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Abstract: While pleuromutilin (1) and its clinically available derivatives (2–6) are highly effective
against Gram-positive bacteria, they remain inactive against many pathogenic Gram-negative bacteria
due to the efflux pump AcrAB-TolC. In an effort to broaden the spectrum of activity of pleuromutilin
(1), we developed a series of novel pleuromutilin–polyamine conjugates (9a–f) which exhibited
promising intrinsic antimicrobial properties, targeting both Gram-positive and Gram-negative bac-
teria, including Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), and Escherichia coli,
along with the fungal strain Cryptococcus neoformans, and were devoid of cytotoxic and hemolytic
properties with the exception of one conjugate. Furthermore, this series displayed moderate to low
antibiotic potentiation of legacy antibiotics doxycycline and erythromycin, with three conjugates
enhancing the activity four-fold in combination with doxycycline. In comparison to pleuromutilin
(1) and tiamulin (2), one of the conjugates exhibited an expanded spectrum of activity, including
Gram-negative bacteria and fungi, making it a promising option for combating microbial infections.

Keywords: polyamine; pleuromutilin; antimicrobial; antibiotic enhancement; membrane disruption

1. Introduction

The rise in antimicrobial resistance, caused by the excessive use of antibiotics and a lack
of investment towards the discovery of new antibiotics, has resulted in a growing number
of challenging microbial infections [1–6]. The discovery of new antibiotics is one avenue
for overcoming resistant microbes, while another is the discovery of compounds with little
or no antimicrobial activity which can be used in combination with legacy antibiotics to
restore their activities [6].

Upon its discovery in 1951, the diterpenoid antibiotic pleuromutilin (1), from the
fungi Pleurotus mutilus (currently known as Clitopilus scyphoides) and P. passeckerianus (C.
passeckerianus), was reported to exhibit bactericidal activity against Staphylococcus aureus and
moderate activity against Mycobacterium smegmatis but showed no effect against Escherichia
coli [7–10]. However, the exact structure of pleuromutilin (1) (Figure 1) remained unknown
until a decade after its initial discovery, after which researchers synthesized derivatives
focusing on substituting the hydroxyl group at C-22 [8,10,11]. This led to the development
of tiamulin (2), an analogue achieved through substitution with sulphonate esters, which
gained approval for veterinary use in 1979. While these derivatives, including the second-
generation pleuromutilin antibiotic valnemulin (3), which boasted improved potency,
were successful in veterinary applications, pharmaceutical companies aimed to develop
pleuromutilin antibiotics for human use [8,10,11]. In 1982, progress was made towards
this goal with azamulin (4) entering phase I clinical trials, though it failed to pass due to
poor bioavailability [8,12]. Nevertheless, the breakthrough came with retapamulin (5), a
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potent pleuromutilin analogue approved by the FDA in 2007 for topical infections, sparking
renewed interest in pleuromutilin and its derivatives [8,10,13]. More recently, lefamulin (6),
another pleuromutilin derivative, successfully passed phase III clinical trials for bacterial
pneumonia and improved upon retapamulin (5) as it could be administered orally or
intravenously [14,15].
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Lefamulin displayed potent antibacterial activity against aerobic Gram-positive bacteria,
proving effective against challenging strains such as methicillin-resistant S. aureus (MRSA),
vancomycin-intermediate S. aureus (VISA), heterogeneous VISA (hVISA), vancomycin-resistant
S. aureus (VRSA), penicillin-resistant Streptococcus pneumoniae (PRSP), multidrug-resistant S.
pneumoniae, and vancomycin-resistant Enterococcus faecium (VRE) [10,16–18]. Additionally, it
exhibited favorable to moderate activity against fastidious Gram-negative bacteria, including
Haemophilus influenza and Moraxella catarrhalis. However, like its predecessors, no activity was
observed against non-fastidious Gram-negative bacteria [10,16–18].

The lack of activity of this structural class against Gram-negative bacteria was at-
tributed to the expression of the efflux pump AcrAB-TolC, a tripartite efflux pump which
exports small molecules from the bacterial cell, reducing drug efficacy [10,19,20]. Encour-
agingly, a derivative of pleuromutilin showed promise against an E. coli strain when tested
in the presence of the efflux pump inhibitor Phe-Arg-β-naphthylamide [10], indicating that
inhibiting AcrAB-TolC could potentially enable pleuromutilin to be used in the treatment
of Gram-negative bacterial infections.

SAR studies show that pleuromutilins with thioether or basic group linkers have
enhanced antibacterial activity. Recent research suggests that increasing primary amines
and positive charges in antibiotics can improve their uptake and accumulation in Gram-
negative bacteria, potentially broadening their spectrum beyond Gram-positives. In our
previous work on α,ω polyamines with disubstituted lipophilic head groups, we have
successfully demonstrated examples that inhibit AcrAB-TolC [21]. Thus, the present study
aims to synthesize and evaluate a series of pleuromutilin–polyamine conjugates bearing
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varying polyamine chain lengths for their intrinsic antimicrobial activity and their ability
to enhance the activity of doxycycline and erythromycin against Gram-negative bacteria.

2. Materials and Methods
2.1. Chemical Synthesis General Methods

See Supplementary File [22–24].

2.2. Synthesis of Compounds
2.2.1. Pleuromutilin 22-O-Tosylate (8)

A solution of pleuromutilin (1) (0.50 g, 1.3 mmol), toluenesulfonylchloride (0.30 g,
1.6 mmol), and DMAP (0.48 g, 3.9 mmol) in anhydrous CH2Cl2 was stirred at 0 ◦C for 4 h
under N2 atmosphere. The reaction was quenched with 1 N HCl and extracted twice with
EtOAc. The combined organic layers were then washed with sat. aq. NaHCO3, dried with
MgSO4, and concentrated under reduced pressure. The crude product was purified by
diol-bonded silica gel column chromatography (20–80% EtOAc/petroleum ether) to afford
(8) as a white foam (0.39 g, 57%). 1H and 13C NMR data agreed with those reported in the
literature [25].

