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Abstract: Downy mildew (caused by Plasmopara viticola) and gray mold (caused by Botrytis cinerea) are
fungal diseases that significantly impact grape production globally. Cytochrome b plays a significant
role in the mitochondrial respiratory chain of the two fungi that cause these diseases and is a key
target for quinone outside inhibitor (QoI)-based fungicide development. Since the mode of action
(MOA) of QoI fungicides is restricted to a single active site, the risk of developing resistance to
these fungicides is deemed high. Consequently, using a combination of fungicides is considered
an effective way to reduce the development of QoI resistance. Currently, there is little information
available to help in the selection of appropriate fungicides. This study used a combination of in silico
simulations and quantitative structure–activity relationship (QSAR) machine learning algorithms
to screen the most potent QoI-based fungicide combinations for wild-type (WT) and the G143A
mutation of fungal cytochrome b. Based on in silico studies, mandestrobin emerged as the top binder
for both WT Plasmopara viticola and WT Botrytis cinerea cytochrome b. Famoxadone appeared to be
a versatile binder for G143A-mutated cytochrome b of both Plasmopara viticola and Botrytis cinerea.
Thiram emerged as a reasonable, low-risk non-QoI fungicide that works on WT and G143A-mutated
versions of both fungi. QSAR analysis revealed fenpropidin, fenoxanil, and ethaboxam non-QoIs
to have a high affinity for G143A-mutated cytochrome b of Plasmopara viticola and Botrytis cinerea.
Above-QoI and non-QoI fungicides can be considered for field studies in a fungicide management
program against Plasmopara viticola- and Botrytis cinerea-based fungal infections.

Keywords: cytochrome b; QoI fungicides; fungicide resistance; QSAR; machine learning; grapes;
downy mildew; gray mold

1. Introduction

Grapes, one of the most valuable cash crops, play an important role in the global
economy. In 2020, the global production of grapes was 78 million tonnes from 6.95 million
hectares, and the total production value was over USD 80 billion [1], with ~6 million tons
of grapes produced in the U.S. [2]. Cultivated grapes are sold as table grapes and processed
grape products such as jam, wine, vinegar juice, and jelly. Over 50% of grapes are used
in wine production, which contributes to over a billion U.S. dollars each year in the U.S.
However, fungal diseases have a serious impact on the growth of grapes, which also affects
the quality of wine and other products. An estimated 40% reduction in grape production
occurs annually because of various fungal diseases, causing significant economic losses [3].

Downy mildew caused by Plasmopara viticola is one of the most serious fungal diseases
that attack grapevines. Downy mildew is a native pathogen to North America and caused
serious damage to European vineyards in the late 1800s [4]. Plasmopara viticola invades
leaves, shoots, and young berries under warm and moist conditions, allowing the pathogen
to take nutrients from these parts to produce sporangia, causing larger infections [4,5].
Yellow spots with white downy mold occur on the surfaces of infected leaves, and the spots
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turn brown and eventually necrotic [6]. Necrotic areas on leaves caused by downy mildew
largely affect the photosynthesis of the grapevine and reduce the formation of glucose
provided by photosynthesis, which hinders grape growth and causes a reduction of berries.
Young shoots and berries are also vulnerable to downy mildew, which causes young shoots
to become twisted and decreases the translocation of water and organic nutrients, slowing
growth [6]. This infection also causes berries to dry out and fall, resulting in significant
losses [6]. When there is abundant rainfall in warm seasons, the pathogen easily invades
grapevines and reproduces more sporangia, which can be carried by wind or rain to infect
surrounding grapevines [6,7]. Although downy mildew is devastating, QoI fungicides
have thus far been able to manage the disease effectively [6–8]; however, a key mutation in
the target results in resistance to several of these fungicides.

Gray mold caused by Botrytis cinerea is another fungal disease that causes serious
destruction to grapevines. Gray mold is also one of the “Top 10 fungal plant pathogens”
in the survey established by Molecular Plant Pathology because this fungal disease has a
wide host range and can invade a host plant in all stages, from seedling to maturity [9].
The berries of grapevine are the most susceptible when an infection occurs at moderate
temperatures and high humidity [10]. When the berries are infected, a reddish-brown and
watery decay can be observed from the pedicel to the stylar end [10]. Infected regions
also provide favorable conditions for a secondary inoculum, which will generate more
sporangia and infect other berries nearby [10]. Infected berries finally dry out, resulting
in significant economic losses. Botrytis cinerea also invades leaves, flowers, and shoots,
causing similar brown lesions on plant parts [10]. QoI fungicides are commonly used for
chemical control of Botrytis cinerea [10], and resistance threatens the effectiveness of several
of these fungicides.

Literature Review

The application of fungicide Is a chemical control that targets specific molecules such
as amino acids to block fungal metabolism, restricting fungal reproduction [11]. The
binding target of QoI fungicides is cytochrome b, a protein within the cytochrome bc1
complex in Plasmopara viticola and Botrytis cinerea that plays a significant role in respiratory
function [12]. When QoI fungicides bind cytochrome b, the ubiquinol oxidase substrate
is unable to transfer electrons between cytochrome b and cytochrome c1, interrupting
and inhibiting the production of adenosine triphosphate (ATP) [8,12]. This shortage of
ATP interrupts the propagation of the pathogen, meaning downy mildew treated by QoI
fungicides cannot infect other parts of the grapevine. However, since QoI fungicides are
single-site fungicides (specifically binding to cytochrome b), downy mildew and gray mold
will develop fungicide resistance after continuous usage of QoI fungicides [12–14]. Because
of fungicide resistance development, the Fungicide Resistance Action Committee (FRAC)
labeled QoI fungicides as high-risk. The G143A (glycine to alanine) mutation was the main
known mutation that reduced the efficacy of QoI fungicides toward grape downy mildew
because the mutation of this target site weakens the binding affinity between protein
and the fungicides [12,15,16]. While developing new types of fungicides can resolve this
issue, it takes a significant amount of time and resources to identify alternative active sites
and undergo the rigorous approval processes. In the meantime, an effective, economical,
and viable management strategy may include using combinations of fungicides. These
combine one or more high-risk fungicides with one or more low-risk fungicides from
those currently used [15]. With this strategy, QoI fungicides can be combined with another
low-risk fungicide, providing the mixture with multiple binding targets and thus increasing
the effectiveness against mutation [15].

Currently, only a few studies exist recommending fungicide combinations targeting
Plasmopara viticola and Botrytis cinerea resistance, as summarized in Table 1. There is a gap
in knowledge on what fungicide combinations should be selected to treat crops that have
already developed resistance and also on what combinations would be most logical to use to
prevent developing resistance. The approach we have taken in this study is to evaluate how
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fungicides interact with WT and mutated versions of the target protein(s) at a molecular
level to screen the highest-binding fungicides, which in turn will be recommended for
field testing.

