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Abstract: Akkermansia muciniphila (AM) is one of many highly abundant intestinal microbes that
influences homeostasis and metabolic disorders and may also play a role in oral disorders. However,
there is little evidence regarding the oral prevalence of this organism. Based upon this lack of
evidence, the primary goal of this project is to survey an existing saliva repository to determine the
overall prevalence of this organism and any associations with demographic or patient characteristics
(age, sex, body mass index, race/ethnicity, orthodontic therapy). Using an approved protocol„
a total n = 141 pediatric samples from an existing saliva repository were screened using qPCR
revealing 29.8% harbored AM with nearly equal distribution among males and females, p = 0.8347.
Significantly higher percentages of pediatric, non-orthodontic patients were positive for AM (42.3%)
compared with age-matched orthodontic patients (14.3%)—which were equally distributed among
non-orthodontic males (42.1%) and non-orthodontic females (42.5%). In addition, analysis of the
adult samples revealed that nearly equal percentages of males (18.2%) and females (16.7%) harbored
detectable levels of salivary AM, p = 0.2035. However, a higher proportion of non-orthodontic adult
samples harbored AM (21.3%) compared to orthodontic samples (12.8%, p = 0.0001), which was
equally distributed among males and females. These results suggest that both age and the presence
of orthodontic brackets may influence microbial composition and, more specifically, are associated
with reduction in AM among both pediatric and adult populations from their baseline levels.

Keywords: Akkermansia muciniphila; saliva screening; orthodontic; oral prevalence

1. Introduction

Akkermansia muciniphila is one of many highly abundant human intestinal microbes
that may have the ability to significantly influence homeostasis and metabolic disor-
ders [1,2]. For example, some evidence has demonstrated that decreased abundance of
the mucin-degrading Akkermansia allows for dysbiosis among other microbial competi-
tors that negatively affect host metabolic syndrome and immune system responses [3,4].
Systematic reviews of this evidence have confirmed that reductions in Akkermansia are
highly associated with metabolic syndrome as the inflammation-reducing properties of this
microbe are lost, associations that may also be related to other disorders including obesity,
hyperlipidemia and hypertension [5,6].

The functional ability of this microorganism to modulate inflammation, basal metabolism
and other metabolic functions has led to many studies evaluating the potential for its use as
a therapeutic treatment option [7,8]. Growing evidence has demonstrated the benefits and
impacts of Akkermansia used as a probiotic to reduce inflammation and restore microbial
homeostasis and equilibrium in clinical settings [9–11]. However, recent studies have
demonstrated that changes to the oral microbiota, most notably with Akkermansia, not
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only alter oral health but also precede and subsequently contribute to the development or
prevention of these metabolic disorders [12,13].

More specifically, the presence of Akkermansia appears to down-regulate the produc-
tion of inflammatory cytokines such as IL-10 and IL-12, as well as other inflammatory
biomarkers associated with Porphyromonas gingivalis-associated periodontitis [14,15]. Addi-
tionally, other studies have now revealed that administration of Akkermansia may reduce
both periodontal and systemic inflammation in a dose-dependent manner [16,17]. However,
the only studies of prevalence to date have focused on evaluation of microbial composition
or changes within the gut and intestinal tracts without any corresponding studies of oral
microbial prevalence [18–20].

Given the ability of these microorganisms to influence oral as well as systemic dis-
orders, it is surprising how little evidence is available regarding the prevalence and oral
ecology of this organism [21]. Studies from this group have created a saliva bioreposi-
tory that has been successfully used to conduct molecular screenings for other novel oral
pathogens, including the cariogenic bacterium Scardovia wiggsiae and periodontal pathogen
Selenomonas noxia [22–24]. Based upon this information, the primary goal of this project
was to survey this existing saliva biorepository to determine the overall prevalence of
Akkermansia muciniphila and any associations with demographic or patient characteristics,
such as age, sex, race or ethnicity, and orthodontic treatment status.

