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Abstract: Hepatitis E virus (HEV) can infect a wide range of domestic and wild animals, and the
identification of new host species is reported successively worldwide. Nevertheless, its zoonotic
potential and natural transmission, especially in wildlife remains unclear, primarily due to the
discrete nature of HEV infections. Since the red fox (Vulpus vulpus) is the most widespread carnivore
worldwide, and has been recognized as a potential HEV reservoir, its role as a potent host species is
of increasing interest. Another wild canine species, the jackal (Canis aureus moreoticus), is becoming
more important within the same habitat as that of the red fox since its number and geographical
distribution have been rapidly growing. Therefore, we have chosen these wild species to determine
their potential role in the epidemiology and persistence of HEV in the wilderness. The main reason
for this is the finding of HEV and a rather high HEV seroprevalence in wild boars sharing the same
ecological niche as the wild canine species, as well as the risk of the spread of HEV through red
foxes into the outskirts of cities, where possible indirect and even direct contact with people are
not excluded. Therefore, our study aimed to investigate the possibility of natural HEV infection of
free-living wild canines, by testing samples for the presence of HEV RNA and anti-HEV antibodies
to gain better epidemiological knowledge of the disease. For this purpose, 692 red fox and 171 jackal
muscle extracts and feces samples were tested. Neither HEV RNA nor anti-HEV antibodies were
detected. Although HEV circulation was not detected in the tested samples, to our knowledge, these
are the first results that include jackals as a growing and important omnivore wildlife species for the
presence of HEV infection in Europe.

Keywords: hepatitis E virus; red fox; jackal; wild animals; zoonosis; seroprevalence; viral persistence;
Croatia

1. Introduction

The public health significance of hepatitis E is enormous. According to the World Health
Organization (WHO), there are an estimated 20 million hepatitis E virus (HEV) infections
worldwide every year, leading to an estimated 3.3 million symptomatic cases of hepatitis
E [1]. The WHO estimates that hepatitis E caused approximately 44,000 deaths in 2015, which
represents 3.3% of the mortality due to viral hepatitis. Hepatitis E virus was first recognized
during an epidemic of hepatitis that occurred in the Kashmir Valley in 1978. The epidemic
involved an estimated 52,000 cases of icteric hepatitis with 1700 deaths [2]. For years, HEV
was believed to be endemic in places with poor biosecurity and hygiene measures and was,
therefore, considered travel-related. Nowadays, hepatitis E represents an emerging zoonotic
infection in many European countries [2]. It is estimated that 5–15% of all acute hepatitis
infections of unknown origin in Europe are caused by HEV [1]. Hepatitis E is an enterically
transmitted infection caused by a small (27–34 nm) non-enveloped, single-stranded RNA
virus [3]. The hepatitis E virus linear genome of positive polarity with a length of approxi-
mately 7.2 kb consists of a short 5′ untranslated region (UTR), three partially overlapping open
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reading frames (ORFs), and a 3′ UTR [4,5]. The 5′ UTR contains a 7-methylguanosine cap
(7 mG), which is essential for the initiation of HEV replication and infectivity, and the 3′ UTR is
polyadenylated (polyA). ORF1 encodes a nonstructural polyprotein with multiple potentially
functional domains: methyltransferase (Met), Y domain, papain-like cysteine protease (PCP),
hypervariable region (HVR), X domain, helicase (Hel), and RNA-dependent RNA polymerase
(RdRp). It is still debatable whether the ORF1 polyprotein undergoes processing into individ-
ual functional proteins. The ORF2 encodes the viral capsid protein, which contains the S, M,
and P domains. The ORF3 overlaps partially with ORF2 and encodes a small phosphoprotein
that is necessary for viral release [6]. According to the classification released in 2021 (Inter-
national Committee on the Taxonomy of Viruses, ICTV) [7], HEV is classified in the genus
Orthohepevirus of the family Hepeviridae, and it shows a relatively strict host specificity [8].
The human-associated genotypes, which are the leading cause of acute hepatitis worldwide,
as well as zoonotic genotypes originating from domestic animals and wild-living mammal
species (pig, wild boar, rabbit, deer, mongoose, and camel species), are grouped into the
species Orthohepevirus A, which includes a total of eight genotypes (HEV1–8). Orthohepevirus B
contains the avian hepatitis E virus species causing the “splenomegaly syndrome” as well as
the “big liver and spleen disease” in poultry, whereas Orthohepevirus C viruses were isolated
from rodents (rats, mice, voles, and shrew) and carnivores (such as ferrets, mink, and foxes).
HEV from bats is classed in the species Orthohepevirus D. Finally, fish-related HEV belongs to
the genus Piscihepevirus [8–11]. Members of the genus Orthohepevirus infect a wide range of
animals, although the exact host range remains obscure, primarily due to the discrete nature
of HEV infections. HEV often presents undetectable pathology in infected organisms. Usually,
the viral load remains low, and the viral shedding is prolonged or chronic [12]. Chronic HEV
infection is a rare event and occurs mainly in immunosuppressed populations, especially in
solid organ transplant recipients [12]. Numerous monitoring studies have been performed
in Europe in the past in order to determine HEV circulation in the animal population. So far,
among the Hepatitis E viruses, genotypes of the Orthohepevirus A species represent the most
common cause of acute hepatitis in humans worldwide [10]. Domestic pigs and wild boars are
considered the main reservoirs of the virus and a potential source of zoonotic transmissions
based on serological and molecular results [13]. Hepatitis E infection is mainly transmitted
through the consumption of contaminated food or water [14]. Direct contact transmission has
been demonstrated in domestic pigs [15,16]. There are reports available that associate hepatitis
E with the consumption of raw or undercooked food products of pigs, wild boar, deer, or
contaminated shellfish [17–20]. In comparison to the general population, a statistically higher
seroprevalence is found in pig farmers and veterinarians [21]. This suggests that contact
exposure to domestic pigs may also be a risk factor.

