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Abstract: The European mole (Talpa europaea) has a widespread distribution throughout Europe.
However, little is known about the presence of zoonotic pathogens in European moles. We therefore
tested 180 moles from the middle and the south of the Netherlands by (q)PCR for the presence of mul-
tiple (tick-borne) zoonotic pathogens. Spotted fever Rickettsia was found in one (0.6%), Leptospira spp.
in three (1.7%), Bartonella spp. in 69 (38.3%) and Hantaviridae in 89 (49.4%) of the 180 moles. Infections
with Anaplasma phagocytophilum, Babesia spp., Neoehrlichia mikurensis, Borrelia spp., Spiroplasma spp.
and Francisella tularensis were not found. In addition, in a subset of 35 moles no antibodies against
Tick-borne encephalitis virus were found. The obtained sequences of Bartonella spp. were closely related
to Bartonella spp. sequences from moles in Spain and Hungary. The Hantaviridae were identified as the
mole-borne Nova virus, with high sequence similarity to sequences from other European countries,
and Bruges virus. Though the zoonotic risk from moles appears limited, our results indicate that
these animals do play a role in multiple host-pathogen cycles.

Keywords: Talpa europaea; mole; zoonotic pathogens; zoonoses; epidemiology

1. Introduction

The European mole (Talpa europaea) is a small insectivorous mammal with a fossorial
lifestyle. Moles belong to the order of Eulipotyphla (insectivores) together with hedgehogs,
shrew-moles and true shrews. The distribution of the European mole runs from Britain
and Northern Spain eastwards deep into Russia [1]. In Western Europe, including the
Netherlands, moles are common and inhabit a wide range of habitats, including urban
areas. Although not frequent, humans come into contact with moles. This contact creates
a potential health risk, because insectivores are known to carry a diversity of zoonotic
pathogens, e.g., Leptospira spp. and Bartonella spp. [2–4]. However, little is known about the
presence of zoonotic pathogens in European moles. As far as the authors know, there are no
literature reports describing human infectious disease cases where moles were considered
the source. It is unclear whether this is caused by the absence of zoonotic pathogens in
moles, the low contact rates with humans or the mild, non-specific symptoms caused by
mole-borne zoonoses.

Recent studies reported the presence of a potentially novel Bartonella species [3–5],
Babesia venatorum [6], a spotted fever Rickettsia [3] and Toxoplasma gondii [7] in moles from
Spain, Slovakia, Germany, Hungary and the Netherlands respectively. Borrelia burgdorferi
sensu lato, Anaplasma phagocytophilum, Leptospira spp., Coxiella burnetii and Francisella
tularensis were not found [8–10]. However, the number of moles tested in these studies
was in most cases relatively small, making statements about the role of the mole in the
transmission cycles for these pathogens difficult.

Orthohantaviruses (family: Hantaviridae, order: Bunyavirales) are more extensively
studied in moles. Multiple orthohantaviruses can cause disease in humans, most notably
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hantavirus hemorrhagic fever with renal syndrome (HFRS) in Eurasia and hantavirus
pulmonary syndrome (HPS) in the Americas [11]. In addition to rodents, in recent decades
numerous orthohantaviruses were found in hosts from the orders Eulipotyphla (insectivores)
and Chiroptera (bats) [12]. Bruges virus (BRGV, species: Bruges orthohantavirus), was de-
scribed in moles from Belgium, Germany and the UK [13]. Furthermore, Nova virus (NVAV,
species: Nova mobatvirus; family: Hantaviridae), was described in a mole from Hungary [14]
and in moles from France, Poland and Belgium [15–17]. It is as yet unclear whether BRGV
or NVAV can cause disease in humans.

The aim of the current study was to assess the occurrence of a range of potentially
zoonotic pathogens in a large sample of moles from the Netherlands. We therefore tested 180
moles from different locations for Hantaviridae, Leptospira spp., Bartonella spp., Rickettsia spp.,
Anaplasma phagocytophilum, Babesia spp., Borrelia spp., Neoehrlichia mikurensis, Spiroplasma
spp. and Francisella tularensis. In addition, a subset of moles was tested for antibodies
against Tick-borne encephalitis virus (TBEV).