2. Materials and Methods
2.1. Human Subjects Approval

This was a retrospective study involving the use of an existing biorepository. The
protocol for this study was submitted, reviewed and approved by the Institutional Review
Board (IRB) and the Office for the Protection of Research Subjects (OPRS) at the University of
Nevada, Las Vegas (UNLV) as Research Exempt under Protocol #1717625-1 “Retrospective
analysis of microbial prevalence from DNA isolated from saliva samples originally obtained
from the University of Nevada, Las Vegas (UNLV) School of Dental Medicine (SDM)
pediatric and clinical population” on 3 March 2021.

2.2. Original Collection Protocol

The study protocol used for the original collection of clinical saliva samples was re-
viewed and approved under protocol OPRS#1305-4466M “The Prevalence of Oral Microbes
in Saliva from the UNLV School of Dental Medicine Pediatric and Adult Clinical Popu-
lation” in 2013. In brief, adult and pediatric patients who agreed to participate provided
Informed Consent and Pediatric Assent, if applicable. Up to 5.0 mL was collected in ster-
ile polypropylene tubes, which were labeled with non-duplicated, randomly generated
numbers to avoid the collection of any personal or patient-specific information.

Inclusion criteria were patients of record at UNLV-SDM who agreed to participate and
provide Informed Consent and/or Pediatric Assent. Exclusion criteria included any person
not a patient of record at UNLV-SDM and any patient who declined to participate. Samples
were stored at −80 ◦C in a secured biomedical laboratory freezer. Basic demographic
information was concurrently collected including patient age, sex, race or ethnicity, as well
as orthodontic treatment status.

2.3. DNA Isolation and Analysis

DNA was isolated from all clinical samples using the phenol:chloroform extraction
method using TRIzol DNA isolation reagent from ThermoFisher Scientific (Fair Lawn, NJ,
USA), as previously described [22–24]. Briefly, samples were thawed and 400 uL of saliva
was removed and placed into a sterile microcentrifuge tube with an equal volume of TRIzol
reagent and triturated before adding 200 uL of chloroform and incubated for ten minutes
on ice. Samples were then centrifuged at 12,000× g or relative centrifugal force (RCF) for
15 min using an Eppendorf Refrigerated Microcentrifuge obtained from Fisher Scientific
(Fair Lawn, NJ, USA). The upper aqueous phase was transferred to a sterile microcentrifuge
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tube with an equal volume of isopropanol to precipitate the DNA and mixed thoroughly.
Samples were centrifuged for 10 min and isopropanol was removed. Samples were washed
with molecular grade Ethanol and centrifuged for five minutes. Ethanol was removed and
samples were resuspended using nuclease-free distilled water.

DNA was screened using the NanoDrop 2000 Spectrophotometer from Fisher Scientific
(Fair Lawn, NJ, USA). Absorbance readings at A260 nm and A280 nm were used to
determine the purity and concentration of DNA. Samples with sufficient quantity (>10 ng)
and quality as determined by the A260:A280 ratio (>1.65) were selected for qPCR screening.

2.4. qPCR Screening

Screening of samples was performed using the QuantStudio Real-Time Polymerase
Chain Reaction (PCR) system from Applied Biosciences (Waltham, MA, USA). Screening
qPCR reactions utilized SYBR Green qPCR Master Mix from ThermoFisher Scientific (Fair
Lawn, NJ, USA), which consisted of ABsolute SYBR Green (12.5 uL), nuclease-free water
(7.5 uL), forward and reverse primers (1.75 uL each), and sample DNA (1.5 uL) diluted
to 1.0 ng/uL for a total reaction volume of 25 uL. Cycle specifications included activation
of the enzyme at 95 ◦C for 15 min followed by 40 cycles of denaturation at 95 ◦C (15 s),
annealing using each primer pair-specific temperature (30 s), with final extension at 72 ◦C
(30 s). Validated primer sets included [22–29]:

Positive control, bacterial 16S rRNA
Forward 16S rRNA primer: 5′-ACG CGT CGA CAG AGT TTG ATC CTG GCT-3′;

27 nt, 56% GC content, Tm = 76 ◦C
Reverse 16S rRNA primer: 5′-GGG ACT ACC AGG GTA TCT AAT-3′; 21 nt, 48% GC

content, Tm = 62 ◦C
Akkermansia muciniphila (AM)
Forward AM primer: 5′-CAG CAC GTG AAG GTG GGG-3′; 18 nt, 67% GC content,