Table 1. Recent in vitro studies on fungicide combination recommendations targeting Plasmopara
viticola and Botrytis cinerea.

Study Results Limitations

Field efficacy of the combination of famoxadone
and metalaxyl-M against Plasmopara viticola and
the residue dynamics of the two fungicides in
grapevine [17].

Formulation of 30% famoxadone with
metalaxyl-M SC was effective against
Plasmopara viticola [17].

Only a few fungicides were tested
in the experiment.

Performance and phytotoxicity assessment of
mancozeb 40% + azoxystrobin 7% OS against
downy mildew of grapes in Maharashtra,
India [18].

Formulation of 40% mancozeb with 7%
azoxystrobin was effective against
Plasmopara viticola [18].

Only a limited number of
fungicides were tested over a
period of two years.

Evaluation of synergistic activity and resistance
development of the mixture of iprodione and
fluopyram against Botrytis Cinerea [19].

Formulation of 80% iprodione with 20%
fluopyram was effective against Botrytis
cinerea [19].

Only two fungicides were tested
in this research.

Bioefficacy of different fungicides against
Plasmopara viticola and Erysiphe necator of
grapes [20].

Formulations of 16.6% famoxadone with
22.1% cymoxanil, 10% famoxadone with
50% mancozeb, and 4.44% fluopicolide
with 66.67% fosetyl-Al were
recommended for Plasmopara viticola [20].

Experiments were limited to
existing fungicide combinations
on the market.

Synergy between Cu-NPs and fungicides against
Botrytis cinerea [21].

Formulation of copper nanoparticles with
fluazinam or thiophanate was effective
against Botrytis cinerea [21].

The study was limited to a select
few fungicides, and the long-term
efficacy is unknown. The
development of effective new
nanoparticles would require
many years, and the process of
producing copper nanoparticles
would be challenging.

Select studies on fungicide combinations are shown in Table 1. A key limitation is that,
since the studies were experimentally based, only a limited number of fungicides could
be tested. Moreover, the long-term efficacy of these combinations is yet to be determined.
A key advantage of in silico-based methods is their ability to screen a large number of
fungicides simultaneously based on rational molecular-level information and select those
with the highest promise for field testing. According to the existing literature, no studies
have provided guidance for the selection of fungicide combinations based on molecular
structures and their affinity for the target active site.

The significance of this work is that, as of now, there is only limited information for
researchers to follow on selecting fungicides for Plasmopara viticola and Botrytis cinerea once
resistance to existing fungicides is suspected. Also, there is no objective way to suggest
fungicide combinations to reduce the development of resistance or treat crops that have
already developed fungicide resistance. This study aims to provide a thermodynamic-
coupled machine learning strategy to identify and select antifungal agents from QoIs
(high-risk group) combined with low-risk fungicides to form fungicide combination(s) that
can mitigate fungicide resistance. This approach is based on docking selected fungicides
from QoIs and low-risk fungicides with a homology model of cytochrome b to identify the
fungicides with the highest affinity and evaluating the screened fungicides using QSAR
models with machine learning statistical methods.
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2. Materials and Methods
2.1. Protein Structure and Ligand Structure Preparation

A homology model in PDB format of Plasmopara viticola (GenBank: DQ209286.1) was
created using cytochrome b from plant mitochondrial complex III2 from Viga radiata (PDB:
7JRG. 1 .C) as a template on the SWISS-MODEL server [11,22–24]. The quality of this
homology model was evaluated using the programs ERRAT and PROVE on the SAVES
v6.0 server [25,26]. The homology model contained G143 and F129, which were forms
of WT cytochrome b. This model was mutated into G143A-mutated versions by Maestro
Schrödinger. The canonical SMILES formulas of ligands were obtained from ZINC15 or
PubChem (all 2D ligand structures are provided in Supplementary Materials Table S1), and
the 3D structures of these ligands were generated in PDB format using the online SMILES
translator [27,28]. All the protein and ligand structures were prepared for docking using
the Protein Preparation Wizard, which added missing hydrogens, corrected bond orders,
fixed missing segments, and minimized the structure under the Optimized Potentials for
Liquid Simulations 3 (OPLS3) force field [29].

A homology model was built and validated for Botrytis cinerea using methods analo-
gous to those developed for Plasmopara viticola.

2.2. Molecular Docking

Schrödinger Glide was used for the docking of the ligands on the protein. The grid
box was centered around the original active sites (G143 and F129; coordinates X—195.53,
Y—213.29, Z—176.3) or mutated active sites (G143A: coordinates X—192.6, Y—212.54,
Z —171.55) and the size of the grid box was 44 × 46 × 56 Å. Glide docking scores between
cytochrome b and the 27 ligands (ubiquinol and compounds 1–26 in Table S1) were gen-
erated using Schrödinger Glide XP mode with default settings in three replicates, and
the highest binding scores were used for binding affinity analysis. The ligand-protein
interactions were analyzed using a ligand interaction diagram.

2.3. AutoQSAR Model Analysis

In order to evaluate the predictions made by the docking, the Schrödinger automated
quantitative structure–activity relationship (AutoQSAR) model with a machine-learning
approach that is a subset of Artificial Intelligence (AI) was used. The AutoQSAR model
is a machine-learning approach that builds numerical models with minimal inputs to
interpret the relationship and make predictions between the bioactivity and chemical
properties of ligands [30]. In this case, the binding affinity was used as the input variable.
Numerical models were developed using multiple linear regression (MLR), partial least-
squares regression (PLS), kernel-based partial least-squares regression (KPLS), and principal
components regression (PCR) based on the given ligands’ fingerprints, including linear,
radial, dendritic, and milprint2D, or descriptors [30]. The AutoQSAR split the selected
ligands into a 75% training set and a 25% test set for Plasmopara viticola and Botrytis
cinerea [30]. This model generated a scatter plot that showed the correlation between
observed and predicted binding affinity. The accuracy of this model was evaluated by an
external validation data set.

More information on the fungicides that were used in the in silico study is given in
Table 2. The structural information of the compounds used in both in silico and QSAR
studies is given in Table S1.
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Table 2. Resistance and mode of action information for fungicides selected in this study.

