
Citation: Chai, Y.; Huang, Z.; Shen,

X.; Lin, T.; Zhang, Y.; Feng, X.; Mao,

Q.; Liang, Y. Microbiota Regulates

Pancreatic Cancer Carcinogenesis

through Altered Immune Response.

Microorganisms 2023, 11, 1240.

https://doi.org/10.3390/

microorganisms11051240

Academic Editor: Grzegorz Wegrzyn

Received: 8 March 2023

Revised: 2 May 2023

Accepted: 4 May 2023

Published: 8 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

microorganisms

Review

Microbiota Regulates Pancreatic Cancer Carcinogenesis through
Altered Immune Response
Yihan Chai 1,† , Zhengze Huang 1,†, Xuqiu Shen 1, Tianyu Lin 1, Yiyin Zhang 1, Xu Feng 1, Qijiang Mao 1,2,3,*
and Yuelong Liang 1,3,*

1 Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital,
Hangzhou 310016, China

2 Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Hangzhou 310016, China
3 Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal

Diseases, Hangzhou 310028, China
* Correspondence: mao_qj@zju.edu.cn (Q.M.); yuelongliang@zju.edu.cn (Y.L.)
† These authors contributed equally to this work.

Abstract: The microbiota is present in many parts of the human body and plays essential roles.
The most typical case is the occurrence and development of cancer. Pancreatic cancer (PC), one of
the most aggressive and lethal types of cancer, has recently attracted the attention of researchers.
Recent research has revealed that the microbiota regulates PC carcinogenesis via an altered immune
response. Specifically, the microbiota, in several sites, including the oral cavity, gastrointestinal
tract, and pancreatic tissue, along with the numerous small molecules and metabolites it produces,
influences cancer progression and treatment by activating oncogenic signaling, enhancing oncogenic
metabolic pathways, altering cancer cell proliferation, and triggering chronic inflammation that
suppresses tumor immunity. Diagnostics and treatments based on or in combination with the
microbiota offer novel insights to improve efficiency compared with existing therapies.
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1. Introduction

The human microbiota is present at different sites on the surface and within the
body, including the human skin, oropharynx, gastrointestinal (GI) tract, genitalia, and con-
junctiva [1,2]. Microbiome research has been facilitated by the advent of next-generation
sequencing techniques and either gas chromatography (GC-MS) or liquid chromatography
(LC-MS), which allow for the assessment and analysis of microbiota composition, typically
through biomarker gene sequencing [3,4]. Over the past 2 decades, numerous studies have
revealed the effects of microbiome manipulation on different aspects of the physiology and
metabolism of multicellular organisms, with implications for health and disease [1,5–8].
The GI microbiota, in particular, positively affects various host functions by producing
numerous beneficial small molecules and metabolites, which play a significant role in indi-
vidual physiology, inflammation, metabolism, immunity, nutrition, and neurology [9–17].
The disruption of the microbial host network has been implicated in many human patho-
logical conditions, which probably influence cancer progression and treatment in both
positive and negative ways [18–22].

Although cancer is generally considered to be a disease, caused by accumulating
changes in the genome, epigenome, and environmental factors, microbes are associated
with approximately 20% of human malignancies and are key mediators regulating cancer
susceptibility and tumor progression [23–25]. The use of immune checkpoint inhibitors
(ICIs) is increasingly recognized because of the critical functions of the microbiome in the
dynamic regulation of immune homeostasis [26–35]. The microbiota modulates the tumor
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microenvironment (TME) locally through interactions with immune responses, hence, influ-
encing cancer initiation, development, and treatment, and the effects range from harmful
to beneficial [18,36,37]. The microbiota exerts vital functions on distant or proximal tumor
tissues, primarily through three categories of microbial pathways, including manipulating
the balance between host cell death and survival, activating immune system function, and
responding to host-produced factors, ingested food, and drug metabolism, particularly in
colorectal cancer, which is in close contact with the GI microbiota [18,38–41]. The GI tract,
acting as the largest reservoir of microorganisms, plays a major role in metabolic health
and immune regulation through multiple interactions with host cells [3,42,43].

Pancreatic cancer (PC), particularly pancreatic ductal adenocarcinoma (PDAC), the
most common form of PC, with a dismal 5-year survival rate of approximately 10% at
diagnosis, is an aggressive, devastating, and lethal form of human cancer [44–48]. Recent
studies have described that certain microbiota contributes to cancer onset and progres-
sion by activating oncogenic signaling, enhancing oncogenic metabolic pathways, altering
cancer cell proliferation, and triggering chronic inflammation that suppresses tumor im-
munity [42,49–51]. Results from patients with PDAC were compared with those from
healthy controls, showing that the former may have different microbiomes in multiple
body sites, including oral, GI, and pancreatic tissue [52–55]. Even at different stages of
PDAC progression, the gut microbiota and metabolome of patients with resectable and
unresectable PDAC showed differences [56]. Therefore, it can be inferred that the analysis
and target of the microbiome may provide novel approaches with the potential to improve
the efficacy of PDAC diagnosis and immunotherapy response [57].

This review will highlight recent studies analyzing the diverse microbiota affecting PC,
elucidating the intricate cross-talk between the microbiota and various immune cells, thereby
providing potential future therapeutic strategies to improve current treatment efficacy.