2. Material and Methods
2.1. Sample Collection

Across different locations in the Netherlands, 180 moles that had been lethally trapped
by professional molecatchers, were collected (Figure 1). Trapping had been conducted as
part of pest control, thus no additional permits or ethical permission were required for
the study. Moles in the central part of the Netherlands (location Urk) were captured in
the spring of 2018. Moles from the southern region (locations Lage Zwaluwe and Bergen
op Zoom) and South-Eastern region (locations Gennep and Schimmert) were captured in
the spring of 2019. Between Urk and the southern capture locations there is a distance of
135–230 km. Between the different southern capture locations there is a distance of maxi-
mum 135 km. The information received from the molecatchers regarding the habitat ranged
from detailed GPS coordinates to general description of the capture location. After capture,
moles were stored at −20 ◦C until dissection. Tissues (lung, kidney, liver and spleen) were
collected and stored at −80 ◦C. Heart fluid was collected as described previously [18] and
stored at −20 ◦C. Body weight and sex were recorded (Supplementary Table S2).
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Figure 1. Maps of capture locations of moles (Talpa europaea) and proportion of (a) Leptospira spp.,
(b) Bartonella spp. and (c) Hantaviridae positive animals at each location. Maps were designed in
R [19].

2.2. Nucleic Acid Extraction, qPCR and Sequencing

Total nucleic acid was isolated from lungs, kidney and spleen from each animal using
the MagNAPure Total NA isolation kit (Roche Diagnostics GmbH, Mannheim, Germany)
as described previously [20]. Previously established qPCR-based methodologies were used
for the detection of genetic material from the following pathogens: Borrelia burgdorferi
s.l. [21], Borrelia miyamotoi [22], Neoehrlichia mikurensis [23], Anaplasma phagocytophilum [24],
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Babesia microti [25], Babesia spp. from clade X, which has been designed to detect B. divergens,
B. venatorum, B. capreoli and B. odocoilei [26], spotted fever group Rickettsia [27], Bartonella
spp. [28], Francisella tularensis [29], Spiroplasma spp. [30] and Leptospira spp. [31]. Primer
sequences can be found in Table S1.

All qPCRs were carried out on a LightCycler 480 (Roche Diagnostics Nederland B.V.,
Almere, the Netherlands) in a final volume of 20 µL with iQ Multiplex Powermix (Bio-Rad
Laboratories, Veenendaal, the Netherlands), 3 µL of sample DNA, 0.2 µM for all primers
and different concentrations for probes. Positive controls and negative water controls
were used on every plate tested. Analysis was performed using the second derivative
calculations for Cp (crossing point) values. For overflow of fluorescence from dyes that
were used, a colour compensation was conducted. Curves were assessed visually.

For hantaviruses, an RT-PCR was performed to detect the conserved L-segment,
followed by a nested PCR as described [32]. Samples positive for Bartonella spp. were
subjected to a conventional PCR of a fragment from the citrate synthase gene (gltA; [33]).
PCR products were purified for sequencing with ExoSAP-IT PCR clean-up (Isogen Life
Science, Utrecht, The Netherlands), followed by Sanger sequencing (Baseclear, Leiden, The
Netherlands). Obtained sequences were submitted to Genbank with accession numbers
OM513926-OM513933 (Bartonella spp.) and OM513918-OM513925 (orthohantaviruses).
Samples positive for Leptospira spp. were subjected to a melt-curve analysis according to
Ahmed et al. [31] to determine the Leptospira species.

2.3. TBEV Serology

In a subset of moles from Urk (n = 35), heart fluid was analyzed for antibodies against
TBEV using the EIA TBE Virus IgG kit (TestLine Clinical Diagnostics, Brno, Czech Republic)
according to the manufacturer’s instructions. As a conjugate Protein G IgG HRP (Thermo
Fisher Scientific, Landsmeer, The Netherlands) was used.