Fungicide Resistance 1 Fungicide Type 2

Ubiqunol NA NA

Famoxadone HR QoI

Azoxystrobin HR/R QoI

Fenamidone HR QoI

Coumoxystrobin HR QoI

Flufenoxystrobin HR QoI

Enoxastrobin HR QoI

Pyraoxystrobin HR QoI

Picoxystrobin HR QoI

Metyltetraprole HR QoI

Fenaminstrobin HR QoI

Pyribencarb HR QoI

Dimoxystrobin HR QoI

Triclopyricarb HR QoI

Metominostrobin HR QoI

Pyrametostrobin HR QoI

Mandestrobin HR QoI

Fluoxastrobin HR QoI

Pyraclostrobin HR QoI

Orysastrobin HR QoI

Folpet LR PHT

Ferbam LR DTC

Captan LR PHT

Mancozeb LR DTC

Ametoctradin HR/R QoI

Thiram LR DTC

Zineb LR DTC
1 Resistance: NA, native; HR, high risk; LR, low risk for the resistance of fungicides. 2 Fungicide type: QoI,
quinone outside inhibitor; DTC, dithiocarbamate; PHT, phthalimides.

3. Results
3.1. Building of the Homology Models for Plasmopara viticola Cytochrome b

The homology model of Plasmopara viticola cytochrome b included the regions between
residues 79 and 295 found by BLAST. The sequence identity was 69.59%, and the sequence
similarity was 0.53 [24]. The Quaternary Structure Quality Estimate (QSQE) was 0.81 (with
0.7 as acceptable), indicating a high level of reliability. The Global Model Quality Estimate
(GMQE) was 0.89, meaning the homology model had over half of the target sequence
coverage [24]. The ERRAT value for the homology model was 93.5, which meant that
the homology model had acceptable nonbonded atomic interactions [25]. Based on the
PROCHECK report, 92.9% of residues (171 out of 217) were located in the most favored
regions, 6.5% (12 out of 217) were located in the additional allowed regions, 0% were located
in the generously allowed regions, and 0.5% (1 out of 217) were located in the disallowed
regions [31]. The residue score provided by PROCHECK was 99.5%, which indicated that
the conformation of the homology model of Plasmopara viticola cytochrome b was stable [32].
Based on favorable scores, this homology model was used for in silico studies.
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3.2. Identification of the Active Site for Plasmopara viticola

During the initial docking, the homology model was divided into top (covering
residues ARG79-TRY94, MET124-PHE180, and PHE245-MET295) and bottom sections
(covering residues ILE95-PHE121 and SER181-ILE244). To identify the docking site in
cytochrome b, two conserved regions around the center of the protein were picked from
the top and bottom parts based on the existing literature [33]. Initial docking results and
the site map shown in Figure 1 revealed the strong binding of probe molecules to the
top region (covering residues ARG79-TRY94, ILE122-PHE180, and PHE245-MET295) of
cytochrome b. Since the top region showed stronger binding and included the residue
where the antifungal-resistant mutation occurred, this region was used for docking analyses
in all subsequent steps. The key interactions of ubiquinol at the binding site are given in
Figure 1. Cytochrome b had strong hydrophobic interactions with ubiquinol, which was
also predominant between cytochrome b and the fungicides tested (Figure 1). Hydrogen
bonding was also observed with ARG178 for WT cytochrome b. Ubiquinol formed strong
hydrogen bonds with MET295 of the G143A-mutated type.

3.3. Fungicide Binding Behavior on Plasmopara viticola Cytochrome b

Since the focus of this study was to identify fungicides that were effective against WT
and the G143A mutation of cytochrome b, a set of known antifungal agents were docked
onto WT and G143A-mutated types of Plasmopara viticola cytochrome b. Here, the G143A
mutation was specifically selected since it was reported to be most significant for antifungal
resistance [33].
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3.4. Mutation-Specific Observations

In order to reveal any specific interactions of fungicides with a particular mutation,
the statistical analysis focused on each of the individual versions of Plasmopara viticola cy-
tochrome b. This type of analysis will be helpful in identifying the best possible fungicide(s)
if the mutation is known.

3.4.1. Fungicide Recommendations for WT

In the case of WT, ubiquinol showed a strong binding affinity to WT cytochrome
b (Figure 2), as expected. Mandestrobin, fenaminstrobin, dimoxystrobin, fenamidone,
famoxadone, and ametoctradin had a stronger affinity than other high-risk fungicides,
meaning they were effective agents for WT cytochrome b. Metominostrobin and thiram
had higher affinities than the other fungicides, indicating that they were also effective
against cytochrome b. Pyraoxystrobin, pyrametostrobin, pyraclostrobin, flufenoxystrobin,
coumoxystrobin, picoxystrobin, triclopyricarb, orysastrobin, fluoxastrobin, and metylte-
traprole did not bind to WT cytochrome b, and thus extensive usage of these fungicides has
a high propensity to develop resistance. Azoxystrobin and ametoctradin are two fungicides
known to be resistant to Plasmopara viticola [34,35]. Ametoctradin showed a somewhat
strong affinity toward the WT version, although the docking score toward WT cytochrome
b was lower than fenamidone, dimoxystrobin, fenaminstrobin, famoxadone, and mande-
strobin. Azoxystrobin had a poor docking score, indicating that it may not be effective
against cytochrome b inhibition. Among low-risk fungicides, i.e., fungicides having more
than one MOA, thiram showed a strong affinity toward WT cytochrome b. Other low-risk
fungicides such as captan, folpet, ferbam, and zineb did not bind tightly to WT cytochrome
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b, which meant that these low-risk fungicides were not recommended because of their high
potential susceptibility to resistance.
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with the highest binding affinity).

3.4.2. Fungicide Recommendations for the G143A Mutation

Ubiquinol as a native substrate also showed a strong affinity for the G143A mutation
of cytochrome b (Figure 3). Mandestrobin, fenaminstrobin, dimoxystrobin, fenamidone,
famoxadone, and ametoctradin, which showed strong affinity toward WT cytochrome
b and were effective agents against G143A-mutated cytochrome b. Coumoxystrobin,
flufenoxystrobin, pyribencarb, and metominostrobin did not show a high binding affinity
to WT cytochrome b, but they were effective fungicides when the G143A mutation oc-
curred, meaning the interaction between the G143A-mutated version and those ligands
was stronger than WT cytochrome b. Pyraoxystrobin, pyrametostrobin, pyraclostrobin,
flufenoxystrobin, enoxastrobin, picoxystrobin, triclopyricarb, orysastrobin, fluoxastrobin,
and metyltetraprole did not bind to G143A-mutated cytochrome b, indicating that these
high-risk fungicides were not preferred for G143A-mutated cytochrome b. Low-risk fungi-
cides folpet and thiram showed higher binding affinities than ferbam, zineb, mancozeb,
and captan, which meant folpet and thiram would be more effective fungicides for G143A-
mutated cytochrome b. As a resistant fungicide, azoxystrobin did not bind to either WT or
G143A-mutated cytochrome b as expected.
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A common recommendation is to use fungicide combinations that consist of different
MOAs, i.e., combining one MOA with others in a fungicide rotation program. Because of
their ability to tackle mutation, fenamidone, famoxadone, mandestrobin, dimoxystrobin,
fenaminstrobin, ametoctradin, and thiram have been identified as suitable candidates for a
rotational program targeting Plasmopara viticola.