2. PC and the Microbiome

As shown in Figure 1, compared with healthy individuals, various microbiome
changes are demonstrated in multiple body sites in patients with PC, including the oral, GI
tract, and pancreas [52,55,58,59]. To achieve a better understanding of these microbiomes,
clinical, demographic, epidemiological, and laboratory findings related to PC are under
investigation, and oral rinses/swabs, saliva, blood, stool, biopsies, and tissue samples
were examined for various microorganisms (Table 1). The detection of specimens is rou-
tinely achieved using several methods, including the analysis and size characterization of
antibodies in the blood plasma, enzyme-linked immunosorbent assay, quantitative poly-
merase chain reaction (qPCR), 16S ribosomal ribonucleic acid (rRNA) gene sequencing,
and microarrays. Recent data provided supportive evidence that conditions caused by oral
microbiomes, such as periodontal disease or tooth loss, are related to the disease status
of PC [60]. Correlations between the oral microbiota and PC carcinogenesis have been
elucidated [61]. Several epidemiological and clinical studies have suggested an association
between PC and Helicobacter pylori seropositivity [62–64]. To date, although molecular
evidence remains scarce, a significant proportion of the clinically available literature proves
the carcinogenesis of the hepatitis B virus (HBV) in the process of pancreatic tumorigene-
sis [65–67]. Research on the microbiome within the pancreas was also conducted. Based on
multiple existing research findings, it can be hypothesized that PC may have some bacterial
origins [49,58,68].
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Figure 1. Specific microbiota associated with PC, whose abundances increase, decrease, or we are
unsure. Fusobacterium and Streptococcus mitis are typical oral microbiota related to PC. Gamma-
proteobacteria were the predominant bacteria that were first identified in human pancreatic cancer
tissues. The gastrointestinal microbiota, including H. pylori and HBV, were demonstrated to be
involved in PC. Notably, Lactobacillus and Actinobacteria exist in the colon, demonstrated to be related
to PC.
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Table 1. Studies on the microbiota that target innate and adaptive immune cells.

Authors Year Body Sites Microbiota Biological Effects Ref. PMID

P. M. Bracci 2017 Oral cavity P. gingivalis

triggers innate immune
response: recognizes

TLR4, stimulates
MyD88-dependent and

MyD88-independent
pathways, activates the
NF-κB pathway, release

proinflammatory
cytokines

[69] 29189325

A. D. Kostic
et al. 2013 Oral cavity Fusobacterium

increases production of
ROS and inflammatory
cytokines (e.g., IL-6 and

TNF)

[70] 23954159

M. Uribe-
Herranz

et al.
2018 GI tract Bacteroidales

enhances the activity of
antitumor-specific

effector T cells, increases
the levels of cDC and

IL-12

[71] 29467322

J. Knorr et al. 2019 GI tract H. pylori

secretes
cytotoxin-associated

proteins and vacuolar
proteins that promote
chronic inflammatory
oxidative stress and

damage host DNA to
trigger cellular
carcinogenesis

[72] 31130493

A. Sivan et al. 2015 GI tract Bifidobacterium promotes T-cell mediated
antitumor immunity [73] 26541606

M. Vetizou
et al. 2015 GI tract Bacteroides

fragilis

promotes the
mobilization of lamina

propria DCs to stimulate
IL-12-dependent Th1
immune responses

[74] 26541610

L. F. Mager
et al. 2020 Pancreatic

tissue B. pseudolongum

a purine metabolite
(Inosine), directly binds

to and inhibits the
ubiquitin-activating

enzyme UBA6,
enhancing

tumor-intrinsic
immunogenicity, thereby
sensitizing tumor cells to

T-cell-mediated
cytotoxicity

[75] 32792462

2.1. Oral Microbiota

The human oral cavity houses a diverse microbial community, harboring over 700 species
of microorganisms. The microbiota that constitutes the oral microbiome remains relatively
stable over time, indicating its vital impact on maintaining health. If oral disease states,
including gingivitis, periodontal disease, and other diseases, happen, the ecological balance
of the microbiota in the oral cavity will be altered [60,76–79]. Periodontitis, a severe and
chronic oral infection leading to tooth loss and other health complications, which affects the
supporting tissue of the teeth, including the gums, gingival tissue, and surrounding area,
is thought to be associated with various forms of cancers, such as PC and colorectal
cancer [53,69,78,80–88]. The PC risks linked to bad oral health, periodontal disease,
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pathogenic oral flora, and tooth loss have been fully vindicated and recognized as in-
dependent risk factors [78,80,81,89–92]. Therefore, the variation in taxa dominance and the
diversity in microbial communities may either cause disease or reflect disease states [93–95].
Research conducted on both animal models and human subjects has demonstrated that
means, including translocation and dissemination, result in the presence of the oral mi-
crobiota in the pancreas [53,96]. Preliminary studies have suggested that oral pathogens
should be used as screening tests and potential biomarkers to be evaluated for the early
diagnosis of PC [97]. Some specific microbiota in the pancreas are found to be similar to
the oral microbiota [53,98–103]. Researchers believe that the dysbiosis of oral microbiota
precedes the onset and progression of PC, instead of after tumorigenesis [104]. A consid-
erable body of literature has investigated the key pathogens among the oral microbiota
involved in the carcinogenesis of PC, specifically Porphyromonas gingivalis (P. gingivalis),
Fusobacterium, Neisseria elongata (N. elongata), and Streptococcus mitis (S. mitis) [79,97].

2.1.1. P. gingivalis

P. gingivalis, a kind of Gram-negative anaerobe, thrives in the development of chronic
periodontitis [105]. When focusing on the interactions between the carriage of P. gingivalis
and PC, the dose–response relationship is proven to be significant [54]. Collecting oral
wash samples before diagnosis from both individuals with PC and healthy participants, a
prospective nested case–control study investigated and characterized the oral microbiome
and found that carriage of P. gingivalis is related to a 59% increased chance of subsequent
PC infection [54]. P. gingivalis infection greatly contributes to the proliferation of the mouse
cell line Panc02 along with the human PC cell lines PANC1 and MIA PaCa-2 [106]. To the
highest degree, the concentration of plasma antibodies against P. gingivalis is associated with
a 2-fold greater possibility of developing PC. As time goes by, the interrelation amplifies
with a 5- or 7-year lag [53]. Notably, even several years before PC diagnosis, the risk of
PC increases with the carriage of P. gingivalis, according to the concept that the spread of
P. gingivalis from the oral cavity to the pancreatic tissue may promote the occurrence of
cancer, regardless of how long it stays [54,106,107].