2.2.2. Tiamulin (2)

A solution of pleuromutilin 22-O-tosylate (8) (0.130 g, 0.244 mmol) and KI (0.080 g,
0.482 mmol) in MeCN (10 mL) was stirred at 70 ◦C under an N2 atmosphere for 30 min.
A solution of 2-diethylaminoethane thiol hydrochloride (0.046 g, 0.271 mmol) and DIPEA
(0.26 mL, 1.49 mmol) in anhydrous MeCN (2 mL) was then added and the reaction stirred
for a further 2 h. The solvent was removed under reduced pressure, to which was added
CH2Cl2 (30 mL), and the organic phase was washed with sat. aq. NaHCO3 (2 × 30 mL)
and H2O (2 × 30 mL) and dried over anhydrous Na2SO4, and the solvent was removed
again under reduced pressure. The crude product was purified by diol-bonded silica gel
column chromatography (75–100% EtOAc/hexane followed by 100% MeOH) to afford 2
as a pale orange foam (0.057 g, 47%). Rf (silica gel, 100% EtOAc) 0.44; [α]23.3

D = +50.6 (c
0.195, CH2Cl2); IR (ATR) νmax 3444, 2929, 1721, 1455, 1277, 1115 cm−1; 1H NMR (CDCl3,
400 MHz) δ 6.47 (1H, dd, J = 17.4, 11.0 Hz, H-19), 5.74 (1H, d, J = 8.5 Hz, H-14), 5.33 (1H,
dd, J = 11.0, 1.5 Hz, H2-20a), 5.19 (1H, dd, J = 17.4, 1.5 Hz, H2-20b), 3.35 (1H, d, J = 6.1
Hz, H-11), 3.16 (2H, s, H2-22), 2.68 (4H, s, H2-23, H2-24), 2.53 (4H, q, J = 7.1 Hz, 2H2-25),
2.38–2.32 (1H, m, H-10), 2.25–2.16 (2H, m, H2-2), 2.11–2.05 (2H, m, H-4, H2-13a), 1.79–1.74
(1H, m, H2-8a), 1.69–1.60 (2H, m, H2-1a, H-6), 1.57–1.50 (1H, m, H2-7a), 1.48–1.41 (1H, m,
H2-1b), 1.45 (3H, s, H3-15), 1.39–1.32 (2H, m, H2-7b, H2-13b), 1.16 (3H, s, H3-18), 1.15–1.08
(1H, m, H2-8b), 1.02 (6H, t, J = 7.2 Hz, 2H3-26), 0.87 (3H, d, J = 7.2 Hz, H3-17), 0.73 (3H, d,
J = 6.9 Hz, H3-16), OH signal not observed; 13C NMR (CDCl3, 100 MHz) δ 217.2 (C-3), 169.1
(C-21), 139.2 (C-19), 117.3 (C-20), 74.7 (C-11), 69.4 (C-14), 58.3 (C-4), 52.0 (C-24), 46.9 (C-25),
45.6 (C-9), 44.9 (C-13), 44.0 (C-12), 41.9 (C-5), 36.9 (C-6), 36.1 (C-10), 34.63 (C-22), 34.58 (C-2),
30.5 (C-8), 29.4 (C-23), 27.0 (C-7), 26.5 (C-18), 25.0 (C-1), 17.0 (C-16), 15.0 (C-15), 11.6 (C-17),
11.2 (C-26); (+)-HRESIMS m/z 494.3287 [M + H]+ (calculated for C28H48NO4S, 494.3299).

2.2.3. N1,N1′-(Butane-1,4-diyl)bis(N3-(2-(((3aR,4R,5R,7S,8S,9R,9aS,12R)-8-hydroxy-
4,7,9,12-tetramethyl-3-oxo-7-vinyldecahydro-4,9a-propanocyclopenta [8]annulen-5-
yl)oxy)-2-oxoethyl)propane-1,3-diaminium) 2,2,2-trifluoroacetate (9a)

Following general procedure A, the reaction of pleuromutilin 22-O-tosylate (8) (0.025 g,
0.047 mmol), KI (0.009 g, 0.054 mmol), DIPEA (0.025 mL, 0.144 mmol), and di-tert-butyl
butane-1,4-diylbis((3-aminopropyl)carbamate) (7a) (0.009 g, 0.024 mmol) afforded bis((3aR,
4R,5R,7S,8S,9R,9aS,12R)-8-hydroxy-4,7,9,12-tetramethyl-3-oxo-7-vinyldecahydro-4,9a-pro
panocyclopenta [8]annulen-5-yl) 7,12-bis(tert-butoxycarbonyl)-3,7,12,16-tetraazaoctadecan
edioate (0.019 g, 72%) as a yellow oil. Following general procedure B, a sub-sample of
the protected product (0.010 g, 0.009 mmol) was reacted with TFA in CH2Cl2 to afford the
tetra-TFA salt 9a (0.008 g, 65%) as a yellow oil. [α]18.8

D = +11 (c 0.1, MeOH); Rf (RP-18, 10%
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aq HCl:MeOH 1:3) 0.57; IR (ATR) νmax 2922, 1732, 1671, 1420, 1179, 1121, 1020, 914, 833, 798,
720 cm−1; 1H NMR (DMSO-d6, 400 MHz) δ 9.34 (4H, br s, NH2-23), 8.82 (4H, br s, NH2-27),
6.14 (2H, dd, J = 17.8, 11.2 Hz, H-19), 5.63 (2H, d, J = 8.2 Hz, H-14), 5.14 (2H, dd, J = 17.8,
1.4 Hz, H2-20a), 5.06 (2H, dd, J = 11.2, 1.1 Hz, H2-20b), 4.05 (2H, d, J = 17.9 Hz, H2-22a),
3.86 (2H, d, J = 17.4 Hz, H2-22b), 3.45 (2H, d, J = 8.2 Hz, H-11), 3.02–2.95 (8H, m, H2-24,
H2-26), 2.95–2.89 (4H, m, H2-28), 2.46 (2H, s, H-4), 2.24–1.95 (12H, m, H2-2, H-10, H2-13a,
H2-25), 1.69–1.62 (8H, m, H2-1b, H2-8a, H2-29), 1.56–1.50 (2H, m, H-6), 1.40–1.23 (8H, m,
H2-1a, H2-7, H2-13b), 1.38 (6H, s, H3-15), 1.08 (6H, s, H3-18), 1.03–0.99 (2H, m, H2-8b), 0.83
(6H, d, J = 6.8 Hz, H3-17), 0.65 (6H, d, J = 6.8 Hz, H3-16); 13C NMR (DMSO-d6, 100 MHz) δ
217.0 (C-3), 165.6 (C-21), 140.8 (C-19), 115.5 (C-20), 72.4 (C-11), 71.1 (C-14), 57.0 (C-4), 47.4
(C-22), 46.1 (C-28), 44.9 (C-9), 44.2 (C-12), 44.0 (C-24/C-26), 43.8 (C-24/C-26), 43.3 (C-13),
41.5 (C-5), 36.5 (C-10), 36.2 (C-6), 34.0 (C-2), 30.0 (C-8), 28.5 (C-18), 26.6 (C-7), 24.4 (C-1), 22.7
(C-29), 22.1 (C-25), 16.2 (C-16), 14.4 (C-15), 11.6 (C-17); (+)-HRESIMS [M + H]+ m/z 923.6834
(calculated for C54H91N4O8, 923.6831).