The top conformation interactions of the highest affinity fungicides with G143A-
mutated versions are given in Figure 4. Dimoxystrobin showed strong hydrophobic
and hydrogen bonding interactions with MET125 of G143A-mutated cytochrome b. It
was evident that the primary interactions between fungicides and cytochrome b were
hydrophobic, which agreed with the predominantly hydrophobic nature of cytochrome b
proteins [36,37]. Figure 4 shows dimoxystrobin forming strong hydrophobic interactions
with the ILE122-ILE147 and PHE275-MET295 regions in the G143A-mutated versions. Of
the low-risk fungicides, thiram showed strong hydrophobic interactions with cytochrome b.

Based on the binding analysis (Figure 5), the pocket located on the top region of
cytochrome b that contained the residues F129 and G143 seemed to be an important
binding position when targeting Plasmopara viticola inhibition. Ametoctradin, famoxadone,
fenamidone, fenaminstrobin, mandestrobin, dimoxystrobin, metominostrobin, and thiram
tended to bind to this pocket, including the native substrate ubiquinol.

3.5. Fungicide Binding Behavior on Botrytis cinerea Cytochrome b

To further verify binding affinities, an additional set of docking simulations were
performed, this time using a grid box covering the ubiquinol binding site and the specific
residues G143 and F129 on cytochrome b of Botrytis cinerea. For this analysis, the same
26 fungicides (Compounds 1–26 in Table S1), including resistant, high-risk, and low-risk,
were selected. Botrytis cinerea was used because Plasmopara viticola was an obligate parasite
and experimental validations could only be performed under field conditions, whereas
Botrytis cinerea validations could easily be carried out in a laboratory setting.
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Figure 5. Ametoctradin, Famoxadone, Fenamidone, Fenaminstrobin, Mandestrobin, Dimoxystrobin,
Metominostrobin, Thiram, and Ubiquinol are visualized as sticks of different colors bound to WT
cytochrome b of Plasmopara viticola. Here, WT cytochrome b is represented as a gray surface, while
different fungicides are depicted in different colors. The figure to the right represents a close-up of the
active site, with the protein represented as a rainbow-colored ribbon and F129 and G143 represented
as ball structures.
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3.6. Mutation-Specific Observations
3.6.1. Fungicide Recommendations for WT

It was observed that pyraoxystrobin, mandestrobin, enoxastrobin, and pyribencarb
had higher binding affinity than ubiquinol to WT cytochrome b, indicating their poten-
tial superiority as effective fungicides via inhibition of cytochrome b of Botrytis cinerea
(Figure 6). Fenaminstrobin, pyraclostrobin, dimoxystrobin, famoxadone, metominstrobin,
pyrametostrobin, flufenoxystrobin, picoxystrobin, folpet, ametoctradin, fenamidone, cap-
tan, and triclopyricarb had higher affinities to WT cytochrome b than the other fungicides.
Azoxystrobin, as an identified resistant fungicide, did not bind to WT cytochrome b.
Coumoxystrobin, fluoxastrobin, metyltertrapole, and orysastrobin did not bind to WT
cytochrome b, indicating their high likelihood of succumbing to resistance. Moreover, zineb
and ferbam were low-risk fungicides that showed weaker binding affinity than captan,
thiram, and folpet, which meant zineb and ferbam were not likely to be effective fungicides
against cytochrome b of Botrytis cinerea.
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Figure 6. The performance of selected QoI fungicides on WT cytochrome b of Botrytis cinerea in a
specific grid box. Mean—average binding affinity of three replicates (generated by Glide docking on
Maestro Schrödinger) of the corresponding ligand; Level—ligands with the same letter level are not
significantly different (letter level A: ligands with the lowest binding affinity; letter level L: ligands
with the highest binding affinity).

3.6.2. Fungicide Recommendations for the G143A Mutation

Fungicides famoxadone, mandestrobin, pyribencarb, picoxystrobin, metominostrobin,
fenamidone, pyraoxystrobin, and thiram showed a stronger affinity to G143A-mutated
cytochrome b of Botrytis cinerea than ubiquinol, indicating their superior ability to withstand
the resistance caused by the G143A mutation of cytochrome b of Botrytis cinerea (Figure 7).
Enoxastrobin, fenaminstrobin, flufenoxystrobin, and pyrametostrobin also showed a strong
affinity toward WT cytochrome b but did not bind or bound weakly to G143A-mutated
cytochrome b, meaning these fungicides may not be effective if the G143A mutation
occurred. Coumoxystrobin, fluoxastrobin, metyltertrapole, and orysastrobin did not bind
to G143A cytochrome b. Azoxystrobin, as an identified resistant fungicide, did not bind to
G143A cytochrome b. Ferbam and zineb had weaker binding affinity, while captan and
folpet did not bind to G143A cytochrome b, indicating that these four low-risk fungicides
were not likely effective against G143A-mutated cytochrome b of Botrytis cinerea.
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Among the high-risk fungicides, mansestrobin, pyribencarb, fenamidone, famoxadone,
and ametoctradin were effective fungicides against WT and G143A-mutated cytochrome
b. Thiram showed a strong affinity for WT and G143A-mutated cytochrome b among
all the low-risk fungicides. Azoxystrobin did not show stable binding with WT and the
G143A mutation, which was expected since it was resistant to cytochrome b. Because
of their ability to tackle mutation, mansestrobin, pyribencarb, fenamidone, famoxadone,
ametoctradin, and thiram were identified as suitable candidates for a rotational program
targeting Botrytis cinerea.

An analysis of the binding behavior of ametoctradin, pyraoxystrobin, mandestrobin,
enoxastrobin, and pyribencarb in the vicinity of the G143 and F129 residues of WT cy-
tochrome b of Botrytis cinerea indicated that they all bound close to the two residues
(Figure 8). For the G143A mutation, picoxystrobin, metominostrobin, pyribencarb, famox-
adone, and mandestrobin bound to the same site as WT cytochrome b. This position was
also the binding site for ubiquinol on both WT and G143A cytochrome b, indicating that
this site is crucial when determining effective QoIs targeting Botrytis cinerea cytochrome
b inhibition.