The first HEV strain isolated from carnivore species was obtained from household
pet ferrets (Mustela putorius) in the Netherlands [22]. The isolation of an HEV strain from
farmed American minks (Neovison vison) in Denmark [23] has also been described. Foxes
can be considered as natural reservoir hosts of several pathogens and as effective vectors
of zoonotic diseases that pose an important risk for domestic animals and humans as
well [24–27]. So far, there are only limited serological or molecular data available for HEV
prevalence in foxes. HEV strains have been reported only in red foxes (Vulpes vulpes) from
the Netherlands [28], Germany [29], and Hungary [30]. Sequencing of detected HEV strains
from foxes showed high nucleotide identity with a rodent-related HEV group, which was
the exclusively known group within the Orthohepevirus C species. These findings support
“the dietary origin” of unclassified HEV-like strains described from various predator species,
since most of these variants were detected in fecal samples of foxes, considering that these
wild carnivores generally consume rodents [30–32]. Multiple detections of the rodent-
related variants from different geographical locations may suggest that these carnivores
are reservoirs of the virus [33]. There is a lack of available data regarding HEV infection
in jackals worldwide. Only one available report from China shows the absence of HEV
infection in jackals [34]. However, since the number as well as the geographical distribution
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of this wild canine species is growing, and as omnivores, predators, and scavengers, the
possibility of the jackal as a potential reservoir of HEV cannot be excluded.

In Croatia, the first samples of animal origin were tested for the presence of HEV RNA
in 2007 [35], and a comprehensive survey based on viral RNA detection in domestic and
wild animals and mollusks with the aim of exploring the possible role of wild animals
in the spread of the zoonotic HEV genotypes was carried out in 2009 [36]. HEV RNA
was detected in domestic pigs and wild boars, but it was not confirmed in any other
domestic or wild animals. A study regarding the HEV seroprevalence in domestic pigs and
wild boars in Croatia was carried out in 2016 [37,38]. The reported HEV seroprevalence
found in domestic pigs and wild boars in Croatia corresponded to results reported in
other European countries [39–43]. The main trigger for HEV testing in these two wild
canine species was the fact that red foxes and jackals share the same habitat as free-living
wild boars, which have been proven to be reservoirs of HEV in Croatia. Additionally, the
possibility of transboundary HEV transmission and spread through wild boar migration
has been reported previously [37]. Additionally, the finding of a yellow-necked mouse
(Apodemus flavicollis) naturally infected with HEV strains grouped into genotype 3 of
Orthohepevirus A species [44] in Croatia was one of the reasons for HEV testing in these two
wild canine species, since both species feed mostly on small rodents.

