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Abstract: Poultry meat is considered the most important source of Campylobacter spp. Because of ris-
ing antimicrobial resistance in Campylobacter spp., this study investigated the antimicrobial resistance
of Campylobacter isolates from fresh broiler chicken meat originating from the Baltic countries sold in
Estonian retail settings. Additionally, human clinical isolates obtained from patients with Campylobacter
enteritis in Estonia were analysed. The aim of this study was to investigate the susceptibility of
Campylobacter spp. to nalidixic acid, ciprofloxacin, tetracycline, streptomycin, erythromycin and gen-
tamicin. The broth microdilution method with the EUCAMP2 panel was used for MIC determination
and antimicrobial mechanisms were analysed using WGS data. A total of 46 Campylobacter strains
were analysed, of which 26 (42.6%) originated from Lithuanian, 16 (26.2%) from Latvian, and 4 (6.6%)
from Estonian fresh broiler chicken meat. In addition, 15 (24.6%) Campylobacter strains of patients
with campylobacteriosis were tested. The antimicrobial resistance patterns of Campylobacter spp.
isolated from fresh broiler chicken meat samples of Estonian, Latvian and Lithuanian origin collected
in Estonian retail, and from patients with Campylobacter enteric infections, were determined. A total
of 46 (75%) of the isolates tested were C. jejuni and 15 (25%) were C. coli. Campylobacter resistance
was highest to nalidixic acid (90.2% of strains) and ciprofloxacin (90.2%), followed by tetracycline
(57.4%), streptomycin (42.6%) and erythromycin (6.6%). All strains were sensitive to gentamicin.
Additionally, antimicrobial resistance genes and point mutations were detected in 27 C. jejuni and 8 C.
coli isolates previously assigned as resistant with the phenotypic method. A high antibiotic resistance
of Campylobacter spp. in Lithuanian- and Latvian-origin broiler chicken meat and Estonian clinical
isolates was found. Similar antibiotic resistance patterns were found for broiler chicken meat and
human Campylobacter isolates.

Keywords: Campylobacter spp.; antibiotic resistance; multidrug resistance; fresh broiler chicken meat;
resistance genes

1. Introduction

Campylobacter is small spiral Gram-negative bacterial pathogen and the main agent
of campylobacteriosis, which is the most common zoonotic disease in the EU transmitted
to humans directly from animals, or through the foodborne route [1,2]. Recent source
attribution analysis has revealed the prevalent role of broiler chickens as the cause of
human Campylobacter infections in the Baltic countries [3]. Broilers and broiler chicken
meat are the most important sources of Campylobacter infections in humans [4–6]. Disease
caused by Campylobacter spp. is generally mild and self-limited. Nevertheless, it can cause
severe systematic infection in children/elderly people and humans with immunosuppres-
sion, and also—in very rare cases—Guillan-Barré syndrome [7,8]. Such occasions often
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require therapy with first-line antibiotics such as fluoroquinolones, e.g., ciprofloxacin, and
macrolides, e.g., erythromycin [9–14]. Over time, Campylobacter has acquired resistance to
these antibiotics which are considered critically important for the treatment of Campylobacter
infections [11,15,16]. The increasing resistance of thermophilic Campylobacter spp. to an-
tibiotics could lead to detrimental effects on public health [2,17–19]; therefore, the World
Health Organization has classified many of these antimicrobials as critically important for
human medicine [20].

Previous studies [21,22] have identified different levels of Campylobacter-contaminated
poultry meat in the Baltic states, and the proportion of antimicrobial-resistant Campylobacter spp.
strains in poultry meat has been found to be very high in both Lithuania and Latvia [23,24].
This is affecting public health and needs to be addressed.

This study aimed to determine the proportions of antimicrobial-resistant Campylobacter
strains from fresh broiler chicken meat of Estonian, Latvian and Lithuanian origin at
the Estonian retail level, and among strains of human clinical infections. Additionally,
resistance pheno- and genotypes were determined and compared. The results of this work
will make it possible to assess the trends in antimicrobial resistance over a long period and
determine related public health risks.