Tm = 69 ◦C
Reverse AM primer: 5′-CCT TGG GGT TGG CTT CAG AT-3′, 20 nt, 55% GC content,

Tm = 68 ◦C
Aggregatibacter actinomycetemcomitans (AA)
Forward AA primer, 5′-ATT GGG GTT TAG CCC TGG T-3′; 19 nt, 53% GC, Tm = 67 ◦C
Reverse AA primer, 5′-GGC ACA AAC CCA TCT CTG A-3′; 19 nt, 53%GC, Tm = 65 ◦C
Fusobacterium nucleatum (FN)
Forward FN primer; 5′-CGC AGA AGG TGA AAG TCC TGT AT-3′; 23 nt, 48% GC,

Tm = 67 ◦C
Reverse FN primer; 5′-TGG TCC TCA CTG ATT CAC ACA GA-3′; 23 nt, 48% GC,

Tm = 68 ◦C
Selenomonas noxia (SN)
Forward SN primer: 5′-TCT GGG CTA CAC ACG TAC TAC AAT G-3′; 25 nt, 48% GC,

Tm = 68 ◦C
Reverse SN primer: 5′-GCC TGC AAT CCG AAC TGA GA-3′; 20 nt, 55% GC,

Tm = 68 ◦C
Porphyromonas gingivalis (PG)
Forward PG primer: 5′-TAC CCA TCG TCG CCT TGG T = 3′; 19 nt, 58% GC,

Tm = 69 ◦C
Reverse PG primer: 5′-CGG ACT AAA ACC GCA TAC ACT TG-3′; 23 nt, 48% GC,

Tm = 66 ◦C

2.5. Statistical Analysis

Descriptive statistics for demographic variables, including number and percentage
of males and females, average age with range, and race or ethnicity were compiled in
Microsoft Excel (Redmond, WA, USA). Samples were screened and further categorized as
AM-positive and AM-negative for analysis using Chi Square statistics, which is appropriate
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for non-parametric (categorical data) analysis. A significance level of alpha = 0.05 was used
for all calculations.

3. Results

A total of n = 227 clinical saliva samples were identified for inclusion in this study.
Analysis of the samples from the pediatric population (n = 141) revealed approximately half
were derived from females (51.1%), which closely matched the overall clinic demographics
(52.8%), p = 0.6891 (Table 1). Evaluation of the racial and ethnic demographic data revealed
the majority of samples were derived from minority (non-White) patients (70.2%), which
also approximates the overall pediatric clinic population (75.3%), p = 0.2482. The average
age of the pediatric study sample was 13.14 years, which was significantly higher than the
overall clinical population age of 10.44 years mainly due to the original sampling protocol
which restricted sample collection to patients age seven and older, p = 0.021.

Table 1. Demographic analysis of pediatric study samples.

Demographic Pediatric Study Sample
(n = 141) Clinic Population Statistical Analysis

Sex
Pediatric—Female (n = 72/141) 51.1% 52.8% χ2 = 0.160, d.f. = 1
Pediatric—Male (n = 69/141) 48.9% 47.2% p = 0.6891
Race/Ethnicity
Pediatric—White (n = 42/141) 29.8% 24.7% χ2 = 1.333, d.f. = 1
Pediatric—Minority (n = 99/141) 70.2% 75.3% p = 0.2482
Pediatric—Hispanic (n = 74/141) 52.5% 52.1%
Age
Average
(Median)

13.14 yrs.
(12 yrs.)

10.44 yrs.
(10 years)

Two-tailed t-test
p = 0.021

Range 7–17 yrs. 0–17 yrs.

Analysis of the samples from the adult population (n = 86) revealed approximately half
were derived from females (48.8%), which closely matched the overall clinic demographics
(49.1%), p = 0.9883 (Table 2). Evaluation of the racial and ethnic demographic data revealed
the majority of samples were derived from minority (non-White) patients (62.8%), which
also approximates the overall adult clinic population (65.4%), p = 0.0893. Finally, the
average age of the adult study sample was 46.35 years, which was significantly higher than
the overall clinical population age of 42.31 years, p = 0.028.