2.4. Phylogenetic Analysis

Multiple sequence alignments for the hantavirus L-segment and Bartonella spp. gltA
sequences were obtained with the MAFFT algorithm [34]. Maximum likelihood phylo-
genetic trees were generated by IQtree [35] with 10,000 ultrafast bootstrap replicates [36].
Final trees were visualized in the FigTree v.1.4.4. program [37].

3. Results
3.1. Apparent Pathogen Prevalence

In three moles (1.7%, 95% CI 0.4–4.8) Leptospira spp. DNA was detected in kidney
samples (Figure 1, Tables 1 and S2). All Leptospira-positive moles originated from the
capture location Urk. Two moles were found to be infected with Leptospira interrogans,
while Leptospira kirschneri was found in one mole.

Table 1. Apparent prevalence of tested pathogens in moles (Talpa europaea) from different capture
locations.

No. Positive Moles per Capture Location (Prevalence (%), 95% Confidence Interval)

Pathogen * Urk
(n = 125)

Lage Zwaluwe
(n = 20)

Bergen Op Zoom
(n = 20)

Gennep
(n = 12)

Schimmert
(n = 3)

Total
(n = 180)

Leptospira spp. 3
(2.4%, 0.5–6.9)

0
(0%, 0–16.8)

0
(0%, 0–16.8)

0
(0%, 0–26.5)

0
(0%, 0–70.8)

3
(1.7%, 0.4–4.8)

Bartonella spp. 42
(33.6%, 25.4–42.6)

3
(15%, 3.2–37.9)

16
(80%, 56.3–94.3)

6
(50%, 21.1–78.9)

2
(66.7%, 9.4–99.2)

69
(38.3%, 31.2–45.9)

Hantaviridae 63
(50.4%, 41.3–59.5)

10
(50%, 27.2–72.8)

9
(45%, 23.1–68.5)

6
(50%, 21.1–78.9)

1
(33.3%, 0.8–90.6)

89
(49.4%, 41.9–56.0)

Spotted fever
group Rickettsia

0
(0%, 0–2.9)

1
(5%, 0.1–24.9)

0
(0%, 0–16.8)

0
(0%, 0–26.5)

0
(0%, 0–70.8)

1
(0.6%, 0.01–3.1)

* Anaplasma phagocytophilum, Babesia spp., Neoehrlichia mikurensis, Borrelia spp., Spiroplasma spp. and Francisella
tularensis were not detected.
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Bartonella spp. DNA was detected in all locations, with an overall prevalence of 38.3%,
95% CI 31.2–45.9 (Figure 1, Tables 1 and S2). Bartonella spp. prevalence ranged from 15% to
80% at the different capture locations. No difference in Bartonella spp. prevalence was seen
between male (39.7%) and female moles (37.6%).

Almost half of the tested moles (49.4%, 95% CI 41.9–57.0), originating from all locations
tested, were found to be infected with hantavirus (Figure 1, Tables 1 and S2). Hantavirus
prevalence for moles captured in 2018 around Urk (50.4%) did not differ significantly from
the prevalence of those captured in 2019 from southern regions (47.3%). Neither was a
difference seen in prevalence between male (47.4%) and female (50.5%) moles.

Spotted fever Rickettsia DNA was found in one mole (0.6%, 95% CI 0.01–3.1) from the
Lage Zwaluwe location. This animal was also infected with both hantavirus and Bartonella
spp. In total, in 40 moles a mixed infection of hantavirus and Bartonella spp. was found
(22.2%, 95% CI 16.4–29.0). In one of these moles a triple infection of Leptospira interrogans,
hantavirus and Bartonella spp. was detected (Table S2).

All moles were negative for Anaplasma phagocytophilum, Babesia spp., Neoehrlichia
mikurensis, Borrelia spp., Spiroplasma spp. and Francisella tularensis DNA. The selection of
moles (n = 35, from Urk) tested for antibodies against TBEV were all negative.