P. gingivalis can survive and persist with the host immune tissue by modifying the
host’s immune response, for example, interacting with host receptors, altering signaling
pathways, and invading host cells [108,109]. The challenge with live P. gingivalis reduced
the secondary cytokine and chemokine responses of primary human gingival epithelial cells.
The direct degradation of cytokines by P. gingivalis protease leads to the lack of secondary
responses, and the degradation rates of IL-6 and IL-8 were apparently higher than those
of IL-1β [108]. Researchers hypothesized that P. gingivalis can initiate inflammation [110].
Studies have suggested that patients with periodontal disease exhibit elevated biomarkers
of systemic inflammation and evade immune responses associated with lipopolysaccharide
(LPS) and Toll-like receptors (TLRs) [111]. The activation of TLRs has been shown to play
an essential driving role in human PC, hence, proposing mechanistic interactions between
microbial stimulation and PC [112].

2.1.2. Fusobacterium

Fusobacterium, an anaerobic, Gram-negative oral bacterium, is indicated as a possi-
ble protective factor for PC, reducing its risk [54]. Notably, when present in PC tissue,
it was associated with increased cancer-specific mortality [113]. Different studies have
yielded opposite results. Several studies have found a significantly lower abundance of
Fusobacterium in patients with PC, whereas previous studies have found a substantially
higher abundance [79,114]. Prior research has shown that, in PC tissues of 283 samples, the
Fusobacterium detection rate was 8.8%; however, the status of the tumor was not related
to any molecular or clinical features. In contrast, according to a multivariate Cox regres-
sion analysis, the cancer-specific mortality of the Fusobacterium-positive group was much
higher than that of the Fusobacterium-negative group. Until now, no outstanding correlation
has been observed between the molecular alterations in PC and Fusobacterium species
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status [113]. Nevertheless, the existence of Fusobacterium was related to poor prognosis
independently, which was consistent with the findings of case–control studies [79,113,115].
According to the study, bacterial profiles were associated with PC-related symptoms. In
the study, compared with asymptomatic patients, symptomatic patients exhibited distinct
bacterial profiles. For example, PC with bloating had higher abundances of Porphyromonas,
Fusobacterium, and Allobacterium [114].

FadA, a surface adhesin, which plays an important role in cell adhesion and invasion,
is acknowledged as being unique and highly conserved among Fusobacterium [116]. It is
speculated that one of the molecular mechanisms causing PC may be FadA adhering to
host epithelial cells [117]. FadA can invade host cells, either directly or pericellularly, via
loosened cell–cell junctions. Vascular endothelial (VE)-cadherin, belonging to the cadherin
family, acts as the endothelial receptor for FadA, and upon binding to it, VE-cadherin
can translocate from the cell–cell junctions to intracellular compartments. As a result,
the endothelial cell permeability is increased, allowing the bacteria to penetrate through
loosened junctions [113,118]. However, questions regarding the role of Fusobacterium in
pancreatic carcinogenesis remain to be addressed. As was recently reported in the literature,
Fusobacterium increases the production of reactive oxygen species (ROS) and inflammatory
cytokines, such as TNF and IL-6, in colorectal cancer; drives myeloid cell infiltration in
intestinal tumors; and modulates the tumor immune microenvironment [70].

Though the results appear to be conflicting with those of other studies, the underlying
mechanisms may lie in different observational conditions.

2.1.3. N. elongata and S. mitis

The results of both the validation dataset of a retrospective study and a test cohort
are consistent, showing that compared with controls, N. elongata and S. mitis in the saliva
samples collected after PC diagnosis were lower [89]. The data were partially supported by
the findings of Michaud et al., who showed a negative correlation of S. mitis antibodies with
PC (but lack the data on N. elongata) [53]. Another result for the proportions of N. elongata
was in the same direction in cases compared with controls as the former retrospective study;
however, the results for S. mitis were not [89,119]. An ROC plot AUC value of 0.9 with
96.4% sensitivity and 82.1% specificity was concluded by distinguishing patients with PC
from healthy individuals by combining the salivary RNA biomarkers of N. elongata and
S. mitis [89].

2.1.4. Others

Prior 16S sequencing studies emphasized the importance of the oral microbiota in PC
progression and identified several potential microbial markers, for instance, Aggregatibacter
actinomycetemcomitans, N. elongata, P. gingivalis, and S. mitis [54,89,97,117].

Compared with those in healthy subjects, concentrations of Corynebacterium and
Aggregobacteria in patients with PC were lower; meanwhile, salivary RNA results showed
that Granulicatella adiacens and Bacteroides were more common in those with PC [69,89,120].
Other than this, research recently found that Aggregatibacter actinomycetemcomitans was
associated with a greater possibility of PC [54]. Leptotrichia is also proven to be a protective
microorganism that reduces the danger of PC in a dose-dependent manner [54].

2.2. GI Microbiota

The number of microbial species contained in a healthy GI tract is as many as the
cells making up the body and increases in density from the small intestine to the large
intestine [121]. The microbiota aids in nutrient digesting, vitamin providing, infection
preventing, and GI immune system shaping [122,123]. Recently, an increasing amount of
data suggest that diseases outside the GI tract are also in control of the GI microbiota, such
as metabolism, autoimmunity, and malignant liver diseases [124–129]. With increasing
associations being discovered, clear and direct links between dysbiosis and disease status
have been established [3,130–133]. A key instance is a link between the GI microbiome and
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colorectal cancer [131]. Because the pancreas is connected to the GI tract anatomically via
the pancreatic duct system, evidently, the GI microbiota may affect the pancreas and vice
versa. Specifically, a healthy pancreas shapes the GI microbiome and immune response,
which controls pancreatic function and disease through altered immune responses [134].
Multiple studies have shown a clear association of distinct GI microbiome profiles with
PC [52,135–138]. In disease states, alterations in the GI microbiota may be a cause or
a consequence of the disease process. On the one hand, this effect could be conferred
through the modulation of metabolites, such as short-chain fatty acids (SCFAs), or immune
responses. Metabolomics analysis showed that altered metabolites, including amino acids,
carnitine derivatives, lipids, and fatty acids, correlated with NF-kappa B signaling, the
FXR/RXR pathway, etc. [56]. On the other hand, pancreatic factors, such as the excretion of
antimicrobial drugs, may have a great impact on the constitution and functional properties
of the GI microbiota [134,139].