Table 2. Demographic analysis of adult study samples.

Demographic Adult Study Sample (n
= 86) Clinic Population Statistical Analysis

Sex
Adult—Female (n = 42/86) 48.8% 49.1% χ2 = 0.016, d.f. = 1
Adult—Male (n = 44/86) 51.2% 50.9% p = 0.9883
Race/Ethnicity
Adult—White (n = 32/86) 37.2% 34.6% χ2 = 2.987, d.f. = 1
Adult—Minority (n = 54/86) 62.8% 65.4% p = 0.0839
Adult—Hispanic (n = 47/86) 54.7% 58.6%
Age
Average
(Median)

46.35 yrs.
(42 yrs.)

42.31 yrs.
(41 yrs.)

Two-tailed t-test
p = 0.028

Range 18–73 yrs. 18–89 yrs.

The DNA isolated from the pediatric and adult saliva samples was screened using
spectrophotometric analysis to determine the suitability of each sample for qPCR screening
(Table 3). These data revealed that the average DNA concentration from the pediatric saliva
samples was sufficient for qPCR screening (average 481.2 ng/uL), which was within the
range specified by the manufacturer for isolation from biological samples (100–1000 ng/uL).
In addition, the quality of samples was also suitable for qPCR screening (A260:A280 ratio
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= 1.73 average.) Similarly, the concentration (434.1 ng/uL) and quality (A260:A280 ratio
= 1.75 average) of DNA from adult saliva samples was also sufficient for qPCR screening
and analysis.

Table 3. Analysis of DNA from study samples.

Study Sample DNA Concentration DNA Purity
(A260:A280 Ratio)

Pediatric samples
n = 141

481.2 ng/uL +/−55.1
127.2–769.1 ng/uL

Average: 1.73
Range: 1.69–1.82

Adult samples
n = 86

434.1 ng/uL +/−72.2
169.3–872.8 ng/uL

Average: 1.75
Range: 1.71–1.84

Molecular screening of pediatric study samples revealed n = 42/141 or 29.8% harbored
DNA specific for Akkermansia or AM (Figure 1). Approximately one-third exhibited cycle
threshold detection levels in the high (C16–C20, n = 3/42 or 7.1%), moderate-high C21–C25,
n = 7/42 or 16.7%) or moderate (C26–C30, n = 4/42 or 9.5%) range. In contrast, two-
thirds (n = 28/42 or 66.7%) exhibited cycle threshold detection levels in the low-moderate
(C31–C35, n = 15/42 or 35.7%) or low (C36–C40, n = 13/42 or 31.0%) range.
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Figure 1. Heat map of qPCR pediatric study sample screening for Akkermansia muciniphila (AM). This
screening revealed n = 42/141 or 29.8% of samples harbored DNA specific for AM. The majority of
these samples (n = 28/42 or 66.7%) exhibited AM-specific DNA levels corresponding to low (C36–C40)
or moderately low (C31–C35) cycle threshold detection values. C = positive control standard curve
data for 16S rRNA.

More detailed analysis of these pediatric samples revealed that nearly equal percent-
ages of males (n = 21/69 or 30.4%) and females (n = 21/72 or 29.2%) harbored detectable
levels of salivary AM, p = 0.8347 (Table 4). Interestingly, sorting by orthodontic status
revealed that a higher proportion of non-orthodontic samples harbored AM (n = 33/78
or 42.3%) than orthodontic samples (n = 9/63 or 14.3%). More specifically, more males
(n = 16/38 or 42.1%) and females (n = 17/40 or 42.5%) from non-orthodontic samples
harbored AM than age-matched orthodontic samples from males (n = 5/31 or 16.1%) or
females (n = 4/32 or 12.5%), p = 0.0001.
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Table 4. Analysis of AM-positive and AM-negative pediatric samples.