3.2. Phylogenetic Analysis

A phylogenetic tree made from the sequenced fragment of the gltA gene of Bar-
tonella showed that our sequences clustered in two groups with two nucleotides difference
(Figure 2). Sequences from both clusters were found at all capture locations. The highest
similarity of our sequences was found with uncultured Bartonella from moles in Spain [5]
(100% similarity) and uncultured Bartonella from multiple animals (99.7%, mole, hedgehog,
weasel and house mouse) from Hungary [3].
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Figure 2. Maximum-likelihood phylogenetic tree for partial Bartonella gltA gene sequences (258 nt).
Sequences from this study are shown in bold (Genbank accession numbers OM513926-OM513933).
One representative sequence for each capture site was chosen for this tree, unless sequences from
one capture site were from different branches. In parentheses the number of identical sequences in a
specific branch is indicated. Numbers along branches are bootstrap values, only bootstrap support of
>70% is shown. The scale bar indicates nucleotide substitutions per site.

The phylogenetic tree of the hantavirus L-segment shows sequences falling into multi-
ple clusters (Figure 3). Two separate clusters of sequences are seen from moles captured
around Urk. The similarity between sequences from one capture location was 83.1–100%.
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Sequences from this study are shown in bold (Genbank accession numbers OM513918–OM513925).
One representative sequence for each capture site was chosen for this tree, unless sequences from
one capture site were from different branches. In parentheses the number of similar sequences in a
specific branch is indicated. Numbers along branches are bootstrap values, only bootstrap support of
>70% is shown. Scale bar indicates nucleotide substitutions per site.

All but one of the sequences were identified as NVAV. One mole from the Gennep
capture location was found to be positive for BRGV. Between all the Dutch NVAV sequences,
the lowest similarity was 86.2%. Similarity with NVAV sequences from other European
countries was 81.1–88.7%. The BRGV sequence clustered with BRGV sequences from
Belgium and Germany and showed 82.6% and 83.1% similarity, respectively.

4. Discussion

In a population of 180 moles, Leptospira spp., Bartonella spp., Hantaviridae and spotted
fever Rickettsia were detected, suggesting a potential role for moles in zoonotic pathogen
transmission to humans.

Leptospira spp. was found in three moles, which to our knowledge is the first descrip-
tion of this pathogenic bacterium in moles. Previously, moles from Germany were tested
for Leptospira, but none were found positive [9]. However, Leptospira has been described
in related insectivore hosts, such as shrews [2,38,39]. Two Leptospira species were found:
Leptospira interrogans and Leptospira kirschneri. Both species are pathogenic to humans, with
Leptospira interrogans being the main cause of human leptospirosis and Leptospira kirschneri
being the causative agent of recent outbreaks in strawberry pickers in Germany [40,41]. The
Netherlands has an average yearly incidence of human leptospirosis of 0.25 cases/100,000
population, and incidence is highest in the northern regions of the country [42]. This agrees
with our finding of Leptospira spp. in the moles tested from Urk, the most northern region
in this study.

Multiple species of Bartonella are causative agents of human diseases including Car-
rion’s disease and cat-scratch disease [43]. In the last two decades, association of human
disease with different Bartonella species has continued to grow. Bartonella spp. was found
in 38.3% of Dutch moles. This bacterium was previously reported in 15 out of 21 moles
from Spain [5].In addition, Bartonella was also found in small numbers of moles from
Slovakia and Hungary [3,4]. Sequences from the current study were closely related to the
Bartonella sequences from Spain and Hungary. Possibly, these sequences could be part of a
yet unidentified, mole-associated Bartonella species, that is found in at least three countries
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across Europe. The pathogenic potential for humans of the Bartonella spp. described here is
unknown. However, the sequences found are genetically quite similar to Bartonella spp.
that have been shown to infect humans [44,45]. In addition, it has been hypothesized that
any species of Bartonella is capable of infecting humans [46]. For zoonotic infection to
occur, frequent exposure to moles is essential, which is not expected to be the case for the
general public.