In an animal experiment, the GI microbiota produced butyrate, a kind of SCFA, induc-
ing the expression of cathelicidin-related antimicrobial peptide (CRAMP) in pancreatic beta
cells [140]. Similarly, acetate, another SCFA from the GI microbiota, induces insulin secre-
tion via the microbiome–brain β-cell axis [141]. Accordingly, the interplay between the GI
microbiota and pancreatic factors is essential for both health and disease status. Microbial
dysbiosis or imbalance can result in pancreatic dysfunction, even leading to diseases [142].
To summarize the recent studies, upper GI Helicobacter pylori (H. pylori) infection is one
of the risk factors for PC [64,143]. H. pylori is supposed to influence carcinogenesis by
promoting cell proliferation [144]. In addition to H. pylori, several studies have also shown
the vital association between HBV and PC.

2.2.1. H. pylori

H. pylori, a microbiota that infects the stomach, colonizes the gastric environment
of 60.3% of individuals worldwide. Its prevalence is so high that it even exceeds 80%
in areas with poor socioeconomic conditions [144]. H. pylori has been proven to lead
to chronic active gastritis, which subsequently leads to a peptic ulcer and even gastric
cancer. Usually, infections are accompanied by extragastric manifestations, such as immune
thrombocytopenia or hypochromic anemia [145–147]. Meanwhile, H. pylori infection also
accounts for other cardiovascular, neurological, allergic, metabolic, and hepatobiliary
diseases [148,149].

Previous research has reported that in patients with PC, both the occurrence of H. pylori
infection and the positive rate of H. pylori serum antibodies are higher [58]. H. pylori was
found in the pancreatic tissue of patients with PC, chronic pancreatitis, multiple endocrine
neoplasia type 1, and pancreatic neuroendocrine tumors. H. pylori DNA was detected in
75% of patients with PC, whereas all specimens from the normal pancreas and other benign
pancreatic diseases were negative [150]. As part of the dysbiosis of the microbiota, H. pylori
has been recognized as the potential trigger of autoimmune inflammation in the pancreas.

H. pylori colonizes the gastric mucosa in two ways. One way is primarily linked with
antral gastritis, resulting in increased gastrin production, possibly through local damage,
the release of somatostatin, and a decrease in antral D cells. This leads to excessive acid
secretion, increasing the susceptibility to prepyloric and duodenal ulcers. Therefore, this
colonized form of H. pylori was identified as a dangerous factor for PC development [144].
The colonization of H. pylori is related to the activation of molecular pathways associated
with PC initiation and maturation, thereby contributing to PC malignancy [151].

H. pylori is considered to be indirectly involved in the onset and progression of PC [152].
Via PCR, the expression of H. pylori DNA in pancreatic juice or tissue could not be detected
in chronic pancreatitis and PC, indicating that H. pylori indirectly triggers the emergence of
PC, consistent with other studies. The possible indirect mechanisms are immune escapes
and inflammatory responses [153]. H. pylori can secrete cytotoxin-associated proteins
and vacuolar proteins, promoting chronic inflammatory oxidative stress and damaging
host DNA to trigger cellular carcinogenesis [72]. According to a prospective cohort study
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involving 51,529 male subjects, the increased risk of PC associated with gastric ulcers may
be due to greater inflammatory responses and endogenous nitrosation because of H. pylori
infection [135].

2.2.2. HBV and Hepatitis C Virus (HCV)

Both HBV and HCV are liver-tropic pathogens and have well-known carcinogenic
properties [154]. Nevertheless, HBV or HCV infection is not limited to the liver, which has
also been discovered in extrahepatic tissues, including the pancreas [155,156]. This might
contribute to the undeniable role of these two viruses in both the occurrence and develop-
ment of extrahepatic malignancies, such as PC [157,158]. The correlation between PC and
HBV infection has been summarized by multiple meta-analyses [159–166]. According to
HBV carrier status, most reviews have reported a positive association, with relative risks
ranging from 1.2 to 3.8. The findings of two meta-analyses have shown that HCV infection
is positively correlated with PC risk [167,168].

Specifically, HBcAg and HBsAg have been detected in the cytoplasm of pancreatic
acinar cells. Patients infected with chronic HBV were partially associated with elevated
serum and urinary pancreatic enzyme levels [169]. HBsAg was also found in the pancreatic
juice of HBV-infected patients and was related to the progression of chronic pancreati-
tis, suggesting that HBV-related pancreatitis is a precursor to PC [170,171]. Moreover,
viruses, including HBV and HCV, may contribute to the progression of PC by activating
the inflammation process and regulating the PI3K/AKT signaling pathway [155].