2. Materials and Methods
2.1. Sample Collection and Preparation

Muscle extracts and feces samples of red foxes (Vulpes vulpes) and European jackals
(Canis aureus moreoticus) were collected from 2018 to 2021 according to an ongoing national
rabies annual monitoring program prescribed by the Croatian Ministry of Agriculture,
Veterinary and Food Safety Directorate, since no HEV monitoring program has been
established in Croatia. Samples were randomly chosen, taking into account the sample
quality and geographical origin (Figure 1). Muscle samples were collected immediately
after the animal’s death.

In total, 692 red foxes (76 feces samples in 2018, 185 in 2019, and 48 in 2020 and 383 muscle
extract samples in 2021) and 171 jackals (20 feces samples in 2019, 37 in 2020, and 71 in 2021
and 43 muscle extract samples in 2021) were tested for HEV presence (Figure 2, Table 1).
Muscle extract samples were tested for presence of anti-HEV antibodies and for the presence
of HEV RNA, whereas feces samples were tested for the presence of HEV RNA.

A segment of musculus femoralis of approximately 5× 7 cm was taken from fox/jackal
carcasses by trained pathology technicians at the Croatian Veterinary Institute Pathology
laboratories. The muscles were placed in polypropylene containers (security screw cap
containers, 120 mL, DeltaLab), snap-frozen, and stored at −80 ◦C for four days and then
kept at 4 ◦C for 3–5 days. From each sampled muscle piece, approximately 200–500 µL of
the muscle extract was collected. Muscle extracts were centrifuged for 10 min at 220× g
and then stored at −20 ◦C until use. Before being used as the starting material for RNA
extraction and ELISA, all samples were heat-treated at 56 ◦C for 30 min and centrifuged
for 10 min at 220× g. Fecal samples were resuspended in phosphate-buffered saline
(PBS, pH 7.4) to obtain 20% w/v fecal suspensions, which were then vortexed for 30 s and
centrifuged for 3 min at 14,000× g. Supernatants were further used as the starting material
for RNA extraction. The exogenous internal positive control (IPC) RNA Xeno™ RNA
Control (ThermoFisher Scientific, Waltham, MA, USA) was added to each sample (2 µL) to
monitor the appearance of potential PCR inhibitors.
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Figure 1. Map of Croatia indicating the regions where the red fox and jackal samples were collected.
Countries with international borders to Croatia are Bosnia and Herzegovina (BIH), Hungary (H),
Montenegro (ME), Serbia (RS), and Slovenia (SI); Croatia shares a maritime border with Italy (I) in
the Adriatic Sea.
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County of Krapina-Zagorje 16 15 0 0 
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Figure 2. Number of red fox and jackal samples tested per county.

Table 1. Number of feces and muscle extract samples tested per county.

County Number of Feces
Samples of Red Foxes

Number of Muscle
Samples of Red Foxes

Number of Feces
Samples of Jackals

Number of Muscle
Samples of Jackals

County of Zagreb 28 33 5 3
County of Krapina-Zagorje 16 15 0 0
County of Sisak-Moslavina 28 44 12 12

County of Karlovac 37 40 18 2
County of Varaždin 25 7 0 0

County of Koprivnica-Križevci 0 13 0 0
County of Bjelovar-Bilogora 2 25 0 0

County of Primorje-Gorski Kotar 27 48 9 0
County of Lika-Senj 6 49 0 2

County of Virovitica-Podravina 5 9 8 0
County of Požega-Slavonija 8 11 1 0

County of Slavonski
Brod-Posavina 7 15 15 6

County of Zadar 0 3 0 1
County of Osijek-Baranja 51 28 27 10
County of Šibenik-Knin 0 18 0 2