2.2.4. N1,N1′-(Hexane-1,6-diyl)bis(N3-(2-(((3aR,4R,5R,7S,8S,9R,9aS,12R)-8-hydroxy-
4,7,9,12-tetramethyl-3-oxo-7-vinyldecahydro-4,9a-propanocyclopenta [8]annulen-5-
yl)oxy)-2-oxoethyl)propane-1,3-diaminium) 2,2,2-trifluoroacetate (9b)

Following general procedure A, the reaction of pleuromutilin 22-O-tosylate (8) (0.050 g,
0.094 mmol), KI (0.017 g, 0.103 mmol), DIPEA (0.049 mL, 0.281 mmol), and di-tert-butyl
hexane-1,6-diylbis((3-aminopropyl)carbamate) (7b) (0.020 g, 0.046 mmol) afforded bis((3aR,
4R,5R,7S,8S,9R,9aS,12R)-8-hydroxy-4,7,9,12-tetramethyl-3-oxo-7-vinyldecahydro-4,9a-propa
nocyclopenta [8]annulen-5-yl) 7,14-bis(tert-butoxycarbonyl)-3,7,14,18-tetraazaicosanedioate
(0.028 g, 52%) as a yellow oil. Following general procedure B, a sub-sample of the protected
product (0.014 g, 0.012 mmol) was reacted with TFA in CH2Cl2 to afford, after chromatog-
raphy, the tetra-TFA salt 9b (0.009 g, 53%) as a yellow oil. [α]19.9

D = +13 (c 0.1, MeOH); Rf
(RP-18, 10% aq HCl:MeOH 1:3) 0.50; IR (ATR) νmax 2928, 1739, 1671, 1464, 1413, 1199, 1180,
1131, 798, 721 cm−1; 1H NMR (DMSO-d6, 400 MHz) δ 9.32 (4H, br s, NH2-23), 8.69 (4H, br s,
NH2-27), 6.15 (2H, dd, J = 17.8, 11.2 Hz, H-19), 5.63 (2H, d, J = 8.3 Hz, H-14), 5.14 (2H, dd,
J = 17.5, 1.5 Hz, H2-20a), 5.07 (2H, dd, J = 11.1, 1.3 Hz, H2-20b), 4.61 (2H, br s, OH-11), 4.05
(2H, d, J = 16.9 Hz, H2-22a), 3.85 (2H, d, J = 16.7 Hz, H2-22b), 3.45 (2H, obscured by H2O,
H-11), 3.00–2.93 (8H, m, H2-24, H2-26), 2.90–2.84 (4H, m, H2-28), 2.46 (2H, s, H-4), 2.24–1.94
(12H, m, H2-2, H-10, H2-13a, H2-25), 1.70–1.62 (8H, m, H2-1b, H2-8a, H2-29), 1.60–1.51 (2H,
m, H-6), 1.46–1.36 (6H, m, H2-7, H2-13b), 1.38 (6H, s, H3-15), 1.33–1.24 (6H, s, H2-1a, H2-30),
1.08 (6H, s, H3-18), 1.03–1.00 (2H, m, H2-8b), 0.83 (6H, d, J = 6.9 Hz, H3-17), 0.65 (6H, d,
J = 7.0 Hz, H3-16); 13C NMR (DMSO-d6, 100 MHz) δ 217.0 (C-3), 165.6 (C-21), 140.8 (C-19),
115.5 (C-20), 72.4 (C-11), 71.1 (C-14), 57.0 (C-4), 47.4 (C-22), 46.7 (C-28), 44.9 (C-9), 44.2
(C-12), 44.0 (C-24/C-26), 43.8 (C-24/C-26), 43.2 (C-13), 41.5 (C-5), 36.4 (C-10), 36.2 (C-6),
34.0 (C-2), 30.0 (C-8), 28.5 (C-18), 26.6 (C-7), 25.8 (C-30), 25.4 (C-29), 24.4 (C-1), 22.1 (C-25),
16.2 (C-16), 14.4 (C-15), 11.6 (C-17); (+)-HRESIMS [M + H]+ m/z 951.7142 (calculated for
C56H95N4O8, 951.7144).

2.2.5. N1,N1′-(Heptane-1,7-diyl)bis(N3-(2-(((3aR,4R,5R,7S,8S,9R,9aS,12R)-8-hydroxy-
4,7,9,12-tetramethyl-3-oxo-7-vinyldecahydro-4,9a-propanocyclopenta [8]annulen-5-
yl)oxy)-2-oxoethyl)propane-1,3-diaminium) 2,2,2-trifluoroacetate (9c)

Following general procedure A, the reaction of pleuromutilin 22-O-tosylate (8) (0.050 g,
0.094 mmol), KI (0.017 g, 0.103 mmol), DIPEA (0.049 mL, 0.281 mmol), and di-tert-butyl
heptane-1,7-diylbis((3-aminopropyl)carbamate) (7c) (0.021 g, 0.047 mmol) afforded bis((3aR,
4R,5R,7S,8S,9R,9aS,12R)-8-hydroxy-4,7,9,12-tetramethyl-3-oxo-7-vinyldecahydro-4,9a-prop
anocyclopenta [8]annulen-5-yl) 7,15-bis(tert-butoxycarbonyl)-3,7,15,19-tetraazahenicosaned
ioate (0.032 g, 58%) as a yellow oil. Following general procedure B, a sub-sample of the
protected product (0.016 g, 0.014 mmol) was reacted with TFA in CH2Cl2 to afford, after
chromatography, the tetra-TFA salt 9c (0.014 g, 72%) as a yellow oil. [α]21.5