An analysis of the interactions (Figure 9) of cytochrome b of WT Botrytis cinerea
with ubiquinol and pyraoxystrobin indicated that hydrophobic bonding was the primary
interaction that occurred. There was also hydrogen bonding with PHE164 and ARG178 for
ubiquinol and GLU273 for pyraoxystrobin. For G143A-mutated cytochrome b, hydrophobic
bonding still played a major role in pyribencarb. The interaction with the residue F129 was
hydrophobic regardless of the ligand. However, the interaction of ligands with the residue
G143 was not apparent in WT cytochrome b; however, pyribencarb showed hydrophobic
bonding once the G143A mutation occurred.
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Figure 8. (a) Fenamidtrobin, Pyraoxystrobin, Mandestrobin, Enoxastrobin, Pyribencarb, and
Ubiquinol with WT cytochrome b and (b) Picoxystrobin, Metominostrobin, Pyribencarb, Famoxadone,
Mandestrobin, and Ubiquinol are visualized as sticks of different colors bound to G143A cytochrome
b of Botrytis cinerea. Here, WT and G143A-mutated cytochrome b are represented as gray surfaces
while different fungicides are depicted in different colors. The figure to the right represents a close-up
of the active site, with the protein represented as a rainbow-colored ribbon and F129 and G143 or
G143A represented as ball structures. The colors in the key are for stick models.

3.7. AutoQSAR Model Evaluation
Application of AutoQSR to Predict Fungicides for Botrytis cinerea

Training Data without a Validation Set

An initial training set was developed using 16 QoI and 18 non-QoI fungicides. The top
five QSAR models and their performance parameters generated for Botrytis cinerea are de-
picted in Supplementary Figure S1, and these were pls_19, kpls_radial_19, kpls_dendritic_19,
kpls_desc_19, and kpls_linear_19. Based on the scoring functions, the best model was
pls_19, which was generated by partial least squares regression (PLS) using the 19th split
of the learning set into a test and training set (34 ligands) without a validation set. This
model had a standard deviation (S.D.) of 2.1184, a R2 of 0.6378, a root mean square error
(RMSE) of 2.1419, a Q2 of 0.6172, and a ranking score of 0.5892. Binding affinity, Y(Obs),
and predicted affinity, Y(Pred), from the QSAR model of all selected ligands are shown
in Figure 10a (under DATASET) and Supplementary Figure S2, with 75% of the ligands
belonging to the training set and 25% of the ligands to the test set for Botrytis cinerea. The
five scatter plots in Figure 10 (b) and Supplementary Figure S3 were generated based on
Y(Obs) and Y(Pred). The results indicated that about 50% of training sets were close to the
regression line.
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In order to evaluate whether the predictions could be improved, it was decided to
refine the models by systematically removing outliers that were chemically distinct from
the ones that functioned as QoIs and/or when the difference between actual and predicted
affinities was larger than 3 kCal/mol.
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Iteration #1

The new external validation set that included 19 ligands (Supplementary Table S2) was
used to estimate the prediction accuracy of the QSAR model made by the top five numeric
models listed in Figure S1. The R2 value of the best-fit line was 0.06, meaning the QSAR
model was not able to predict with an acceptable level of accuracy for the given validation
set. Moreover, some ligands in Figure 10c fell outside the applicability domain of the QSAR
model, which would decrease the prediction accuracy of the QSAR model. Visual inspection
of Figure 10c showed that metominostrobin, azaconazole, dithianon, and picarbutrazox
were outliers, indicating these ligands were possibly unsuitable for the validation set for
the built model. Both azaconazole and picarbutrazox had multiple heterocyclic nitrogen
atoms (Table S1). Dithianon was the only ligand that contained heterocyclic dual sulfur
atoms among the 19 ligands. Metominostrobin, azaconazole, dithianon, and picarbutrazox
had an oxygen-containing aromatic ring, and there were at least two oxygen atoms in each
ligand. The structural features mentioned above might be the reason these four ligands
were not suitable for the validation set. To improve the prediction accuracy of the QSAR
model, these ligands were considered for removal in the next iteration.

Iteration #2

After removing metominostrobin, azaconazole, dithianon, and picarbutrazox, 15 lig-
ands were next considered in the validation set (Table S2). The R2 value of the best-fit
line increased from 0.06 to 0.26, indicating the four outliers might be potential factors
affecting the prediction accuracy of the QSAR model. Both furametpyr and iprodione had
chlorine in their chemical structure, which was similar to azaconazole, which was removed
in first iteration (Table S1). Furametpyr, iprodione, and penthiopyrad had heterocyclic dual
nitrogen atoms. Diethofencarb had a similar structure to metominostrobin, which was
removed in the first iteration. Based on the visual inspection of Supplementary Figure S4
and similar chemical structures, furametpyr, iprodione, penthiopyrad, and diethofencarb
were considered potential outliers.

Iteration #3

After removing the eight outliers (metominostrobin, azaconazole, dithianon, picarbu-
trazox, furametpyr, iprodione, penthiopyrad, and diethofencarb) in this iteration, the R2

value in Supplementary Figure S5 of the best-fit line increased from 0.26 to 0.53. The rest of
the compounds in Table S2 were more acceptable as an external validation set, meaning
that they were expected to generate better predictions. The top predictions that would
withstand G143A-mutated cytochrome b of Botrytis cinerea were fenpropidin (an amine),
fenoxanil (a melanin biosynthesis inhibitor dehydratase), isoflucypram (a succinate dehy-
drogenase inhibitor), and ametoctradin (a QoI). Although oxathiapiprolin and triazoxide
had a high predicted binding affinity, their original affinity was low, so they were not
acceptable. Chlorine and multiple heterocyclic nitrogen were considered similar to the
outliers’ structures.

3.8. Training Data with a Validation Set

In this case, two QoI fungicides, picoxystrobin and pyribencarb, were assigned as a
validation set for the QSAR models. This resulted in 32 ligands in the training set for the
QSAR model (Figure 11a and Supplementary Figure S7). The ranking scores for the top
five QSAR models with a validation set (Supplementary Figure S6) were higher than the
model without the validation set, meaning that the test set predictions of a model with a
validation set might be more accurate. The top QSAR models shown for Botrytis cinerea
in Figure S6 were kpls_molprint2D_39, kpls_radial_8, kpls_linear_30, kpls_dendritic_30,
and kpls_dendritic_39. The best model was kpls_molprint2D_39, which was generated
by kernel partial least squares regression (KPLS) with molprint2D fingerprint, using the
39th split of the learning set into a test and training set (32 ligands) with the validation set
(2 ligands). This model had an S.D. of 1.8732, a R2 of 0.7081, an RMSE of 1.8919, a Q2 of
0.6860, and a ranking score of 0.6582. As seen in the plots in Figure 11b and Supplementary
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Figure S8, training sets were closer to the regression line (Figures 10b and S3), indicating
the better prediction ability of the model.

