expression levels of genes involved in the viral infection. In
detail, the expression of three viral genes involved in the HSV infection was analyzed: (i) the
immediate early gene UL54, coding for the ICP27 protein; (ii) the early gene UL52, coding
for the DNA primase; and (iii) the late gene UL27, coding for the structural glycoprotein
B (gB) [33,34]. First, a virus pretreatment assay was carried out, RNA was collected after
24 h, converted to cDNA, and then amplified by real-time PCR. Results showed that the
extract interfered with viral replication by blocking the expression of viral genes. Data
showed that the infection was reduced in a dose-dependent manner, demonstrating the
virucidal potential of Taurisolo®. As reported in Figure 3, by decreasing the Taurisolo®

concentration, viral gene expression increased and reached the same level of virus control
from 0.0975 to 0.012 µg/mL.
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Figure 3. Molecular assay. Real-time PCR was performed to evaluate the effect of Taurisolo® on viral
gene expression. For HSV-1, the expression of immediate early (UL54), early (UL52), and late (UL27)
genes were analyzed. Ctr− refers to infected but not treated cells.

3.4. Microscopy Analyses

The antiviral effect of Taurisolo® was also analyzed by using microscope analyses by
fluorescence and electron microscopy.

3.4.1. HSV-1 GFP

Fluorescence microscopy analysis was performed by infecting the cell monolayer with
the engineered virus HSV-1-GFP, in which the green fluorescent protein (GFP) had been
inserted into the genome, in the gene encoding the tegument protein VP22 [31]. A virus
pretreatment assay was conducted under the same conditions previously described, and
the fluorescence was recorded 48 h postinfection. Figure 4 shows the bright field (RGB)
images in the upper panel and GFP images in the lower panel.

Microorganisms 2023, 11, x FOR PEER REVIEW  7 of 12 
 

 

 

Figure 3. Molecular assay. Real‐time PCR was performed to evaluate the effect of Taurisolo® on viral 

gene expression. For HSV‐1, the expression of immediate early (UL54), early (UL52), and late (UL27) 

genes were analyzed. Ctr− refers to infected but not treated cells. 

3.4. Microscopy Analyses 

The antiviral effect of Taurisolo® was also analyzed by using microscope analyses by 

fluorescence and electron microscopy. 

3.4.1. HSV‐1 GFP 

Fluorescence microscopy analysis was performed by  infecting  the  cell monolayer 

with the engineered virus HSV‐1‐GFP, in which the green fluorescent protein (GFP) had 

been inserted into the genome, in the gene encoding the tegument protein VP22 [31]. A 

virus pretreatment assay was conducted under the same conditions previously described, 

and  the  fluorescence was  recorded 48 h postinfection. Figure 4  shows  the bright  field 

(RGB) images in the upper panel and GFP images in the lower panel. 

 

Figure 4. Antiviral activity against HSV‐1‐GFP. Images (a,a′) show uninfected and untreated cells; 

(b,b′) represent infected cells. No plaques were observed when cells were stimulated with the com‐

pound  at  0.78  μg/mL  in  (c,c′). While  the  images  (d,d′)  show plaques  in  cells  treated with  0.012 

μg/mL. Magnificence: 20×. 

As shown in Figure 4, at a concentration of 0.78 μg/mL, in which Taurisolo® inhibited 

the viral infection, no fluorescence signal was detected; on the contrary, the fluorescence 

signal was high at nonactive concentrations (0.012 μg/mL). The fluorescence microscopy 

data confirmed the results of the plaque reduction test. 

3.4.2. TEM 

Figure 4. Antiviral activity against HSV-1-GFP. Images (a,a′) show uninfected and untreated cells;
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compound at 0.78 µg/mL in (c,c′). While the images (d,d′) show plaques in cells treated with
0.012 µg/mL. Magnificence: 20×.

As shown in Figure 4, at a concentration of 0.78 µg/mL, in which Taurisolo® inhibited
the viral infection, no fluorescence signal was detected; on the contrary, the fluorescence
signal was high at nonactive concentrations (0.012 µg/mL). The fluorescence microscopy
data confirmed the results of the plaque reduction test.

3.4.2. TEM

To visualize the effect of Taurisolo® on the viral envelope, HSV-1 particles were treated
with the compound and observed by transmission electron microscope (TEM). Briefly, the
purified virus was incubated with Taurisolo® at the inhibitory concentration of 25 µg/mL
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and subsequently placed on carbon-coated copper grids, as described in the Section 2.
Figure 5 demonstrates that Taurisolo® could act on the viral envelope by blocking the
herpetic infection.
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4. Discussion

In the present study, we demonstrated the effect of a novel nutraceutical formulation
based on grape pomace polyphenolic extract containing Taurisolo® in inhibiting herpetic
infection. From the literature, we know that grape extracts are endowed with antimi-
crobial activity against various microorganisms. This activity is due to a higher number
of polyphenols found in grapes skin, seed, shoot, and stem [35–41]. However, none of
these studies have described a possible antiviral effect. Recently, our group analyzed the
antimicrobial potential of grape wine extracts from three different cultivars of Campania,
Italy, i.e., Aglianico, Fiano, and Greco [42]. First, we found that an alkaline pH was able to
yield the best polyphenol-rich extracts. The Aglianico extract exhibited a mild antibacterial
effect only against Staphylococcus aureus, probably due to its peculiar cell wall composition,
very different from that of Gram-negative bacteria, surrounded by an outer membrane
of lipopolysaccharide. The most representative result was that observed against viruses.
Very strong antiviral activity was noted for all the extracts against the herpetic infection; in
particular, the Greco extract was the most active to interact directly with the viral particles
until the low dose of 10 µg/mL, by inhibiting both HSV-1 and HSV-2 initial stages of infec-
tion. We have also shown the potential of Vitis vinifera leaf extract against SARS-CoV-2 [27]
and, even in this case, the extract exhibited a virucidal effect on the viral envelope, probably
by destroying the viral surface layer and preventing the subsequential fusion event with
the target cells.