County of Vukovar-Srijem 31 9 26 3
County of Split-Dalmacija 0 0 0 0

County of Istria 24 14 7 2
County of Dubrovnik-Neretva 0 0 0 0

County of Med̄imurje 7 2 0 0
City of Zagreb 7 0 0 0

309 383 128 43
Σ 692 171

2.2. RNA Extraction and HEV Detection through Real-Time RT-PCR

Viral RNA was extracted from 200 µL of supernatant of prepared fecal/m. femoralis
samples using a MagMAX Core or MagMAX Pathogen RNA/DNA Kit (Thermo Fisher
Scientific, Waltham, MA, USA) on a KingFisherTM Flex purification system (Thermo Fisher
Scientific, Waltham, MA, USA) according to the manufacturer’s instructions. RNA extracts
were stored at −80 ◦C until use. To identify HEV RNA carriers, a one-step real-time
RT-PCR protocol [45] for detecting highly conserved fragments within ORF3 was carried
out. This rapid and sensitive broad-range real-time RT-PCR assay is used for the detection
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of HEV genotypes of Orthohepevirus A species. In brief, the amplification was carried
out with a commercially available kit (4 × 1 Step RT qPCR Probe kit, highQu, Kraichtal,
Germany), primers JVHEVF (5′-GGTGGTTTCTGGGGTGAC-3′) and JVHEVR (5′-AGGG-
GTTGGTTGGATGAA-3′), and probe JVHEVP (5′-6-FAM-TGATTCTCAGCCCTTCGC-
3′BHQ) according to the producer’s instructions. The amplification was carried out in
a CFX Touch System (Bio-Rad, Hercules, California, USA) according to an established
protocol (reverse transcription for 5 min at 50 ◦C, RT inactivation/PCR activation for
3 min at 95 ◦C, 40 cycles of 15 s denaturation at 95 ◦C, and 30 s annealing/elongation at
58 ◦C). Positive control sequences of previously detected fragments of HEV RNA genotype
3 were used (derived from positive swine sera submitted to GenBank under accession
no. KT583116, grouped into HEV3c subtype, with Ct-value 29). Negative controls were
aliquots of ultrapure water. Standard precautions were taken to prevent PCR contamination
including a closed system for PCR amplification/detection. Additionally, the preparation
of primers, PCR mastermix, RNA extraction, and the final addition of RNA were carried
out in separate laboratories.

2.3. Detection of Specific Anti-HEV Antibodies through Enzyme-Linked Immunosorbent Assay (ELISA)

In order to detect total anti-HEV antibodies in muscle extracts, a multispecies ELISA
Kit (ID Screen® Hepatitis E Indirect Multi-species ID-Vet, Grables, France) was used,
following the manufacturer’s instructions. This indirect immunoassay is applicable for
the detection of HEV antibodies in multiple mammal species. The microplate is read and
optical density is recorded at 450 nm with an automatic ELISA processor, ETI-Max3000
(DiaSorin, Sallugia, Italy).

3. Results

A total of 692 red fox and 171 jackal muscle extract/feces samples were analyzed to
evaluate the presence of HEV RNA. Despite the efficient RNA extraction (the result of IPC
amplification reveals the general absence of PCR inhibitors in the tested samples), HEV
RNA was not detected in analyzed samples. The exposure of these animal species to HEV
was also assayed through detecting anti-HEV antibodies in muscle extract samples. None
of the samples were positive for antibodies.

4. Discussion

Throughout history, wildlife has been a significant source of infectious diseases trans-
missible to domestic animals and humans [46]. Wildlife can be considered the major
reservoir of various bacteria, viruses, and parasites, whereas fungi are of negligible im-
portance [47]. Three quarters of all emerging infectious diseases of humans are zoonotic,
70% of which are of wildlife origin [46,48–50]. The current rapid ecological changes in the
world have negative impacts on pathogenic organisms, their vectors, and hosts, which
are equally capable of rapid change [51]. Viral diseases originating from wild animals
are widely considered major threats to public health, and the transmission of such viral
pathogens from wildlife to other domestic animals and humans remains an important
scientific challenge hampered by pathogen detection limitations in wild species [52]. The
domestication of animals, human population expansion and encroachment into wildlife
habitats, reforestation and other habitat changes, pollution, and the hunting of wild animals
are key anthropogenic activities driving viral disease emergence at the global scale and
in most instances, these activities have contributed to wildlife population decline and
extinction [53]. The movement of pathogens, vectors, and domestic animals, as well as
humans, is another factor influencing the epidemiology of wildlife-related disease (viral,
bacteria, and parasitic) outbreaks. Such movements are commonly encountered at the
edges of protected areas due to the availability of rich resources, and they bring about
interactions at the wild/domestic animals/humans interfaces, with conflicts and potential
for pathogen spread at these interfaces. These are emerging threats to wildlife conservation
goals and livestock and human health.
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Since the first report of HEV genotypes belonging to the Orthohepevirus C species
in Norway rats (Rattus norvegicus) [54], several new Rat HEV-like sequences have been
described in other animal species, including carnivores and birds of prey [10,11]. All
of these new strains were found in fecal samples, so it might be possible that the virus
identified in predator animals is originally derived from prey rodent species.