2.2.3. Others

Compared with that in healthy controls, the abundance of microbiota belonging to
the phyla Firmicutes [49], Bacteroidetes [49], Proteobacteria [49], Actinobacteria, Fusobacteria,
and Verrucomicrobia [172] and the genera Porphyromonas, Bifidobacterium [115], Prevotella
and Synergistetes, along with the archaeal phylum Euryarchaeota [49], has been proven to
increase significantly in PC. Meanwhile, decreased abundances of other GI microbiota
in PC, including Firmicutes [136], Proteobacteria [52], and Lactobacillus [115], have been
reported. In patients with PC, it was noted that the abundance of beneficial probiotics and
butyrate-producing bacteria decreased, whereas the abundance of potentially pathogenic
LPS-producing bacteria increased [52]. The duodenal mucosa of patients with PC is more
made up of Acinetobacter, Sphingobium, Deinococcus, Delftia, Massilia, Rahnella, Oceanobacillus,
and Aquabacterium [173]. Aykut et al. amplified the ITS1 region of the 18S rRNA gene to
test fecal and tumor fungal communities in patients with PC. The results showed that in the
intestine and tumor tissues, the most common phyla were Ascomycota and Basidiomycota.
The population of fungi (mainly Malassezia species) detected in PC tissues was 3000-fold
higher than that in a normal pancreas [68]. According to research, Veroella, Enterococcus,
Shigella, Streptococcus, and Enterobacter are considered to be the five most crucial genera in
bile [173]. However, through genetic sequence analysis, another study involving patients
with PC investigated the presence of microbiota in bile samples, finding that the most
predominant microbes were Enterobacter and Enterococcus spp. [138]. The aforementioned
microbiota was reported to be strongly associated with the onset and progression of PC,
which makes it possible as a biomarker for the noninvasive diagnosis of this disease [174].

2.3. Pancreatic Microbiota

For a long time, the pancreas was considered a sterile organ, but only recently has
the microbiota been identified in pancreatic tumor tissue and cyst fluid, called the PC
intratumoral microbiota [175–177]. Via bacterial 16S rRNA gene-specific PCR, the anal-
ysis of the microbial composition of pancreatic cyst fluids revealed a predominance of
Bacteroides, Escherichia/Shigella, and Acidaminococcus [177]. In pancreatic cancer tissue,
Pushalkar et al. identified that Proteobacteria, Bacteroidetes, and Firmicutes were more en-
riched [49]. According to preclinical models, a 1000-fold higher microbial abundance
was detected in pancreatic tumor tissues than in healthy pancreatic tissue [49]. Species
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belonging to the Firmicutes and Proteobacteria phyla accounted for most of the bacterial se-
quences found in PC, similar to the composition of a healthy intestinal microbiome [49,178].
Gamma-proteobacteria were detected in gemcitabine-resistant PC tissue samples, and re-
searchers speculate whether the microbiota participates in tumor pathogenesis or exists
coincidentally—they might play a key part in mediating resistance to chemotherapy [179].
Longitudinal analysis of age-matched KC (p48Cre; LSL-KrasG12D) and wild-type mice
revealed that in KC mice, specific microbiota was enriched, and the amplest species was
Bifidobacterium pseudolongum [58]. Aykut et al. found that PC samples from humans were
obviously enriched with Malassezia spp. [68]. Several studies found that patients with PC
have a higher intrapancreatic abundance of oral Fusobacterium than non-cancer controls,
which is independently associated with reduced patient survival [113,115]. Because of its
microbial environment, the pancreas is not sterile, leading to the occurrence and develop-
ment of PC being affected [180]. The role of intratumor microbes in PC progression and
the modulation of response to immunotherapy has been investigated [49]. The pancreatic
microbiota was further proven to accurately predict long-term survivorship in patients
with PC. Experimental evidence also indicated that the long-term survivorship of patients
with PC was modified by the GI microbiome [181,182].

3. Microbiome and Immunity

Some pieces of evidence gradually confirmed that the microbiota can interact with
the host to regulate antitumor immunity to shape cancer development and to impact the
response to tumor therapy, particularly ICIs [26–28,183,184]. Indeed, in the cancer context,
by binding to inherent and acquired immune cells, the microbiota exerts an immune effect
locally and systemically, remodeling the immunity of the TME [185]. Notably, one of the
major ways in which the microbiota modulates antitumor immunity is through metabolites,
that is, small molecules that can diffuse and influence antitumor immune responses locally
and systemically to enhance ICI efficiency [186,187]. Studies have confirmed that the
microbiota can regulate dendritic cells (DCs) [188], monocytes/macrophages [189], natural
killer cells [190], CD8+ T cells [188], and CD4+ T cells [191], among others, to stimulate
antitumor immune responses.

3.1. Innate Immunity
3.1.1. DCs

DCs, a diverse group of specialized antigen-presenting cells, are important in anti-
tumor immunity and T-cell activation. The origination of conventional DCs (cDCs) is a
common DC precursor in the bone marrow, which has been considered to be a critical
mediator of antigen-priming and T-cell activity [192,193]. For example, the number and
function of cDCs can determine whether adaptive immune responses to tumor neoantigens
are protective or deleterious [194]. Microbiota antigens or metabolites with immunomodu-
lators can mobilize and activate DCs to reverse immune tolerance induced by immature
DCs [50,195]. By contributing to DC maturation and IL-12-dependent Th1 cellular immu-
nity, Bacteroides fragilis enhances the antitumor ability of CTLA-4 blockade [74,196]. Oral
antibiotics lead to antitumor immune activation and the suppression of the tumor burden
in PC-bearing mouse models [197].

In adult mice, the GI microbiota controls the production of CRAMP via pancreatic
endocrine cells through SCFAs. CRAMP has a positive immunoregulatory impact on
pancreatic macrophages and cDCs and maintains immune homeostasis in the tissue by
inducing regulatory T cells (Tregs) [140]. Eleven microbiota strongly induced CD8+ T cells,
which produce interferon-γ (IFNγ) in the gut, acting together on both CD103+ DCs and
major histocompatibility (MHC) class Ia molecules, aimed at tumor growth inhibition [188].
Gut dysbiosis was found to mediate experimental autoimmune pancreatitis (AIP) by
activating pDCs, subsequently producing large amounts of IFN-α and IL-33 [198]. Upon
activation, the costimulatory receptor CD40 can license DCs to re-educate macrophages to
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a tumoricidal phenotype and reverse tumor-associated fibrosis, which may enhance the
chemotherapeutic efficacy in PC [199,200].