Microorganisms 2023, 11, x FOR PEER REVIEW 17 of 25 
 

 

Figure S6 were kpls_molprint2D_39, kpls_radial_8, kpls_linear_30, kpls_dendritic_30, 
and kpls_dendritic_39. The best model was kpls_molprint2D_39, which was generated by 
kernel partial least squares regression (KPLS) with molprint2D fingerprint, using the 39th 
split of the learning set into a test and training set (32 ligands) with the validation set (2 
ligands). This model had an S.D. of 1.8732, a R2 of 0.7081, an RMSE of 1.8919, a Q2 of 0.6860, 
and a ranking score of 0.6582. As seen in the plots in Figure 11b and Supplementary Figure 
S8, training sets were closer to the regression line (Figures 10b and S3), indicating the bet-
ter prediction ability of the model. 

 

 

(a) (b) 

 
(c) 

Figure 11. (a) Model report for the kpls_radial_39 model, (b) scatter plot providing the performance 
of the kpls_radial_39 model and (c) scatter plot of the prediction set for the top QSAR models in 
Figure S6 for Botrytis cinerea using a validation set. 

R2=0.7081 Q2=0.6860 

Figure 11. (a) Model report for the kpls_radial_39 model, (b) scatter plot providing the performance
of the kpls_radial_39 model and (c) scatter plot of the prediction set for the top QSAR models in
Figure S6 for Botrytis cinerea using a validation set.

Similar to the procedure that was adopted in the previous run, several iterations were
conducted while removing chemically distinct outliers.
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Iteration #1

In Supplementary Table S3, the external validation set had the same 19 ligands to
estimate the prediction accuracy of the QSAR model. The R2 value of the best-fit line
was 0.05, meaning the QSAR model did not perform well for the given validation set.
Visual inspection of Supplementary Figure 11c showed that penthiopyrad, isoflucypram,
picarbutrazox, and metominostrobin fell outside the applicability domain of the QSAR
model, which would decrease the prediction accuracy of the model. Moreover, penthiopy-
rad and isoflucypram had fluorine in their chemical structures (Table S1). Penthiopy-
rad, isoflucypram, and picarbutrazox contained multiple heterocyclic nitrogen atoms.
Penthiopyrad, isoflucypram, and metominostrobin had nitrogen-hydrogen structures. To
improve the prediction accuracy of the QSAR model, these ligands were removed in the
next iteration.

Iteration #2

After removing penthiopyrad, isoflucypram, picarbutrazox, and metominostrobin
in Table S3, the R2 value of the best-fit line slightly increased. A visual inspection of
Supplementary Figure S9 suggested the presence of several outliers (oxathiapiprolin, aza-
conazole, flusulfamide, diethofencarb, and dithianon) that would need to be removed to
improve the QSAR model. Oxathiapiprolin and flusulfamide had fluorine in their chemical
structures (Table S1). Azaconazole and flusulfamide have chlorine in their chemical struc-
tures. Diethofencarb had a similar structure to metominostrobin. Only dithianon contained
heterocyclic dual sulfur atoms.

Iteration #3

To further improve the QSAR model, outliers including oxathiapiprolin, azaconazole,
flusulfamide, diethofencarb, and dithianon were removed from Table S3. The R2 value of
the best-fit line significantly increased from 0.08 to 0.67, indicating those ligands had struc-
tural properties that were not predictable using the models (Supplementary Figure S10).
The top predictions that would withstand G143A-mutated cytochrome b of Botrytis cinerea
were fenoxanil (a melanin biosynthesis inhibitor dehydratase), fenpropidin (an amine),
iprodione (a dicarboximde), tebufloquin (a 4-quinolyl-acetate), and ametoctradin (a QoI).
Furametpyr and triazoxide had high predicted affinity, but the difference between their
original affinity and predicted affinity was higher than the other four ligands. It should be
noted that the model was not able to make accurate predictions when ligands had chlorine,
fluorine, and heterocyclic nitrogen atoms in their chemical structures.

Application of AutoQSR to Predict Fungicides for Plasmopara viticola

Training Data without a Validation Set

Here, an initial training set was developed using 16 QoI and 20 non-QoI fungi-
cides. The top five QSAR models for Plasmopara viticola were kpls_desc_2, kpls_radial_24,
kpls_linear_22, kpls_radial_22, and pls_2 (Supplementary Figure S11). The best model
was kpls_desc_2, generated by kernel partial least squares regression (KPLS) with a desc
fingerprint, using the 12th split of the learning set into a test and training set (36 ligands)
without a validation set. This model had an S.D. of 1.7498, a R2 of 0.7032, an RMSE of 1.615,
a Q2 of 0.7350, and a ranking score of 0.7116. In Figure 12a and Supplementary Figure S12,
75% of the ligands occupied the training set and 25% occupied the test set. The scatter plots
in Figure 12b and Supplementary Figure S13 indicate that the first four models’ training
sets correlated closely with the test sets.
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Figure 12. (a) Model report for the kpls_desc_2 model, (b) scatter plot providing the performance
for the kpls_desc_2 model, and (c) scatter plot of the prediction set for the top QSAR models in
Figure S11 for Plasmopara viticola without using a validation set.

Here, in order to evaluate whether the predictions could be improved, it was decided
to refine the models by systematically removing outliers that were chemically distinct from
the ones that functioned as QoIs and/or when the difference between actual and predicted
affinities was larger than 3 kCal/mol, as previously performed.
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Iteration #1

In this iteration, the external validation set had 17 ligands to estimate the prediction
accuracy of the QSAR model (Supplementary Table S4). The R2 value of the best-fit line was
not impressive (Figure 12c). Visual inspection of Figure 12c indicated two apparent ligands,
fluindapyr and picarbutrazox, falling outside the applicability domain of the QSAR model.
Triazoxide, polyoxin, dithianon, and dimoxystrobin also deviated significantly from the
regression line. Both fluindapyr and triazoxide had chlorine in their chemical structures
(Table S1). Dithianon was the special ligand that had heterocyclic dual sulfur atoms in
aromatic rings. Picarbutrazox and dimoxystrobin had a similar structure. Triazoxide and
polyoxin showed oxygen with a negative charge. To improve the prediction accuracy of
the QSAR model, these ligands were removed in the next iteration.

Iteration #2

After the first iteration, 6 ligands were removed, and 11 ligands remained in Table S4.
Although the R2 value of the best-fit line increased from 0 to 0.25, there were still some outliers,
such as furametpyr, fenpropidin, and tebufloquin, shown in Supplementary Figure S14. Fu-
rametpyr had chlorine that was similar to triazoxide in Table S1. Tebufloquin had fluorine
that was similar to fluindapyr. All three ligands (furametpyr, fenpropidin, and tebufloquin)
had a similar carbon structure, as shown in Table S1. To further improve accuracy, these
ligands were removed in the next iteration.