Since the early step in the viral lifecycle is viral attachment onto the host cells, inter-
fering with viral attachment and entry would prevent viral infection. To date, few entry
inhibitors have been approved as antiviral drugs by the Food and Drug Administration
(FDA) [43]. One of them is docosanol, an anti-HSV drug approved in 2000 as the only
clinical medication for cold sores and fever blisters. It is also active against other viruses
such as the respiratory syncytial virus (RSV) and other herpesviruses (varicella zoster
virus and cytomegalovirus) [44–46] since its action is directed to membrane phospholipids.
Docosanol can also be used in synergism with other anti-HSV drugs [45] and it works well
against acyclovir-resistant HSV [47].
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Currently, HSV infections are among the most widespread viral infections. From the
last available report of 2016, 67% of the world population was affected by HSV-1, and
13% by HSV-2. Alongside these huge numbers, antiviral compounds are scarce, and more
strains continue to acquire resistance to traditional drugs.

Natural compounds could be an effective alternative to fight viral infections. The
biological activity of Taurisolo® has been widely investigated [48–57]. In the last year, a
phase II multicentric clinical trial (TAEROVID-19) has been performed to test the safety and
feasibility of Taurisolo® aerosol formulation in the treatment of COVID-19 patients [58]. A
rapid reduction in symptoms and in hospitalizations in intensive care was observed. These
positive outcomes could be due to the well-known anti-inflammatory and antioxidant
effects of Taurisolo®. In this context, we reported for the first time the antiherpetic activity
of Taurisolo®. We observed a strong reduction in the viral infectivity of both HSV-1 and
HSV-2. In detail, the inhibitory activity was mainly directed at the viral particles, as shown
by IC50 at very low concentrations of 0.097 and 0.024 µg/mL, respectively, for HSV-1
and HSV-2 (Figure 1). This result was further validated when Taurisolo® was incubated
with a nonenveloped virus of PV-1 and antiviral activity was detected (Figure 2). The
virucidal activity of the extract was also confirmed by analyzing the expression level of
some viral genes involved in HSV-1 replication (Figure 3). All genes were not expressed
until 25 µg/mL of Taurisolo®. Then, we observed a dose-dependent increase especially in
late gene expression once the extract concentration decreased. These data suggested that
the extract possessed an inhibitory action in the early stages of infection when the virus was
required to attach and enter the host cells. Most likely, Taurisolo® covered the viral particles
and destroyed them, as demonstrated by TEM images (Figure 5), preventing the next phases
of infection. To date, the antiherpetic activity of Taurisolo® has not been investigated; even
though most natural extracts containing a very similar profile of polyphenols have already
reported antiviral effects against herpesvirus infection. Melissa officinalis L. is a mixture of
ferulic acid, caffeic acid, and rosmarinic acid, with the ability to inhibit HSV-1 infection
after 6 h of treatment [59]. Ficus carica contains caffeic acid, 3,4-dihydrobenzoic acid, p-OH-
phenylacetic acid, p-coumaric acid, luteolin, N-arginine, and ferulic acid, with a virucidal
activity when incubated with HSV-1 for 1 h at 78 µg/mL [60]. Propolis extract is a complex
mixture consisting of aromatic acids including E-p-coumaric acid, benzoic acid, ferulic acid,
fatty acids, flavonoids, and sugars, able to interfere with both HSV-1 and HSV-2 particles
at very early stages of infection, i.e., adsorption in host cells [61]. All these examples
clearly show that the antiviral effect derives from a mixture of polyphenols and not from
individual components.

Finally, our results indicate a strong effect of Taurisolo® extract in preventing herpetic
infections caused by HSV-1 and HSV-2.

5. Conclusions

In summary, we analyzed the effects of the natural extract Taurisolo® against two
members of the Herpesviridae family. We found that this compound can inhibit herpetic
infection through direct nonspecific interactions with viral surface components. On the
contrary, it was inactive against the nonenveloped poliovirus. We hypothesized that
Taurisolo® could act on the viral envelope as a virucidal agent, suggesting a potential use
as a topical treatment for both preventing and healing herpes lesions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/microorganisms11051346/s1, Figure S1: Chromatogram of Taurisolo®

with peaks relative to polyphenol fraction. Table S1: Cytotoxic activity of Taurisolo® and Maltodextrins
evaluated by MTT assay. Different concentrations of compounds were tested (800–0.012 µg/mL) and
data were expressed as percentage of viability.

https://www.mdpi.com/article/10.3390/microorganisms11051346/s1
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