D = +5 (c 0.1,
MeOH); Rf (RP-18, 10% aq HCl:MeOH 1:3) 0.48; IR (ATR) νmax 2944, 1736, 1676, 1460, 1418,
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1200, 1178, 1129, 1051, 1026, 799, 721 cm−1; 1H NMR (DMSO-d6, 400 MHz) δ 9.35 (4H,
br s, NH2-23), 8.74 (4H, br s, NH2-27), 6.14 (2H, dd, J = 17.8, 11.2 Hz, H-19), 5.63 (2H, d,
J = 8.3 Hz, H-14), 5.14 (2H, d, J = 17.8 Hz, H2-20a), 5.06 (2H, d, J = 11.3 Hz, H2-20b), 4.05
(2H, d, J = 17.7 Hz, H2-22a), 3.85 (2H, d, J = 16.7 Hz, H2-22b), 3.45 (2H, d, J = 5.5 Hz, H-11),
3.00–2.94 (8H, m, H2-24, H2-26), 2.90–2.84 (4H, m, H2-28), 2.46 (2H, s, H-4), 2.24–1.95 (12H,
m, H2-2, H-10, H2-13a, H2-25), 1.69–1.62 (8H, m, H2-1b, H2-8a, H2-29), 1.59–1.50 (2H, m,
H-6), 1.40–1.37 (6H, m, H2-1a, H2-7b, H2-13b), 1.38 (6H, s, H3-15), 1.32–1.24 (8H, m, H2-7a,
H2-30, H2-31), 1.08 (6H, s, H3-18), 1.03–1.00 (2H, m, H2-8b), 0.83 (6H, d, J = 6.8 Hz, H3-17),
0.65 (6H, d, J = 6.9 Hz, H3-16); 13C NMR (DMSO-d6, 100 MHz) δ 217.0 (C-3), 165.6 (C-21),
140.8 (C-19), 115.5 (C-20), 72.4 (C-11), 71.1 (C-14), 57.0 (C-4), 47.4 (C-22), 46.7 (C-28), 44.9
(C-9), 44.2 (C-12), 44.0 (C-24/C-26), 43.8 (C-24/C-26), 43.2 (C-13), 41.5 (C-5), 36.4 (C-10),
36.2 (C-6), 34.0 (C-2), 30.0 (C-8), 28.5 (C-18), 28.1 (C-31), 26.6 (C-7), 25.8 (C-30), 25.3 (C-29),
24.4 (C-1), 22.1 (C-25), 16.2 (C-16), 14.4 (C-15), 11.6 (C-17); (+)-HRESIMS [M + 2H]+ m/z
483.3684 (calculated for C57H98N4O8, 483.3687).

2.2.6. N1,N1′-(Octane-1,8-diyl)bis(N3-(2-(((3aR,4R,5R,7S,8S,9R,9aS,12R)-8-hydroxy-
4,7,9,12-tetramethyl-3-oxo-7-vinyldecahydro-4,9a-propanocyclopenta [8]annulen-5-
yl)oxy)-2-oxoethyl)propane-1,3-diaminium) 2,2,2-trifluoroacetate (9d)

Following general procedure A, the reaction of pleuromutilin 22-O-tosylate (8) (0.050 g,
0.094 mmol), KI (0.017 g, 0.103 mmol), DIPEA (0.049 mL, 0.281 mmol), and di-tert-butyl
octane-1,8-diylbis((3-aminopropyl)carbamate) (7d) (0.022 g, 0.047 mmol) afforded bis((3aR,
4R,5R,7S,8S,9R,9aS,12R)-8-hydroxy-4,7,9,12-tetramethyl-3-oxo-7-vinyldecahydro-4,9a-prop
anocyclopenta [8]annulen-5-yl) 7,16-bis(tert-butoxycarbonyl)-3,7,16,20-tetraazadocosaned
ioate (0.031 g, 56%) as a yellow oil. Following general procedure B, a sub-sample of the
protected product (0.015 g, 0.013 mmol) was reacted with TFA in CH2Cl2 to afford, after
chromatography, the tetra-TFA salt 9d (0.018 g, 99%) as a yellow oil. [α]20.0

D = +5 (c 0.1,
MeOH); Rf (RP-18, 10% aq HCl:MeOH 1:3) 0.48; IR (ATR) νmax 2945, 1733, 1670, 1464,
1421, 1202, 1180, 1125, 1025, 798, 720 cm−1; 1H NMR (DMSO-d6, 400 MHz) δ 9.33 (4H,
br s, NH2-23), 8.68 (4H, br s, NH2-27), 6.14 (2H, dd, J = 17.8, 11.3 Hz, H-19), 5.63 (2H,
d, J = 8.4 Hz, H-14), 5.14 (2H, dd, J = 17.8, 1.7 Hz, H2-20a), 5.06 (2H, dd, J = 11.2, 1.7 Hz,
H2-20b), 4.05 (2H, d, J = 17.5 Hz, H2-22a), 3.85 (2H, d, J = 16.9 Hz, H2-22b), 3.45 (2H, d,
J = 5.7 Hz, H-11), 3.00–2.94 (8H, m, H2-24, H2-26), 2.90–2.85 (4H, m, H2-28), 2.45 (2H, s,
H-4), 2.22–2.03 (12H, m, H2-2, H-10, H2-13a), 1.97 (4H, tt, J = 7.7, 7.6 Hz, H2-25), 1.69–1.62
(4H, m, H2-1b, H2-8a), 1.56–1.50 (6H, m, H-6, H2-29), 1.41–1.37 (4H, m, H2-7b, H2-13b), 1.38
(6H, s, H3-15), 1.30–1.23 (12H, m, H2-1a, H2-7a, H2-30, H2-31), 1.08 (6H, s, H3-18), 1.03–0.98
(2H, m, H2-8b), 0.83 (6H, d, J = 7.0 Hz, H3-17), 0.65 (6H, d, J = 7.0 Hz, H3-16); 13C NMR
(DMSO-d6, 100 MHz) δ 217.0 (C-3), 165.6 (C-21), 140.8 (C-19), 115.5 (C-20), 72.4 (C-11), 71.1
(C-14), 57.0 (C-4), 47.4 (C-22), 46.6 (C-28), 44.9 (C-9), 44.2 (C-12), 44.0 (C-24/C-26), 43.8
(C-24/C-26), 43.2 (C-13), 41.5 (C-5), 36.5 (C-10), 36.2 (C-6), 34.0 (C-2), 30.0 (C-8), 28.5 (C-18,
C-31), 26.6 (C-7), 25.6 (C-30), 25.3 (C-29), 24.4 (C-1), 22.1 (C-25), 16.2 (C-16), 14.4 (C-15), 11.6
(C-17); (+)-HRESIMS [M + 2H]+ m/z 490.3763 (calculated for C58H100N4O8, 490.3765).