Iteration #3

After removing the outliers mentioned in the second iteration in Table S4, the R2 value
of the best-fit line (Supplementary Figure S15) became 0.63, with an acceptable predic-
tion accuracy. The top predictions that would withstand G143A-mutated cytochrome b
of Plasmopara viticola were flusulfamide (a benzene-sulfonamide), ametoctradin (a QoI),
ethaboxam (a thiazole carboxamide), and famoxadone (a QoI). Isoflucypram and diethofen-
carb showed high predicted affinity with low original affinity; thus, they were not an
appropriate validation set for the QSAR prediction model. Outliers for this QSAR model
carried fluorine, chlorine, and oxygen with a charge, and an aromatic ring with sulfur.

Training Data with a Validation Set

In this case, two QoI fungicides, fenaminstrobin and fenamidone, were assigned as the
validation set for the QSAR models. Consequently, there were 34 ligands used for the QSAR
model (Figure 13a and Supplementary Figure S17). The ranking scores for the top five
QSAR models with a validation set (Supplementary Figure S16) were higher than for the
model without a validation set. The results of the QSAR models from both Botrytis cinerea
and Plasmopara viticola showed that a validation set may provide more accurate prediction
models. The top QSAR models shown for Plasmopara viticola in Supplementary Figure S16
were kpls_linear_39, kpls_desc_31, kpls_dendritic_31, kpls_linear_2, and kpls_linear_31.
The best model was kpls_linear_39, which was generated by kernel partial least squares
regression (KPLS) with a linear fingerprint, using the 39th split of the learning set into a
test and training set (34 ligands) with a validation set. This model had an S.D. of 1.4315, a
R2 of 0.7953, an RMSE of 1.4160, a Q2 of 0.7624, and a ranking score of 0.7733. As seen in
the scatter plots in Figure 13b and Supplementary Figure S18, the pattern of training sets
was similar to the plots in Figures 12b and S13.
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of the kpls_linear_39 model, and (c) scatter plot of the prediction set for the top QSAR models in
Figure S16 for Plasmopara viticola using a validation set.

Iteration #1

The predicted binding affinities in Supplementary Table S5 were slightly lower than
those in Table S4. The R2 value of the best-fit line was 0.03, as shown in Supplementary
Figure S13c. Visual inspection of Figure 13c identified three apparent ligands (fluindapyr,
picarbutrazox, and dimoxystrobin) falling outside the applicability domain of the QSAR
model, which affected the prediction accuracy of the QSAR model. Dithianon was another
ligand that lay further from the regression line, and it was the only ligand that contained
an aromatic ring with sulfur (Table S1). Fluindapyr and picarbutrazox had similar aromatic
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rings. To improve the prediction accuracy of the QSAR model, these ligands were removed
during the next iteration.

Iteration #2

After the first iteration, 4 ligands were removed, and 13 ligands remained in Table S5.
The R2 value of the best-fit line shown in Figure S19 improved from 0.03 to 0.16 in this
iteration (Supplementary Figure S19). Furametpyr, flusulfamide, tebufloquin, triazoxide,
polyoxin, famoxadone, and mandestrobin were outliers based on visual inspection. Fu-
rametpyr, flusulfamide, and triazoxide had chlorine. Flusulfamide and tebufloquin had
fluorine in their ligand structures (Table S1). Both triazoxide and polyoxin had oxygen with
a charge in their ring structures. Famoxadone and mandestrobin had a similar structure to
dimoxystrobin. For further improvement of the model, these ligands were removed.

Iteration #3

In this case, the R2 value of the best-fit line shown in Figure S20 was 0.64, meaning
the prediction accuracy of the QSAR models was acceptable. The top predictions that
would withstand G143A-mutated cytochrome b of Plasmopara viticola were fenpropidin
(an amine), ametoctradin (a QoI), and ethaboxam (a thiazole carboxamide). Isoflucypram,
diethofencarb, and fluoxapiprolin were not appropriate selections since their predicted
affinities were very different from their original affinities (Table S5). Outliers for this
QSAR model also contained fluorine and chlorine, similar to the QSAR model with a
validation set.

4. Discussion

The primary purpose of this study was to use in silico simulations to select the highest
affinity QoI fungicides for the cytochrome b targets of Plasmopara viticola and Botrytis
cinerea. Based on different in silico simulation methods that consisted of generalized and
site-directed ligand impingement methods, docking simulations showed ubiquinol to be
the highest affinity ligand for cytochrome b, regardless of the sourced organism. Ubiquinol
is bound to cytochrome b primarily via hydrophobic interactions.

In the case of WT cytochrome b of Plasmopara viticola, mandestrobin, fenaminstrobin,
dimoxystrobin, fenamidone, famoxadone, and ametoctradin bound with the highest
affinity and were thus considered effective fungicides. They were also effective agents
against G143A-mutated cytochrome b. Coumoxystrobin, flufenoxystrobin, and pyribencarb
showed a strongly poor affinity toward WT and the G143A-mutated version, suggesting
their susceptibility to potential resistance. As a resistant fungicide, azoxystrobin did not
bind to WT and G143A-mutated cytochrome b as expected. Although folpet, a low-risk
FRAC code fungicide, showed a reasonable affinity toward G143A-mutated cytochrome b,
only thiram had stable and strong affinities toward both WT and G143A-mutated types of
cytochrome b among the selected low-risk fungicides. According to the general analysis,
from the high- and low-risk groups, mandestrobin, fenaminstrobin, dimoxystrobin, famox-
adone, fenamidone, ametoctradin, and thiram emerged as those with the strongest affinity
toward Plasmopara viticola cytochrome b.

Pyribencarb, mandestrobin, fenamidone, famoxadone, and ametoctradin were ef-
fective agents against WT and G143A-mutated cytochrome b of Botrytis cinerea. While
pyraoxystrobin and metominostrobin had a strong affinity toward WT cytochrome b, their
affinity was poor toward mutated cytochrome b. The low-risk fungicides, folpet and captan,
had a strong affinity with WT cytochrome b but did not bind to G143A-mutated versions
of Botrytis cinerea cytochrome b. Thiram showed consistent but moderate affinities.