Demographic AM-Positive AM-Negative Statistical Analysis

Pediatric–Males n = 21/69 or 30.4% n = 48/69 or 69.6% χ2 = 0.044, d.f. = 1
Pediatric—Females n = 21/72 or 29.2% n = 51/72 or 70.8% p = 0.8347
Total n = 42/141 or 29.8% n = 99/141 or 70.2%
Pediatric—Males
Non-Orthodontic n = 16/38 or 42.1% n = 22/38 or 57.9% χ2 = 758.853, d.f. = 1

Pediatric—Males
Orthodontic n = 5/31 or 16.1% n = 26/31 or 83.9% p = 0.0001

Total n = 21/69 or 30.4% n = 48/69 or 69.6%
Pediatric—Females
Non-Orthodontic n = 17/40 or 42.5% n = 23/40 or 57.5% χ2 = 822.857, d.f. = 1

Pediatric—Females
Orthodontic n = 4/32 or 12.5% n = 28/32 or 87.5% p = 0.0001

Total n = 21/72 or 29.2% n = 51/72 or 70.8%
Non-Orthodontic n = 33/78 or 42.3% n = 45/78 or 57.6% χ2 = 639.734, d.f. = 1
Orthodontic n = 9/63 or 14.3% n = 54/63 or 85.7% p = 0.0001
Total n = 42/141 or 29.8% n = 99/141 or 70.2%

Molecular screening of adult study samples revealed n = 15/86 or 17.4% harbored
DNA specific for AM (Figure 2). Only four samples exhibited cycle threshold detection
levels in the high (C16–C20, n = 1/15 or 6.7%), moderate-high C21–C25, n = 0/15 or 0.0%) or
moderate (C26–C30, n = 3/15 or 20.0%) range. In contrast, nearly three-fourths (n = 11/15
or 73.3%) exhibited cycle threshold detection levels in the low-moderate (C31–C35, n = 5/15
or 33.3%) or low (C36–C40, n = 6/15 or 40.0%) range.
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or moderately low (C31–C35) cycle threshold detection values. C = positive control standard curve
data for 16S rRNA.
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More detailed analysis of the adult samples revealed that nearly equal percentages
of males (n = 8/44 or 18.2%) and females (n = 7/42 or 16.7%) harbored detectable levels
of salivary AM, p = 0.2035 (Table 5). Analysis of these data using orthodontic status
revealed that a higher proportion of non-orthodontic, adult samples harbored AM (n =
10/47 or 21.3%) than orthodontic samples (n = 5/39 or 12.8%). More specifically, more
adult males (n = 5/24 or 20.8%) and females (n = 5/23 or 21.7%) from non-orthodontic
samples harbored AM than age-matched orthodontic samples from males (n = 3/20 or 15%)
or females (n = 2/19 or 10.5%), p = 0.0001.

Table 5. Analysis of AM-positive and AM-negative adult samples.

Demographic AM-Positive AM-Negative Statistical Analysis

Adult–Males n = 8/44 or 18.2% n = 36/44 or 81.8% χ2 = 1.617, d.f. = 1
Adult—Females n = 7/42 or 16.7% n = 35/42 or 83.3% p = 0.2035
Total n = 15/86 or 17.4% n = 71/86 or 82.6%
Adult—Males
Non-Orthodontic n = 5/24 or 20.8% n = 19/24 or 79.2% χ2 = 26.384, d.f. = 1

Adult—Males
Orthodontic n = 3/20 or 15.0% n = 17/20 or 85.0% p = 0.0001

Total n = 8/44 or 18.2% n = 36/44 or 81.8%
Adult—Females
Non-Orthodontic n = 5/23 or 21.7% n = 18/23 or 78.3% χ2 = 133.482, d.f. = 1

Pediatric—Females
Orthodontic n = 2/19 or 10.5% n = 17/19 or 89.5% p = 0.0001

Total n = 7/42 or 16.7% n = 35/42 or 83.3%
Non-Orthodontic n = 10/47 or 21.3% n = 37/47 or 78.7% χ2 = 64.731, d.f. = 1
Orthodontic n = 5/39 or 12.8% n = 34/39 or 87.2% p = 0.0001
Total n = 15/86 or 17.4% n = 71/86 or 82.6%

To determine if the changes in oral prevalence were affected by age, differences be-
tween the pediatric and adult samples were analyzed (Figure 3). These data demonstrated
that a large difference in the oral prevalence of AM was observed between the pediatric,
non-orthodontic (42.3%) and adult, non-orthodontic (21.3%) samples at −21%. Further
analysis of prevalence among pediatric orthodontic (14.3%) and adult orthodontic (12.8%)
revealed a slight difference of only −1.5%.