3.1.2. Monocytes/Macrophages

Monocytes and macrophages are essential inherent immune effector cells in maintain-
ing homeostasis [201]. Macrophages recruited to the TME adopt an immunosuppressive,
proangiogenic state and prevent CD4+ T cells from entering the TME, thereby supporting
PC progression [202]. In PC xenografts from microbiota-depleted mice, CD45+ cells sta-
tistically significantly increase, suggesting that the observed phenotype is related to the
suppression of the inherent immunity mediated by the microbiota [128]. LPS, a major outer-
surface membrane component of Gram-negative bacteria, such as P. gingivalis, is recognized
by TLR4 on host innate immune cells, modulating NF-κB via pathways both dependent and
independent of MyD88, thus leading to the release of proinflammatory cytokines [69,203].
Mouse model studies have found that the TLR4/MyD88 pathway may be associated with
inflammation and PC progression. Specifically, LPS was reported to promote PC as blocked
MyD88-dependent pathways (via DC-mediated TH2 deviation), whereas blocking TLR4
(via TRIF) and MyD88-independent pathways in the same pathway (via TRIF) can prevent
PC [204]. TLRs appear to contribute to PC development, specifically expressed at high
levels in human PC tissues rather than in the normal pancreas [205]. Microbiota metabolites
may be recognized by TLRs or may stimulate inflammasome-mediated cytokine secre-
tion [206]. For example, the intratumoral microbiota in mouse and human PC promotes
carcinogenesis by inducing a tolerogenic immune program, including the inhibition of
monocyte differentiation by selective TLRs and T-cell anergy [10,49]. A bacterial ablation
orthotopic PC mouse model prevents PC from invasion by remodeling the TME, including
reducing MDSC numbers, polarizing macrophages to an M1 phenotype, promoting Th1
differentiation, and activating CD8+ T cells. Mechanistically, the PC microbiome increases
the sensitivity of immune surveillance and immunotherapy by differentially activating
selected TLRs in monocytes, including TLR2 and TLR5 [42,49,139,207]. TLR activation
can induce the STAT3 and NF-κB pathways, acting as carcinogenic factors to increase cell
proliferation and to inhibit apoptosis [208].

Furthermore, immunohistochemical staining analysis showed a close correlation
between tumor-associated macrophages and nerve density in PC tissues, suggesting that
there is an interaction of paracrine signaling between nerves and macrophages [209,210].
Other than neurotransmitters, enteric neurons also release growth factors, such as CSF1,
to interact with macrophages in healthy tissues, indicating that cytokines can mediate the
neuroimmune cross-talk in PC [211].

3.1.3. NK Cells

NK cells, a type of cytotoxic lymphocyte critical to the innate immune system, can kill
viral infections and cancer cells [212]. NK cells are responsible for monitoring circulating
tumor cells and preventing tumor cell metastasis. If NK cells are depleted or inhibited,
tumor growth and escape may occur [213,214].

Studies have reported that NK cells modulate the abundance of DC and CD8+ T
cells in the TME and affect the response to ICIs [212,213,215,216]. By suppressing the
immunity of CD8+ T cells, NK cells are activated to promote immunopathology and
chronic infection [217]. The downregulation of activating receptor expression and impaired
function of NK cells are common immune evasion mechanisms and have been implicated in
PC development [218–223]. Recently, an increasing number of researchers have identified
the interactions between NK cells and the microbiota. Under the effect of PD-1 blockade,
patients with non-small-cell lung cancer (NSCLC) with high microbial diversity showed a
higher abundance of peripheral-specific memory CD8+ T-cell and NK cell subsets [224].
The interaction mechanism between Bifidobacteria and NK cells was demonstrated to be
mediated by hippurate and under high-salt-diet (HSD)-mediated tumor immunity. An
HSD increases the abundance of Bifidobacteria and promotes intestinal permeability, leading
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to the intratumoral localization of Bifidobacteria, which enhances NK cell function to induce
antitumor immunity [190]. A randomized controlled meta-analysis has shown that dietary
supplementation of Bifidobacteria probiotics directly enhances NK cell function in the
elderly [225].

3.2. Adaptive Immunity
3.2.1. CD4+ T Cells

CD4+ T cells are crucial in regulating immune responses by signaling other types
of immune cells [226]. Naïve CD4+ T cells can be differentiated into four types, namely
helper T cells (i.e., Th1, Th2, and Th17) and Tregs, which are involved in the tumor
immune microenvironment, tumor immune escape, immune homeostasis, and antitumor
immunity [227–229]. Patients with PC show a disorder of the Th17/Treg balance, with
lower Th17 cells and higher Tregs. It mainly affects the expression of the cytokines IL-10,
IL-23, INF-γ, TGF-β, and IL-17 by modulating transcription factors, such as RORα, RORγt,
FoxP3, and CTLA-4 [230]. Th2 cells infiltrate the pancreas and secrete type 2 cytokines (i.e.,
IL-4 and IL-13) early in tumorigenesis, promoting metabolic reprogramming and cancer
cell proliferation in mice with KrasG12D-driven PCs. Similar to type 2 immune responses
driving PC development in mouse models, patients with PC with a higher infiltration of
Th1 (CD45+CD3+CD4+Tbet+) cells demonstrate a higher level of survival than those with
predominantly TH2 (CD45+CD3+CD4+Gata3+)-polarized lymphoid cell infiltration [231].
Furthermore, circulating levels of IL-4 were inversely correlated with disease-free survival
(DFS) in individuals with PC [232].

Mouse model experiments have shown that B. pseudolongum promotes Th1 transcrip-
tional differentiation and antitumor immunity mainly through the GI microbial metabolite
inosine [75]. Bacteroides fragilis promotes the mobilization of lamina propria DCs to stimu-
late IL-12-dependent Th1 immune responses [74]. Faecalibacterium increases the proportion
of CD4+ T cells and serum CD25 production and decreases the proportion of Tregs in pe-
ripheral blood in human patients, thereby inducing long-term clinical benefit of ipilimumab,
an antibody against cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) [74,233].