According to the binding affinity simulation analysis, mandestrobin emerged as the top
binder for both Plasmopara viticola and Botrytis cinerea cytochrome b, regardless of common
mutations. Thiram, on the other hand, emerged as a reasonable, low-risk fungicide that
worked on WT and the G143A-mutated versions of both fungi. However, the affinity
analysis clearly indicated the difficulty of making such broad-spectrum recommendations
because of the peculiarities of cytochrome b proteins within different organisms.
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Based on a QSAR analysis with an extended array of fungicides, fenpropidin (an
amine), fenoxanil (a melanin biosynthesis inhibitor dehydratase), isoflucypram (a succinate
dehydrogenase inhibitor), and ametoctradin (a QoI) emerged as effective against G143A-
mutated cytochrome b of Botrytis cinerea. Moreover, fenoxanil, fenpropidin, iprodione
(a dicarboximde), tebufloquin (a 4-quinolyl-acetate), and ametoctradin emerged as high-
affinity inhibitors in an analysis with a secondary validation set. The QSAR analysis without
a validation set revealed flusulfamide (a benzene-sulfonamide), ametoctradin, ethaboxam
(a thiazole carboxamide), and famoxadone (a QoI) emerged as high-affinity fungicides on
G143A-mutated cytochrome b of Plasmopara viticola. Moreover, fenpropidin, ametoctradin,
and ethaboxam showed a strong affinity in the analysis with a secondary validation set.
Based on both the docking simulations and QSAR analysis, ametoctradin emerged as a
potential high-affinity QoI fungicide toward the G143A-mutated cytochrome b.

5. Conclusions

It was observed that mandestrobin, fenaminstrobin, dimoxystrobin, fenamidone, and
famoxadone bound to the WT, whereas dimoxystrobin and fenaminstrobin bound to the
G143A-mutated cytochrome b of Plasmopara viticola with the highest affinity. Although the
low-risk fungicide folpet showed reasonable affinity toward G143A-mutated cytochrome b,
only thiram had stable and strong affinities toward both WT and G143A-mutated types
of cytochrome b among the selected low-risk fungicides. In general, from the high- and
low-risk groups, dimoxystrobin, fenaminstrobin, and thiram showed the strongest affin-
ity toward Plasmopara viticola cytochrome b. Pyribencarb, mandestrobin, enoxastrobin,
and pyraoxystrobin had a high affinity toward WT, whereas famoxadone, mandestrobin,
pyribencarb, picoxystrobin, and metominostrobin bound tightly to G143A-mutated cy-
tochrome b of Botrytis cinerea. Folpet and captan had a strong affinity with WT cytochrome
b but did not bind to G143A-mutated versions of Botrytis cinerea cytochrome b. Thiram
showed consistent but moderate affinities. Mandestrobin emerged as the top binder for
both WT Plasmopara viticola and WT Botrytis cinerea cytochrome b. Famoxadone appeared
to be a versatile binder for G143A-mutated cytochrome b of both Plasmopara viticola and
Botrytis cinerea. Thiram emerged as a reasonable, low-risk non-QoI fungicide that works
on WT and G143A-mutated versions of both fungi. QSAR analysis revealed fenpropidin,
fenoxanil, and ethaboxam non-QoIs to have a high affinity for G143A-mutated cytochrome
b of Plasmopara viticola and Botrytis cinerea. It is recommended that modeling results be ex-
perimentally validated via in vitro and/or plant field studies while attempting to improve
the accuracy of the QSAR model using the experimental (validation) data.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/microorganisms11051341/s1, Table S1. Compound information for
all the fungicides; Table S2. Calculated binding affinity (via docking simulations) and predicted
binding affinity between 19 selected ligands and G143A-mutated cytochrome b of Botrytis cinerea
without a validation set; Table S3. Calculated binding affinity (via docking simulations) and predicted
binding affinity between 19 selected ligands and G143A-mutated cytochrome b of Botrytis cinerea for
the QSAR model with a validation set; Table S4. Calculated binding affinity (via docking simulations)
and predicted binding affinity between 17 selected ligands and G143A-mutated cytochrome b of
Plasmopara viticola without a validation set; Table S5. Calculated binding affinity (via docking simula-
tions) and predicted binding affinity between 17 selected ligands and G143A-mutated cytochrome
b of Plasmopara viticola by using the QSAR model with a validation set; Figure S1. Top 10-ranked
QSAR models without a validation set for (fungicides used in) Botrytis cinerea; Figure S2. Model
reports for (a) in the main argicle (b) kpls_radial_19, (c) kpls_dendritic_19, (d) kpls_desc_19, and
(e) kpls_linear_19 models of Botrytis cinerea without using the validation set; Figure S3. Scatter plot
about performance for (a) main article (b) kpls_radial_19, (c) kpls_dendritic_19, (d) kpls_desc_19,
and (e) kpls_linear_19 models of Botrytis cinerea without using the validation set; Figure S4. Scatter
plot of the external validation set after removing four outliers in Figure 10c; Figure S5. Scatter plot
of the external validation set after removing four outliers in Figure S4; Figure S6. Top 10-ranked
QSAR model reports with validation sets for Botrytis cinerea; Figure S7. Model reports for (a) main
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article (b) kpls_radial_19, (c) kpls_dendritic_19, (d) kpls_desc_19, and (e) kpls_linear_19 models
of Botrytis cinerea using the validation set; Figure S8. Scatter plot about performance for (a) main
article (b) kpls_radial_8, (c) kpls_linear_30, (d) kpls_dendritic_30, and (e) kpls_dendritic_39 models
of Botrytis cinerea using the validation set; Figure S9. Scatter plot of the external validation set after
removing four outliers in Figure 11c; Figure S10. Scatter plot of the external validation set after
removing five outliers in Figure S9; Figure S11. Top 10-ranked QSAR model reports without the
validation set for Plasmopara viticola; Figure S12. Model reports for (a) main article (b) kpls_radial_24,
(c) kpls_linear_22, (d) kpls_radial_22, and (e) pls_2 models of Plasmopara viticola without using the
validation set; Figure S13. Scatter plot about performance for (a) main article (b) kpls_radial_24,
(c) kpls_linear_22, (d) kpls_radial_22, and (e) pls_2 models of Plasmopara viticola without using the
validation set; Figure S14. Scatter plot of external validation set for all top five models after removing
six outliers in Figure 12c; Figure S15. Scatter plot of external validation set for all top five models
after removing three outliers in Figure S14; Figure S16. Top 10-ranked QSAR model reports with the
validation set for Plasmopara viticola; Figure S17. Model reports for (a) main article (b) kpls_desc_31,
(c) kpls_dendritic_39, (d) kpls_linear_2, and (e) kpls_linear_31 models of Plasmopara viticola using
the validation set; Figure S18. Scatter plot about performance for (a) main ariticle (b) kpls_desc_31,
(c) kpls_dendritic_39, (d) kpls_linear_2, and (e) kpls_linear_31 models of Plasmopara viticola using
the data set; Figure S19. Scatter plot of the external validation set after removing four outliers in
Figure 13c; Figure S20. Scatter plot of the external validation set after removing seven outliers in
Figure S19.
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