To determine if these age-associated effects were restricted to this oral microbial
population, previously collected data from other studies of Gram-negative oral microbes
Fusobacterium nucleatum (FN), Porphyromonas gingivalis (PG), and Selenomonas noxia (SN)
were also plotted and graphed. These data also demonstrated differences between the
pediatric and adult samples, such as the differences in FN between the pediatric, non-
orthodontic (33%) and adult, orthodontic (62.1%) samples at 29.1% that closely matched the
differences between pediatric, orthodontic (38.1%) and adult, orthodontic (66.8%) samples
at 28.7%. In addition, differences were observed in the oral prevalence of PG between
the pediatric, non-orthodontic (28.9%) and adult, non-orthodontic (54.4%) samples by
25.5% that also closely matched the differences between pediatric orthodontic (45.2%)
and adult orthodontic (71.4%) samples at 26.2%. Finally, age-associated differences were
observed with the oral prevalence of SN between pediatric non-orthodontic (16.6%) and
adult orthodontic (5.5%) samples at−10.5, while differences between pediatric, orthodontic
(28%) and adult, orthodontic (12.5%) samples were approximately −15.5%.
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Figure 3. Age-associated difference in oral microbial prevalence. Decreased oral prevalence between
pediatric and adult samples was observed for Akkermansia muciniphila (AM) with the largest difference
observed between the non-orthodontic samples. In addition, other age-related changes were observed
with Fusobacterium nucleatum (FN), Porphyromonas gingivalis (PG) and Selenomonas noxia (SN), although
those differences were more similar in direction (positive or negative) and magnitude between
orthodontic and non-orthodontic samples.

To determine if the changes in oral prevalence were correlated with orthodontic
therapy, differences between the orthodontic and non-orthodontic samples were analyzed
(Figure 4). These data demonstrated that a large difference in the oral prevalence of AM
was observed between the pediatric non-orthodontic (42.3%) and pediatric orthodontic
(14.3%) samples of −28.0%. In addition, the difference in oral prevalence between adult,
non-orthodontic (21.3%) and adult, orthodontic (12.8%) samples was found to be −8.5%.

To determine if these orthodontic-associated differences were restricted to this oral
microbial population, data from other studies of Gram-negative FN, PG, and SN were also
plotted and graphed. These data also demonstrated differences between the orthodon-
tic and non-orthodontic samples, such as the differences in FN between the pediatric,
non-orthodontic (33%) and pediatric, orthodontic (38.1%) samples at 5.1% and between
the adult, non-orthodontic (62.1%) and adult, orthodontic (66.8%) samples at 4.7%. In
addition, differences were observed in the oral prevalence of PG between the pediatric,
non-orthodontic (28.9%) and pediatric, orthodontic (45.2%) samples by 16.3%, as well as
the adult, non-orthodontic (54.4%) and adult, orthodontic (71.4%) samples at 17%. Fi-
nally, orthodontic-associated differences were also observed with the oral prevalence of SN
between pediatric, non-orthodontic (16.6%) and pediatric, orthodontic (28%) samples at
11.4%, while differences between adult, orthodontic (5.5%) and adult, orthodontic (12.5%)
samples were approximately 7%.
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Figure 4. Orthodontic-associated differences in oral microbial prevalence. Decreased oral prevalence
between non-orthodontic and orthodontic samples was observed for Akkermansia muciniphila (AM)
with the largest differences observed between the pediatric samples. In addition, other orthodontic-
related changes were observed with Fusobacterium nucleatum (FN), Porphyromonas gingivalis (PG)
and Selenomonas noxia (SN), although those differences were more similar in direction (positive or
negative) and magnitude between adult and pediatric samples.