In the federal state of Brandenburg, Germany, a comprehensive HEV surveillance
study with a unique panel of fox transudate samples, which were collected over 20 years,
was performed [29]. The detected high antibody prevalence of the virus demonstrated the
presence of endemic HEV infections within a fox population in Germany, and the HEV
genome sequences clustered into the Orthohepevirus C group. An HEV survey on red fox
fecal samples performed in Hungary supported the “dietary origin” of unclassified HEV-
like strains described from predators that usually feed on rodents, since their sequences
displayed high similarity to common vole HEV derived from Microtus arvalis [30].

Nevertheless, our study showed that none of the tested red fox and jackal samples were
positive for the presence of HEV genotypes belonging to the Orthohepevirus A species or
anti-HEV antibodies despite the factors that determined the choice of animals (geographical
habitat). The included samples of red foxes and jackals were from the area where wild
boars were previously shown to be positive, from the area where a high presence of
wild rodents is detected, and from the area where a wild mouse was previously found
to be positive for HEV. One of the explanations could be that the primers and probe set
used is not specific for HEV genotypes belonging to the Orthohepevirus C species. We
used a real-time RT-PCR assay for the detection of HEV genotypes of the Orthohepevirus
A species since the strains previously derived from Croatian wild boars, domestic pigs,
wild mouse, and humans were genetically highly related [36–38,44]. Previous findings
indicated that small rodents in Croatia could be an epidemiological ‘link’ in the HEV
transmission to other wild and domestic animals, and even humans. Additionally, it can
be presumed that the negative ELISA results are a consequence of the sample nature.
We tested muscle extract samples, not sera or plasma samples as recommended by the
manufacturer of the commercial ELISA kit used. Using muscle extract samples in order to
detect specific antibodies has been reported to be successful for assessing the efficiency of
the rabies eradication program in red foxes [55]. The detection of HEV antigen (Ag) has
been suggested as a convenient and cost-efficient alternative to RT-PCR, since HEV Ag
production may parallel that of HEV RNA. It was reported that the method of HEV Ag
detection had good concordance with HEV RNA detection and could serve as a useful
tool in the early diagnosis of infection [56,57]. However, the detection efficiency of HEV
Ag greatly diminished when the HEV RNA level was low or the anti-HEV IgG level was
high [58]. Additionally, due to the low sensitivity/specificity/accuracy of the Ag assay,
RT-PCR was used for the identification of HEV RNA carriers in this study.

Since no HEV-associated clinical signs in foxes are known to date, it is assumed that
this species may constitute a reservoir species for hepatitis E infection [59]. However, no
information about the virulence of HEV in foxes and any possible impact on the morbidity
and mortality of the fox population is available so far [60]. Foxes are the most widespread
predators throughout the world, and have been recognized as potential reservoirs of
zoonotic pathogens including trematodes, cestodes, and nematodes [61] as well as Babesia
spp. and Theileria spp. [62].