Similar to reports from other European countries, NVAV was found in Dutch moles.
Most of the Dutch NVAV sequences cluster away from NVAV sequences from other coun-
tries. Also, multiple distinct clusters of Dutch sequences from different geographical
locations are seen, as reported previously for NVAV from France and Belgium [15,17].
The apparent prevalence of 49.4% found in our sample is similar to the prevalence in
Belgium (53%) [17], but slightly lower compared to NVAV prevalences found in Poland
(66%) [16] and France (65%) [15]. The high prevalence of NVAV infection in European moles
suggests a well-established host-pathogen relationship and enzootic virus transmission.
Interestingly, only one mole in our sample (0.6%) was found to be infected with BRGV. The
prevalence of BRGV in Belgian moles was 4.6%, but no BRGV was found in moles from
France or Poland [13], raising questions about the distribution and transmission efficiency
of this virus.

At present, it is unclear whether NVAV or BRGV are pathogenic to humans. The lack
of a small animal model able to mimic human hantavirus pathology makes it more difficult
to answer this question. Experimental infection of mice with NVAV does lead to weight
loss, hyperactivity and hind-limb paralysis [47]. In addition, some etiological evidence has
been published linking non-rodent borne hantaviruses to human infections and possibly to
human disease [48,49]. Currently, most hantavirus cases in the Netherlands are caused by
Puumala virus, though differentiation between the various hantaviruses with the current
diagnostics is not always performed [50].

The moles in our study were negative for a range of tick-borne pathogens, indicating
that they could have no or only a minor role in the ecology of these pathogens. Moles from
Spain and Hungary were previously tested for Borrelia spp., Rickettsia spp. and Anaplasma
phagocytophilum and similar to our results, no infections with Borrelia or Anaplasma were
found [3,8]. However, Rickettsia spp. was found in a single mole from Hungary [3], and
also in our study a spotted fever group Rickettsia was found in one mole.

In moles from Slovakia, TBEV and TBEV antibodies were detected [51]. These moles
were trapped in a well-known focus area of TBEV. In the Netherlands, TBEV has been
detected in human patients, ticks and wildlife since 2016. A convenience sample of 35 moles
from Urk was tested as part of another study on TBEV in the Netherlands. The capture
location of Urk is close to a location where TBEV has been detected in ticks [52], however
no antibodies against TBEV were found in the moles. Because of the limited presence of
TBEV in the Netherlands and the low likelihood of finding TBEV in moles, no further moles
were tested. In addition, very few tick-borne pathogens were found in the moles tested,
similar to previous studies in European moles [8]. Possibly the European mole plays little
to no role in tick-host-pathogen cycles. If so, this makes the European mole distinctive
among land mammals.

This study addresses the circulation of potentially (tick-borne) zoonotic pathogens in
moles. Because convenience samples from lethal trappings were used, no systematic ap-
proach could be followed to assess the true prevalence of the source population. Therefore,
we were only able to assess the apparent prevalence of the samples of subjects analyzed.
Also, a potential limitation of the study might be the use of a limited set of organs to test
for the presence of pathogenic DNA and RNA. Kidney tissue was used to test for Leptospira
spp., the lungs to test for hantaviruses and the spleen for all other pathogens. Testing more
or other tissues could have led to the detection of different pathogens, for example testing
of the skin for tick-borne pathogens. Storage of carcasses is ideally at −80 ◦C, which for
practical reasons was not done in this study. This could have negatively affected pathogen
detection. However, since hantaviruses were detected in all three batches of moles, this
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does not seem to have severely affected the carcasses. Furthermore, our investigation only
detected the DNA or RNA of the described pathogens, but not their infectivity.

Unfortunately, no additional information was available about the habitats in which
the moles had been captured, other than a general description of the capture locations.
Therefore, no in depth analyses could be performed regarding environmental factors.

With this study we have taken a first step to elucidate the role of moles in host-
pathogen cycles by testing for a range of potentially zoonotic pathogens. Notably, we report
the detection of Leptospira in moles. In addition, high apparent prevalences of Bartonella
and NVAV were found. Although for both of these pathogens the potential for human
disease is as yet unclear, we recommend increasing awareness among physicians and
public health workers about exposure to moles in individuals presenting with unusual
clinical syndromes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms11010041/s1, Table S1: Primers used in this
study; Table S2: Moles tested in this study.
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