2.2.7. N1,N1′-(Decane-1,10-diyl)bis(N3-(2-(((3aR,4R,5R,7S,8S,9R,9aS,12R)-8-hydroxy-
4,7,9,12-tetramethyl-3-oxo-7-vinyldecahydro-4,9a-propanocyclopenta [8]annulen-5-
yl)oxy)-2-oxoethyl)propane-1,3-diaminium) 2,2,2-trifluoroacetate (9e)

Following general procedure A, the reaction of pleuromutilin 22-O-tosylate (8) (0.050 g,
0.094 mmol), KI (0.017 g, 0.103 mmol), DIPEA (0.049 mL, 0.281 mmol), and di-tert-butyl
decane-1,10-diylbis((3-aminopropyl)carbamate) (7e) (0.023 g, 0.047 mmol) afforded bis((3aR,
4R,5R,7S,8S,9R,9aS,12R)-8-hydroxy-4,7,9,12-tetramethyl-3-oxo-7-vinyldecahydro-4,9a-prop
anocyclopenta [8]annulen-5-yl) 7,18-bis(tert-butoxycarbonyl)-3,7,18,22-tetraazatetracosaned
ioate (0.028 g, 49%) as a yellow oil. Following general procedure B, a sub-sample of the
protected product (0.014 g, 0.012 mmol) was reacted with TFA in CH2Cl2 to afford, after
chromatography, the tetra-TFA salt 9e (0.011 g, 65%) as a yellow oil. [α]19.2

D = +4 (c 0.1,
MeOH); Rf (RP-18, 10% aq HCl:MeOH 1:3) 0.47; IR (ATR) νmax 2922, 1738, 1669, 1417,
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1199, 1129, 1019, 915, 835, 797, 721 cm−1; 1H NMR (DMSO-d6, 400 MHz) δ 9.33 (4H, br
s, NH2-23), 8.68 (4H, br s, NH2-27), 6.14 (2H, dd, J = 17.8, 11.2 Hz, H-19), 5.63 (2H, d,
J = 8.3 Hz, H-14), 5.14 (2H, dd, J = 17.8, 1.6 Hz, H2-20a), 5.06 (2H, dd, J = 11.2, 1.5 Hz,
H2-20b), 4.05 (2H, d, J = 16.6 Hz, H2-22a), 3.86 (2H, d, J = 17.4 Hz, H2-22b), 3.45 (2H, d,
J = 5.5 Hz, H-11), 3.00–2.93 (8H, m, H2-24, H2-26), 2.90–2.84 (4H, m, H2-28), 2.46 (2H, s,
H-4), 2.24–2.01 (8H, m, H2-2, H-10, H2-13a), 1.96 (4H, tt, J = 7.5, 7.5 Hz, H2-25), 1.69–1.60
(8H, m, H2-1b, H2-8a, H2-29), 1.56–1.50 (2H, m, H-6), 1.40–1.36 (4H, m, H2-7b, H2-13b),
1.38 (6H, s, H3-15), 1.30–1.29 (4H, m, H2-1a, H-7a), 1.28–1.24 (12H, m, H2-30, H2-31, H2-32),
1.08 (6H, s, H3-18), 1.03–0.99 (2H, m, H2-8b), 0.83 (6H, d, J = 6.9 Hz, H3-17), 0.65 (6H, d,
J = 7.0 Hz, H3-16); 13C NMR (DMSO-d6, 100 MHz) δ 217.0 (C-3), 165.6 (C-21), 140.8 (C-19),
115.5 (C-20), 72.4 (C-11), 71.1 (C-14), 57.0 (C-4), 47.3 (C-22), 46.7 (C-28), 44.9 (C-9), 44.2
(C-12), 44.0 (C-24/C-26), 43.8 (C-24/C-26), 43.2 (C-13), 41.5 (C-5), 36.4 (C-10), 36.2 (C-6), 34.0
(C-2), 30.0 (C-8), 28.7 (C-32), 28.54 (C-18/C-31), 28.51 (C-18/C-31), 26.6 (C-7), 25.9 (C-30),
25.4 (C-29), 24.4 (C-1), 22.1 (C-25), 16.2 (C-16), 14.4 (C-15), 11.6 (C-17); (+)-HRESIMS [M +
2H]+ m/z 504.3922 (calculated for C60H104N4O8, 504.3922).

2.2.8. N1,N1′-(Dodecane-1,12-diyl)bis(N3-(2-(((3aR,4R,5R,7S,8S,9R,9aS,12R)-8-hydroxy-
4,7,9,12-tetramethyl-3-oxo-7-vinyldecahydro-4,9a-propanocyclopenta [8]annulen-5-
yl)oxy)-2-oxoethyl)propane-1,3-diaminium) 2,2,2-trifluoroacetate (9f)

Following general procedure A, the reaction of pleuromutilin 22-O-tosylate (8) (0.050 g,
0.094 mmol), KI (0.017 g, 0.103 mmol), DIPEA (0.049 mL, 0.281 mmol), and di-tert-butyl
dodecane-1,12-diylbis((3-aminopropyl)carbamate) (7f) (0.024 g, 0.047 mmol) afforded
bis((3aR, 4R,5R,7S,8S,9R,9aS,12R)-8-hydroxy-4,7,9,12-tetramethyl-3-oxo-7-vinyldecahydro-
4,9a-propanocyclopenta [8]annulen-5-yl) 7,20-bis(tert-butoxycarbonyl)-3,7,20,24-tetraazahe
xacosanedioate (0.023 g, 40%) as a yellow oil. Following general procedure B, a sub-sample
of the protected product (0.014 g, 0.011 mmol) was reacted with TFA in CH2Cl2 to afford,
after chromatography, the tetra-TFA salt 9f (0.008 g, 47%) as a yellow oil. [α]19.7