3.2.2. CD8+ T Cells

CD8+ T cells are pivotal players in anticancer immunity, releasing IFNγ and TNFα to
eliminate cancer cells [206]. In mouse models, mice with PC-enriched CD8+ T cells survive
longer [234]. In patients with PC, tissue infiltrated by CD8+ T cells also showed longer
survival [235]. Specific microbiota induces CD8+ T cells in the systemic circulation or
TME [50]. For instance, patients with melanoma with higher relative abundances of favor-
able microbiota, including Clostridium, Ruminococcus, and Faecalibacterium, demonstrated
increased antigen presentation along with improved function of effector CD4+ and CD8+ T
cells in the peripheral blood and TME to improve the antitumor efficacy of ICIs [236].

T-cell immunity is a well-established element for long-term PC survival. Prior research
has reported that long-term-survival (LTS) patients with PDAC showed high levels of
CD8+ T-cell tumor infiltration, Th1-related gene expression, and M1 macrophage differen-
tiation [49,181,237,238]. Through human-to-mice fecal microbiota transplantation (FMT)
experiments involving patients with PC with short survival (STS), patients who had PC
resected more than 5 years previously showed no evidence of disease (LTS-NED), and
in healthy controls (HC), research demonstrated that the favorable impact of LTS-NED-
associated GI/tumor microbiota is mediated by CD8+ T cells [181]. The SCFAs secreted by
beneficial commensal microbiota can promote the antitumor responses of CD8+ T cells [239].
Evidence from clinical trials suggests that Actinobacteria and Firmicutes are enriched in FMT
and PD-1 blocking reactants. A combined blockade of FMT and PD-1 stimulates mucosal-
associated invariant T cells and CD56+CD8+ T cells in peripheral blood mononuclear cells
and upregulates human leukocyte antigen class II genes CD74 and GZMK T cells at the
tumor site expressing CD8+ T cells [183]. Meanwhile, the use of FMT combined with
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PD-1 blockade increased the relative abundance of Enterococcus in refractory metastatic
melanoma, increasing intratumoral CD8+ T-cell infiltration and tumor cell necrosis [240].

4. Clinical Trials

Despite tremendous efforts and growing evidence from research and clinical trials
related to PC, the 5-year overall survival rate for patients has only increased marginally
from 5% to 9% [241]. This small advancement has been achieved mostly through recent
improvements in neoadjuvant and adjuvant treatment strategies and perioperative care.
While new treatments, including immunotherapy, have significantly improved the prog-
nosis of patients with cancer based on clinical data, there is heterogeneity in the overall
outcomes, and existing biomarkers cannot reliably and accurately predict the prognosis of
these patients. Currently, the prediction of cancer treatment response has focused on tumor-
intrinsic characteristics. The discovery of other relevant risk factors, the identification of
appropriate biomarkers, and a better understanding of the major players that influence
PC treatment outcomes are important directions for future research [242]. Nowadays,
immunotherapy approaches for PC under investigation include ICIs, adoptive cell therapy,
immune agonist therapy, cancer vaccine, bone-marrow-targeted therapy, and combinations
of chemoradiotherapy and other molecularly targeted agents [51,243].

Immune checkpoint molecules, negative regulatory molecules of immune responses to
avoid immune injury, are important in maintaining self-tolerance, preventing autoimmune
responses, and minimizing tissue damage by keeping the activation of the immune system
within the normal range. ICIs, monoclonal antibodies that antagonize immunosuppressive
pathways known as checkpoints, have recently emerged as a promising idea for new cancer
treatments [244,245]. Common ICIs include nivolumab and pembrolizumab (targeting pro-
grammed cell death protein-1 (PD-1)); atezolizumab, avelumab, and durvalumab (targeting
programmed cell death protein ligand-1, (PD-L1)); and ipilimumab and tremelimumab
(targeting cytotoxic T-lymphocyte–associated antigen 4, (CTLA-4)), revolutionizing cancer
care over the past decade [246].

Unfortunately, although ICI therapy can stimulate the activation of T cells and po-
tent antitumor immune responses, it can also bring about severe inflammatory side
effects—immune-related adverse effects (IrAEs). While killing tumor cells, ICI therapy
disrupts the immune balance of the host, potentially leading to immune-related pneumonia,
immune-related colitis, and even life-threatening immune-related myocarditis [50]. IrAEs
most commonly involve the GI tract, endocrine glands, skin, and liver [247]. The effects
may occur in up to 90% of patients treated with anti-CTLA-4 antibodies and in 70% of
patients treated with PD-1/PD-L1 antibodies [247,248].

There is no doubt that the microbiota is one of the parameters that modulates the
immune setpoint of cancer [249]. The microbiome is increasingly recognized for its impact
on host immunity and favorable effects on cancer therapy. Importantly, strategies to alter the
microbiome could provide new perspectives for cancer treatment to improve outcomes [28].
A strong correlation has been reported between the microbiome and response to ICIs [191].
The GI microbiota may be a potential factor influencing the success of checkpoint blockade
immunotherapy [250]. Comprehending the biological mechanisms of the microbiota along
with metabolites in response to antitumor immunity and immunotherapy is critical for
manipulating microbial activity rationally to improve the efficacy of ICI therapy [251].
Table 2 shows that the therapeutic strategies combining the microbiota with ICIs, including
appropriate antibiotic selection, probiotic intake, FMT, and bacterial genetic engineering,
can bring hope to patients with PC [50,252–254].
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Table 2. Representative clinical trials of microbiota-linked cancer, especially including ICIs.