Since urbanization is a driving force for the emergence of zoonotic diseases and a
major risk factor for the transmission of such agents to humans, the tendency of foxes to
establish populations in suburban and urban areas should be kept in mind [60]. Alveolar
echinococcosis caused by Echinococcus multilocularis, which displays transmission routes
similar to HEV including fecal shedding and subsequent ingestion of the pathogen, is an
excellent example for the dispersal of a fox-derived zoonosis [63]. So far, HEV genotypes of
the Orthohepevirus A species have been associated with zoonotic potential. There are several
sources that highlighted the zoonotic potential of rodent-borne HEV. Zoonotic potential
was illustrated by a rat HEV isolate that induced a persistent infection in a patient with
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a liver transplant in China [64]. Additionally, there is serological evidence of rat HEV
infection in German forestry workers [65], as well as in hospitalized patients with febrile
illness in Vietnam [66]. There are reports that link rat HEV to severe acute hepatitis in
immunocompetent patients in Canada [67].

The reservoirs of rat-associated HEV are invasive Rattus species such as R. norvegicus
and R. rattus [68], which, analogous to red foxes, globally expand to new (sub-) urban
areas and thereby provide the appropriate environment for the transmission of wildlife-
associated HEV strains to the human population. Several studies confirmed a higher
anti-HEV prevalence in persons with occupational contact with wild animals (hunters,
foresters, veterinarians, forestry workers) when compared to the general population [65,69].
In forest workers, an anti-HEV antibody prevalence of 18% in Germany and 36% in France
was reported [65].

Available data on the distribution of jackals and their role as potential reservoirs of
zoonotic pathogens are scarce. It is believed that jackals migrate from southern Europe,
e.g., Croatia or southern Hungary, to northern latitudes, e.g., Austria, Norway, and the
Netherlands [70,71], due to climate changes. Since the jackal population is expanding
rapidly, they are in competition with red fox populations [71,72]. Consequently, foxes
are moving to new areas, thus contributing to the spread of fox-borne infections. Thus,
jackals seem to have an increasing impact on the spread of diseases, especially since it is
known that jackals harbor Ehrlichia canis, Leishmania donovani, Toxoplasma gondii, Ancylostoma
caninum, Echinococcus granulosus, and several canine viruses [73]. A study conducted in
a neighboring country, Serbia, reported the infection of the jackal population with the
important zoonotic agents Leishmania species and Brucella canis [74]. The importance of
jackals in the epidemiology of zoonotic diseases in newly occupied territories has been
poorly investigated.

The estimated number of red foxes in Croatia, according to the data from the Ministry
of Agriculture, is 15,000. Red foxes feed mostly on small rodents, but also on rabbits,
which are susceptible to HEV [75,76]. Since the red fox is entering the outskirts of cities in
search of food, possible direct or indirect contact with people cannot be excluded and must
be monitored. The estimated jackal population size in Croatia is approximately 10,000;
however, their number and the localities they inhabit are rapidly increasing. Moreover,
as members of the Canidae family, the red fox and jackal have been previously found to
be carriers of a number of viruses with zoonotic potential [24–27,77,78]. The detection
of a naturally infected forest mouse as a competent host of an HEV-3 genotype that has
been found to be genetically identical to previously detected strains derived from humans,
wild boars, and swine in Croatia [24] may represent an epidemiological interspecies “link”
between wildlife and domestic animals, and have an important role in maintaining the
virus in the environment, considering the fact that red foxes and jackals feed mostly on
small rodents.

The surveillance of HEV is very important worldwide in order to decrease the knowledge
gap in terms of its transmission and reservoirs, considering its zoonotic potential, so this study
was conducted to investigate the presence of HEV in red foxes and jackals living in natural
conditions in the Republic of Croatia. More studies are needed to investigate the serological
and virological prevalence, and genomic diversity of fox-derived HEV samples, as well as
traditional diet composition analysis [79] of infected animals in order to understand HEV
infection patterns and transmission routes at the wildlife–livestock–humans interface.

5. Conclusions

Although the circulation of HEV genotypes of the Orthohepevirus A species was not
detected in the tested red fox and jackal samples during the study period, further studies
should be conducted to monitor possible fluctuations in the HEV epidemiology with the
consequent risk of transmission of HEV to humans and other wild mammals. Additionally,
an HEV survey using RT-PCR protocols specific to HEV strains within the Orthohepevirus
C species should be conducted on red fox and jackal samples. Future studies should be
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dedicated to comparing the diagnostic performance of the multispecies ELISA kit used
with the HEV Wantai anti-HEV IgM assay, which is described as more sensitive.
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