D = +5 (c 0.1,
MeOH); Rf (RP-18, 10% aq HCl:MeOH 1:3) 0.40; IR (ATR) νmax 2930, 1735, 1671, 1499, 1417,
1199, 1175, 1125, 1018, 915, 834, 797, 721 cm−1; 1H NMR (DMSO-d6, 500 MHz) δ 9.32 (4H,
br s, NH2-23), 8.62 (4H, br s, NH2-27), 6.14 (2H, dd, J = 17.7, 11.2 Hz, H-19), 5.63 (2H, d,
J = 8.3 Hz, H-14), 5.14 (2H, d, J = 17.8 Hz, H2-20a), 5.06 (2H, d, J = 11.2 Hz, H2-20b), 4.03 (2H,
d, J = 17.0 Hz, H2-22a), 3.84 (2H, d, J = 17.1 Hz, H2-22b), 3.45 (2H, obscured by H2O, H-11),
2.96 (8H, t, J = 7.2 Hz, H2-24, H2-26), 2.87 (4H, t, J = 7.8 Hz, H2-28), 2.46 (2H, br s, H-4),
2.23–2.01 (8H, m, H2-2, H-10, H2-13a), 1.95 (4H, tt, J = 7.3, 7.2 Hz, H2-25), 1.69–1.51 (10H, m,
H2-1b, H-6, H2-8a, H2-29), 1.39–1.34 (4H, m, H2-7b, H2-13b), 1.38 (6H, s, H3-15), 1.31–1.28
(4H, m, H2-1a, H2-7a), 1.28–1.23 (16H, m, H2-30, H2-31, H2-32, H2-33), 1.08 (6H, s, H3-18),
1.03–1.00 (2H, m, H2-8b), 0.83 (6H, d, J = 6.8 Hz, H3-17), 0.65 (6H, d, J = 7.0 Hz, H3-16); 13C
NMR (DMSO-d6, 125 MHz) δ 217.0 (C-3), 165.8 (C-21), 140.8 (C-19), 115.5 (C-20), 72.4 (C-11),
71.0 (C-14), 57.0 (C-4), 47.4 (C-22), 46.7 (C-28), 44.9 (C-9), 44.2 (C-12), 44.0 (C-24/C-26), 43.9
(C-24/C-26), 43.2 (C-13), 41.5 (C-5), 36.5 (C-10), 36.2 (C-6), 34.0 (C-2), 30.0 (C-8), 29.0 (C-33),
28.9 (C-32), 28.6 (C-31), 28.5 (C-18), 26.6 (C-7), 25.9 (C-30), 25.4 (C-29), 24.4 (C-1), 22.2 (C-25),
16.2 (C-16), 14.4 (C-15), 11.6 (C-17); (+)-HRESIMS [M + 2H]+ m/z 518.4083 (calculated for
C62H108N4O8, 518.4078).

2.3. Antimicrobial Assays

The susceptibility of bacterial strains S. aureus (ATCC 25923), E. coli (ATCC 25922), and
P. aeruginosa (ATCC 27853 or PAO1) to antibiotics and compounds was determined using
reported protocols [26]. Additional antimicrobial evaluation against MRSA (ATCC 43300),
Klebsiella pneumoniae (ATCC 700603), A. baumannii (ATCC 19606), Candida albicans (ATCC
90028), and Cryptococcus neoformans (ATCC 208821) was undertaken at the Community for
Open Antimicrobial Drug Discovery at The University of Queensland (Australia) according
to their standard protocols as reported previously [26,27]. (See Supplementary File.)
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2.4. Determination of the MICs of Antibiotics in the Presence of Synergizing Compounds

Antibiotic restoring enhancer concentrations were determined using reported protocols
(see Supplementary File) [26].

2.5. Nitrocefin Assay

Nitrocefin assays were conducted using reported protocols (see Supplementary File) [28].

2.6. Cytotoxicity Assays

Cytotoxicity assays were conducted using reported protocols (see Supplementary
File) [26,27].

2.7. Hemolytic Assays

Hemolysis assays were conducted using reported protocols (see Supplementary
File) [26,27].

2.8. Real-Time Growth Curves

Real-time growth curves were determined using reported protocols (see Supplemen-
tary File) [26].

2.9. ATP Efflux Assay

ATP efflux assays were conducted using reported protocols (see Supplementary
File) [28].

3. Results and Discussion
3.1. Synthesis of Tiamulin (2)

Functionalization at C-22 of pleuromutilin (1) has been extensively explored, with
derivatives prepared via nucleophilic substitution of sulphonate esters. Tosylation at O-22
was achieved using a modified procedure by Zhang et al. [29], whereby pleuromutilin (1)
in CH2Cl2 was reacted with 4-toluenesulfonylchloride and DMAP for 4 h to afford 8 in 57%
yield (Scheme 1).
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Scheme 1. Synthesis of pleuromutilin O-22-tosylate (8) and tiamulin (2).

Reagents and conditions: (i) 4-Toluenesulfonylchloride (1.2 equiv), DMAP (3 equiv.),
CH2Cl2, 4 h, 70 ◦C, N2 (57%); (ii) KI (2 equiv.), MeCN, 70 ◦C, 30 min, N2, then 2-(diethylam
ino)ethane-1-thiol hydrochloride (1.1 equiv.), and DIPEA (6 equiv.), 70 ◦C, 2 h, N2 (47%).

Tiamulin (2) was selected to be used as a positive control in biological assays and
was prepared by a one pot, two-step sequence, whereby 22-O-tosylate 8 was preincubated
with 2.0 equivalents of KI to give the 22-iodo derivative which was then reacted with 1.1
equivalents of 2-(diethylamino)ethane-1-thiol HCl salt in the presence of excess DIPEA to
afford (2) in 47% yield (Scheme 1) (Figure S1).

3.2. Synthesis of Pleuromutilin–Polyamine Conjugates

The target set of conjugates required for the synthesis of Boc-protected polyamine
scaffolds 7a–f (Figure 2), which were prepared according to protocols reported in the
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literature [22–24]. The polyamines (PA) chosen covered a range of overall lengths, from
spermine (PA-3-4-3) through to the longer chain length PA-3-12-3. The set was chosen to
allow the exploration of chain length, lipophilicity, and positioning of positive charges on
antimicrobial and cytotoxicity/hemolytic properties.
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Figure 2. Boc-protected polyamines 7a–f.