4. Discussion

The principal objective of this study was to evaluate the oral prevalence of Akkermansia
and to uncover any correlations with patient demographics, such as age, sex, or orthodontic
treatment status. This study successfully evaluated more than 225 clinical saliva sam-
ples, making it one of the largest and most comprehensive oral prevalence surveys ever
undertaken at this institution [24,30]. In addition, due to the lack of evidence regarding
oral prevalence of this organism, any studies that provide insight into the factors that
may influence the distribution within populations could help us to understand how and
when this microbial constituent colonizes the gastrointestinal tract—further modulating
the microbiome and health of the host [30,31].

The findings of this study demonstrating that Akkermansia appears to be most prevalent
among pediatric samples may be particularly relevant given that recent evidence suggest-
ing that microbial diversity including Akkermansia is strongly associated with metabolic
health in children, particularly among those who are overweight and obese [32,33]. In
addition, these results combined with the results of the only other study to date evaluating
microbial prevalence of Akkermansia among orthodontic patients, greatly increases the over-
all number of patients evaluated with and without orthodontic appliances [34]. Research
has demonstrated that orthodontic therapy shifts oral microbial composition particularly
among overweight and obese, adolescent patients [35]. These results may provide some of
the first observations of these shifts among this specific patient population. In fact, recent
studies from this group have found that body mass index (BMI) has been steadily increasing
among the pediatric and adolescent patient population, with most recent average BMI
ranging between 25.6 (overweight) and 31.3 (obese) [36,37].
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Additional studies from this group have evaluated the role of orthodontic brackets in
altering microbial populations, including Selenomonas noxia, Scardovia wiggsiae, Streptococcus
mutans and Porphyomonas gingivalis [23–25,38,39]. The comparative analysis undertaken in
this current study demonstrates that age-related changes in the oral prevalence of Gram-
negative Akkermansia are similar to that of Gram-negative Selenomonas (higher levels among
children than adults) but may exhibit opposite change with the presence of orthodontic
appliances (Akkermansia decreased, Selenomonas increased), confirmed by other reports
from this group reporting Selenomonas prevalence among orthodontic and non-orthodontic
patients [26,27]. Furthermore, the finding that Akkermansia prevalence decreased among
orthodontic patients while the periodontal pathogens Fusobacterium and Porphyromonas
increased, may suggest that the mechanisms that drive these changes may be separate
and distinct from changes in the periodontium and gingival crevices normally observed in
orthodontic therapy [28,29].

Despite the significance of these findings, there are several limitations of this study
which should also be considered. First, this is a retrospective study of clinical samples from
an existing biorepository that may have some pre-existing differences in demographics due
to the sample collection protocols of those initial study sample collection protocols [22–24].
In addition, most of the clinical patient population at this publicly funded university-
based dental school are low-income and minority patients that may also have additional
challenges and barriers to access and care that may have influenced the outcomes of this
study—although no clinical measures such as periodontal pocket depth (PPD), plaque index
(PI) or decayed-missing-filled teeth (DMFT) score were available among these retrospective
samples for analysis [25,38,39]. Some evidence from this institution also suggests that oral
microbial prevalence may be strongly shifting over time, which was not a primary outcome
variable analyzed for in the current study and may have influenced these findings [40]. Due
to the limited scale of this project and limited financial support for this preliminary study,
other methodologies such as next generation sequencing were not employed—although
this was unlikely to affect the outcome of this study. Finally, research has demonstrated
that medically compromised patients may also suffer from changes in microbial load and
may be an important patient population for future studies of this nature [41].

5. Conclusions

This study provides strong evidence that Akkermansia prevalence shifts with age, with
younger patients more likely to harbor detectable levels in saliva that could potentially
seed the gastrointestinal tract and influence gut microbial composition later in life. In
addition, this study found that presence of orthodontics dramatically shifted Akkermansia
prevalence among both pediatric and adult populations, which did not correlate with
shifts of other known periodontal pathogens. This provides some of the first evidence that
orthodontic therapy may be associated with changes in oral Akkermansia prevalence but
may be related to the shifts in other oral microbial communities rather than the known
changes in gingivitis and periodontitis typically associated with orthodontic treatment.
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