Researchers Year Microbiota Effects Ref. PMID

Z. Peng et al. 2020
Eubacterium,

Lactobacillus, and
Streptococcus

Positively associated with
anti-PD-1/PD-L1 response [255] 32855157

A. Sivan et al. 2015 Bifidobacterium

oral Bifidobacterium alone
improves tumor control to

the same extent as ICIs, and
the combination treatment
nearly eliminated tumor

growth

[73] 26541606

L. F. Mager et al. 2020

Bifidobacterium
pseudolongum,
Lactobacillus

johnsonii, and
Olsenella species

Significantly enhances
efficacy of ICIs [75] 32792462

N. Chaput et al. 2017 Faecalibacterium

Increases the proportion of
CD4+ T cells and serum

CD25 production, decreases
the proportion of Treg cells

in peripheral blood in
human patients, thereby

inducing long-term clinical
benefit of ipilimumab, an
antibody against CTLA-4

[233] 28368458

Lately, the microbiome was reported to improve the antitumor efficacy of PD-1 and
CTLA4 blockade therapies [74]. The GI microbiota has been shown to increase the efficacy
of the blockade of the PD-1 protein and its ligand PD-L1. Most tumor responses were
durable beyond 1 year [73,247,248,256,257]. Experimental results demonstrated that ICI
therapy and adoptive cell therapy, which use tumor-specific CD8+ CTLs, are influenced by
the composition of the GI microbiome [258,259]. The GI microbiota can produce SCFAs,
such as Eubacteria, Lactobacilli, and Streptococci, which were positively associated with
anti-PD-1/PD-L1 responses in various types of GI cancer [255]. Eubacterium fermentates
fiber into SCFAs, while propionic acid, Lactobacillus, and Streptococcus mainly contribute to
lactic acid production in the gut. If these genera in responders are relatively abundant, the
gut environment may have beneficial immune activity [255]. Bifidobacterium contributed
to enhancing antitumor immunity and PD-L1 blockade therapy efficacy. The results have
proven that oral Bifidobacterium alone improved the extent of tumor control similar to
PD-L1-specific antibody treatment (checkpoint blockade), and the combination treatment
nearly eliminated tumorigenesis. It is the enhanced DC function that mediates the effect,
enhancing CD8+ T-cell priming and accumulation in the TME [73]. A correlation between
the microbiome and immunotherapy has also been reported, showing that antimicrobial
therapy and αPD-1 therapy have a synergistic effect on decreasing tumor size in vivo [49].
Additionally, Bifidobacterium pseudolongum, Lactobacillus johnsonii, and Olsenella were found
to significantly enhance the efficacy of ICIs in vivo [75].

5. Conclusions

Tumor formation in PC is complicated and involves multiple microbial compartments,
including different sites [260]. For example, oral pathogens travel through the gut or other
ways to the pancreas, bringing about inflammation that can lead to cancer [142].

The microbiota influences PC development in ways that affect immunity, including
innate and adaptive immunity. Metabolites of dysregulated microbiota also influence
tumorigenesis in pro-cancer or anticancer ways, potentially inducing and maintaining
an inflammatory state and affecting oncogenic and cellular signaling pathways. The mi-
crobiome can be a predictive biomarker of treatment efficacy and safety, helping clinical
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physicians to better monitor the disease progression; it can also be combined with other ther-
apies to improve treatment outcomes; direct manipulation of certain immune-stimulating
metabolites or compounds from the microbiome could also help improve the precision of
therapeutic strategies. Therefore, studies on the microbiome may enhance the effectiveness
and robustness of personalized and precision medicine.

The microbiome offers patients with PC more opportunities for novel therapeutic tar-
gets. However, this research area is still in its infancy. Currently, in the PC status, the linkage
between the microbiota and cancer, as well as the antitumor mechanism of the microbiota,
has not been elucidated. The role of the microbiota, not only in the pathogenesis but also in
the progression of the disease, will be the most important consideration. The microbiota
has a multifaceted impact on tumor ICI therapy, ranging from facilitating to hindering. The
results of the analysis of PC microbiota in existing studies are contradictory to some extent.
Larger and more comprehensive studies are required to clarify the correlation and causality
more clearly. Regardless of whether it is favorable or not, microbiome signatures targeting
immune cells or pathways should be accurately classified, and their roles in different TMEs
should be well understood. Research combining microbiology, immunology, metabolomics,
molecular pathology, tumor genomics, and multiple dimensions will help assess the disease
relations, along with the diagnostic and therapeutic potential of the microbiota, thereby
forming a huge picture of PC formation and development.
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260. Kiss, B.; Mikó, E.; Sebő, É.; Toth, J.; Ujlaki, G.; Szabó, J.; Uray, K.; Bai, P.; Árkosy, P. Oncobiosis and Microbial Metabolite Signaling
in Pancreatic Adenocarcinoma. Cancers 2020, 12, 1068. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1056/NEJMoa1003466
https://doi.org/10.1080/2162402X.2020.1774298
https://doi.org/10.3389/fimmu.2021.669150
https://doi.org/10.1016/j.semcancer.2020.06.006
https://doi.org/10.1056/NEJMoa1205037
https://www.ncbi.nlm.nih.gov/pubmed/23323867
https://doi.org/10.1016/S0140-6736(17)30182-4
https://www.ncbi.nlm.nih.gov/pubmed/28214091
https://doi.org/10.1053/j.gastro.2012.06.031
https://www.ncbi.nlm.nih.gov/pubmed/22728514
https://doi.org/10.1158/2326-6066.CIR-19-1014
https://www.ncbi.nlm.nih.gov/pubmed/32855157
https://doi.org/10.1056/NEJMoa1305133
https://doi.org/10.1056/NEJMoa1200690
https://doi.org/10.1126/science.aar6918
https://doi.org/10.3389/fimmu.2018.00374
https://doi.org/10.3390/cancers12051068

	Introduction 
	PC and the Microbiome 
	Oral Microbiota 
	P. gingivalis 
	Fusobacterium 
	N. elongata and S. mitis 
	Others 

	GI Microbiota 
	H. pylori 
	HBV and Hepatitis C Virus (HCV) 
	Others 

	Pancreatic Microbiota 

	Microbiome and Immunity 
	Innate Immunity 
	DCs 
	Monocytes/Macrophages 
	NK Cells 

	Adaptive Immunity 
	CD4+ T Cells 
	CD8+ T Cells 


	Clinical Trials 
	Conclusions 
	References