The target pleuromutilin–polyamine conjugates were prepared using the same nucle-
ophilic displacement of the iodo-activated pleuromutilin methodology used to prepare
tiamulin (2). Thus, activation of pleuromutilin 22-O-tosylate (8) with KI, followed by reac-
tion with Boc-protected polyamines 7a–f in MeCN with DIPEA, afforded Boc-protected
intermediates that were then deprotected with 2,2,2-trifluoroacetic acid (TFA) to afford
target compounds 9a–f as their tetra-TFA salts (Scheme 2) (Figures S2–S7).
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Scheme 2. General method for the synthesis of target pleuromutilin–polyamine conjugates (9a–f).

Regents and conditions: (i) Pleuromutilin O-22-tosylate (8) (2.0 equiv.), KI (2.2 equiv.),
MeCN, 70 ◦C, 1.5 h, N2, then Boc-protected polyamine 7a–f (1.0 equiv.), and DIPEA
(6 equiv.), 70 ◦C, 2.5 h, N2 (40–72%); (ii) TFA (0.2 mL), CH2Cl2 (2 mL), r.t., 2 h (47–99%).

3.3. Antimicrobial Activities

The antimicrobial activities of pleuromutilin (1), tiamulin (2), and pleuromutilin–
polyamine conjugates 9a–f were determined as the minimum inhibitory concentration
(MIC) against a panel of Gram-positive (S. aureus and MRSA) and Gram-negative (E. coli,
P. aeruginosa, K. pneumoniae, and A. baumannii) bacterial strains and two fungal strains (C.
albicans and C. neoformans) (Table 1). Tiamulin (2) demonstrated potent activity against both
S. aureus and MRSA with an MIC of 3.125 and ≤0.51 µM, respectively, while exhibiting no
activity against any of the Gram-negative bacteria or fungi. Intriguingly, all of the conju-
gates exhibited moderate to good growth inhibition of S. aureus and the Gram-negative
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bacterium, E. coli, with the conjugates 9b–f also demonstrating strong growth inhibition
of MRSA. Antifungal activity was observed for all conjugates against C. neoformans, with
MIC’s ranging from ≤0.17 to 0.72 µM, while against C. albicans, activity was only observed
for the longer chained PA-3-10-3 9e (MIC 10.9 µM) and PA-3-12-3 9f (MIC 21.5 µM) con-
jugates. Meanwhile, the PA-3-12-3 conjugate 9f was the most active, exhibiting broad
spectrum activity against all tested strains, notably against S. aureus, MRSA, E. coli, A.
baumannii, and C. neoformans.

Table 1. Antimicrobial (MIC, µM) activities of pleuromutilin (1), tiamulin (2), and conjugates 9a–f.

Compound S.a. a MRSA b E.c. c P.a. d K.p. e A.b. f C.a. g C.n. h

1 3.125 n.t. i 400 800 n.t. n.t. n.t. n.t.
2 3.125 ≤0.51 200 800 >64.8 >64.8 >64.8 >64.8

9a 18.1 23.2 18.1 72.5 >23.2 >23.2 >23.2 0.72
9b 17.8 ≤0.18 8.88 142 >22.7 >22.7 >22.7 ≤0.18
9c 17.6 ≤0.18 35.2 >141 >22.5 >22.5 >22.5 ≤0.18
9d 34.8 5.57 70 >139 >22.3 >22.3 >22.3 ≤0.17
9e 4.27 ≤0.17 4.27 >88 >21.9 >21.9 10.9 ≤0.17
9f 2.10 ≤0.17 4.19 33.5 21.5 2.7 21.5 ≤0.17

a S. aureus ATCC 25923, streptomycin (MIC 21.5 µM) and chloramphenicol (MIC 1.5–3 µM) used as positive
controls and values presented as the mean (n = 3); b MRSA ATCC 43300, vancomycin (MIC 0.7 µM) used as a
positive control and values presented as the mean (n = 2); c E. coli ATCC 25922, streptomycin (MIC 21.5 µM) and
colistin (MIC 2 µM) used as positive controls and values presented as the mean (n = 3); d P. aeruginosa PAO1,
streptomycin (MIC 21.5 µM) and colistin (MIC 1 µM) used as positive controls and values presented as the mean
(n = 3); e K. pneumoniae ATCC 700603, colistin (MIC 0.2 µM) used as a positive control and values presented as the
mean (n = 2); f A. baumannii ATCC 19606, colistin (MIC 0.2 µM) used as a positive control and values presented
as the mean (n = 2); g C. albicans ATCC 90028, fluconazole (MIC 0.4 µM) used as a positive control and values
presented as the mean (n = 2); h C. neoformans ATCC 208821, fluconazole (MIC 26 µM) used as a positive control
and values presented as the mean (n = 2); i Not tested.

3.4. Cytotoxic and Hemolytic Activities

Tiamulin (2) and pleuromutilin–polyamine conjugates 9a–f were evaluated for cytotox-
icity towards HEK293 cells (human kidney epithelial cell line), reported as the concentration
of compound at 50% cytotoxicity (IC50), and for hemolytic activity against human red blood
cells, reported as the concentration of compound at 10% hemolytic activity (HC10) (Table 2).
The only conjugate to exhibit either of these properties was the longest PA-3-12-3 variant
(9f), which was both cytotoxic (IC50 8.3 µM) and hemolytic (HC10 13.2 µM).

Table 2. Cytotoxicity (IC50, µM) and hemolytic (HC10, µM) activities of tiamulin (2) and conjugates
9a–f.

Compound Cytotoxicity a Hemolysis b

2 >64.8 >64.8
9a >23.2 >23.2
9b >22.7 >22.7
9c >22.5 >22.5
9d >22.3 >22.3
9e >21.9 >21.9
9f 8.3 13.2

a Concentration of compound at 50% cytotoxicity on HEK293 human embryonic kidney cells with tamoxifen
as the positive control (IC50 24 µM) and values presented as the mean (n = 2); b Concentration of compound at
10% hemolytic activity on human red blood cells with melittin as the positive control (HC10 0.95 µM) and values
presented as the mean (n = 2).

When taken together, the combination of intrinsic antimicrobial activities and cyto-
toxicity/hemolytic activities identified the PA-3-10-3 conjugate 9e as being of particular
interest. Of note, in addition to the strong activity towards Gram-positive bacteria, the
conjugate also exhibited activity towards the Gram-negative bacterium E. coli.
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3.5. Real-Time Growth Inhibition Assay

To investigate the kinetics of the antibacterial activity exhibited by 9e and tiamulin
(2), real-time growth inhibition curves were determined against S. aureus ATCC 25922
and P. aeruginosa PAO1 via measurement of optical density at 490 nm during an 18 h
culturing period. Although appearing to be qualitatively different, both compounds
inhibited the growth of S. aureus (Figure 3), with the 18 h time point values in close
agreement with the MIC values obtained for the two compounds (Table 1) using classical
microdilution techniques. Further investigation is required to determine the factors leading
to the differences observed in the sub-MIC growth curves for the two compounds. No such
inhibition was observed against P. aeruginosa (Figure S8).
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3.6. Antibiotic Enhancement Activities

Tiamulin (2) and polyamine conjugates 9a–f were also evaluated for their ability
to enhance the antibiotic action of doxycycline towards P. aeruginosa ATCC 27853 and
of erythromycin towards E. coli ATCC 25922. For the doxycycline assay, the antibiotic
was present at a concentration of 4.5 µM (2 µg/mL), 20 times below the MIC value of
90 µM (40 µg/mL). Amongst the test compounds, only modest levels of enhancement
were detected, with 4-fold increases in activity observed for 9a, 9b, and 9f, while the
remaining compounds, including tiamulin (2), were essentially unable to enhance the
antibiotic action of doxycycline (Table 3). For the erythromycin assay, the antibiotic was
present at a concentration of 2.7 µM (2 µg/mL), well below the MIC value of 174 µM
(128 µg/mL). Insignificant levels of enhancement of the action of the lipophilic antibiotic
erythromycin was detected towards E. coli, though of note is the observance of improved
activity for three of the conjugates (9a, 9c, and 9d) in comparison to tiamulin (2).

Table 3. Antibiotic enhancement activity (MIC, µM) of tiamulin (2) and conjugates 9a–f.

Compound Dox/P.a. a Erythro/E.c. b

2 >405 (2) >405 (0.5)
9a 18.1 (4) 9.06 (2)
9b 35.5 (4) 8.88 (1)
9c 141 (1) 17.6 (2)
9d 139 (1) 34.8 (2)
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Table 3. Cont.

Compound Dox/P.a. a Erythro/E.c. b

9e 34.2 (2) 8.54 (0.5)
9f 8.38 (4) 8.38 (0.5)

a Concentration (µM) required to restore doxycycline activity at 4.5 µM against P. aeruginosa ATCC 27853. Fold
change shown in parentheses is the ratio between the intrinsic MIC of the test compound and the combination MIC;
b Concentration (µM) required to restore erythromycin activity at 2.7 µM against E. coli ATCC 25922. Fold change
shown in parentheses is the ratio between the intrinsic MIC of the test compound and the combination MIC.

3.7. Membrane Perturbation Activities

Perturbation or disruption of the bacterial membrane is a validated mechanism of
action of particular classes of antibiotics, including the polymyxin family of lipopeptides.
In addition to being lethal to bacteria, this mechanism of membrane perturbation can also
be used to enhance the action of other antibiotics, whereby a sub-MIC dose of the disruptor
can facilitate the entry of the antibiotics into the microorganism [30]. Membrane perturba-
tion appears to be one mechanism of both antibiotic activity and antibiotic enhancement
activity exhibited by α,ω-disubstituted polyamines, being well documented in a number
of studies [21].

The mechanism of antibiotic action of 9e towards the Gram-positive bacterium Staphy-
lococcus aureus was attributed to its ability to disrupt the bacterial membrane and cause the
release of intracellular ATP. The test organisms, being S. aureus ATCC 25923 and MRSA,
were briefly exposed to 9e at a single dose of 100 µg/mL, with the leakage of ATP deter-
mined by the use of a bioluminescence assay (Figure 4). While considered active in the
assay, the level of disruption induced by exposure to 9e was significantly less than that
induced by the positive control squalamine. Nevertheless, a 40% level of ATP release is
detrimental to the survival of the bacteria. After 3 min, it will be clear that the bacteria will
be killed.
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Figure 4. ATP release in S. aureus ATCC 25923 (left) and MRSA (right) exhibited by polyamine
conjugate 9e as determined using ATP efflux assay. Squalamine (100 µg/mL) was the positive control
and water was the negative control. Compounds were tested at a final concentration of 100 µg/mL,
and results are reported as percentage (%) relative to positive control.

We also examined the ability of 9e to act as membrane disruptor of the Gram-negative
bacteria P. aeruginosa PAO1 (Figure 5), using a nitrocefin colorimetric assay. This assay
makes use of a chromogenic cephalosporin derivative, which in the presence of an outer
membrane disruptor gains entry to the periplasm, where upon the action of β-lactamases
leads to substrate hydrolysis with a detectable color change from yellow to red. While the
positive control, polymyxin B, demonstrated potent ability to perturb the outer membrane
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of P. aeruginosa PAO1, polyamine conjugate 9e was inactive at all test doses. Tiamulin
(2) was also evaluated in the same assay, also failing to exhibit any detectable membrane
perturbation.
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with nitrocefin.

4. Conclusions

Six pleuromutilin–polyamine conjugates 9a–f were successfully synthesized from
pleuromutilin-22-OTs (8) and Boc-protected polyamines 7a–f, in addition to the veterinary
drug tiamulin (2). These compounds primarily inhibited the growth of Gram-positive
bacteria, with limited effects on Gram-negative bacteria and two fungal strains. Notably,
all polyamine conjugates exhibited anti-E. coli and antifungal activity against C. neoformans,
unlike pleuromutilin (1) or tiamulin (2). Cytotoxicity and hemolysis assays showed that all
compounds, except the longest polyamine conjugate, 9f, were non-toxic. Moreover, when
combined with doxycycline against P. aeruginosa, three conjugates (9a, 9b, and 9f) exhibited
better antibiotic potentiation than tiamulin (2). Preliminary investigations suggest that
while 9e exhibits intrinsic Gram-positive antibacterial by a mechanism related to membrane
perturbation, the ability of the compound class to enhance the action of doxycycline towards
Gram-negative bacteria does not appear to be linked to outer membrane disruption. Further
studies will be required to determine their precise mechanism.
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