2. Materials and Methods
2.1. Campylobacter Isolates

In total, 61 Campylobacter isolates were studied, of which 46 (75%) were C. jejuni and
15 (25%) C. coli. From the broiler chicken meat isolates, 34 (73.9%) were C. jejuni and 12
were (26.1%) C. coli. Among the clinical isolates, 12 (80%) and 3 (20%) were C. jejuni and
C. coli, respectively. All isolates were obtained from a previous study on Campylobacter spp.
in Estonia [25]. The samples consisted of all Campylobacter strains isolated from Estonian
(n = 4), Latvian (n = 16) and Lithuanian (n = 26) fresh broiler chicken meat products in
Estonian retail from our previous study [25]. Additionally, isolates from human patients
(n = 15) originating from ambulatory and hospitalized patients from north and north-
eastern Estonia were obtained from East-Tallinn Central Hospital and Rakvere Hospital
were included. Campylobacter detection from broiler chicken meat samples was performed
according to ISO 10272-1:2017 [26], as described by Tedersoo et al. [25]. In brief, for
Campylobacter spp. detection, 10 g of broiler chicken meat sample was transferred into 90 mL
Preston enrichment broth and incubated in microaerobic conditions at 41.5± 0.5 ◦C for 24 h.
Then, a 10 µ loopful of Preston enrichment broth was inoculated onto mCCD agar medium
(Oxoid Ltd.; Basingstoke, Hampshire, UK). All plates were incubated in microaerobic
conditions at 41.5 ◦C ± 0. 5 ◦C for 48 h. Typical Campylobacter colonies on mCCDA plates
were streaked on Columbia blood agar (Oxoid Ltd.; Basingstoke, Hampshire, UK), which
were incubated for 24 h at 41.5 ◦C ± 0.5 ◦C. Additional confirmation tests included Gram
staining, motility analysis, and oxidase and catalase tests were performed.

2.2. Antimicrobial Susceptibility Testing

Minimal inhibitory concentration (MIC) values for nalidixic acid, ciprofloxacin,
tetracycline, streptomycin, erythromycin and gentamicin were determined by using the
broth microdilution method with the EUCAMP2 panel (TREK diagnostic Systems Ltd.,
East Grinstead, UK) in accordance with the manufacturer’s protocols.

The cut-off values recommended by the European Committee on Antimicrobial Sus-
ceptibility Testing were used for C. jejuni and C. coli in accordance with the European
Commission implementing decision 2013/652/EU on the monitoring and the reporting
of antimicrobial resistance in zoonotic and commensal bacteria. C. jejuni was assigned
resistant when MIC values equated to: erythromycin > 4 µg/mL, ciprofloxacin > 0.5 µg/mL,
tetracycline > 1 µg/mL, streptomycin > 4 µg/mL, nalidixic acid > 16 µg/mL or
gentamicin > 2 µg/mL. C. coli was assigned resistant when MIC values equated to:
erythromycin > 8 µg/mL, ciprofloxacin > 0.5 µg/mL, tetracycline > 2 µg/mL,
streptomycin > 4 µg/mL, nalidixic acid > 16 µg/mL or gentamicin > 2 µg/mL.
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Analyses were performed in the Veterinary and Food Laboratory of Estonia, which is
also the national reference laboratory.

2.3. Whole-Genome Sequencing and Analysis of Resistant Genes

Molecular analysis, whole-genome sequencing and bioinformatics were performed as
described by Tedersoo et al. [25]. In brief, the sequencing was carried out on an Illumina
NextSeq500 System (Illumina, Inc.; San Diego, CA, USA) using the NextSeq 500/550 High
Output Kit v2.5 (300 Cycles) in paired-end 2 × 151 bp mode. All genome sequences were
submitted to the C. jejuni/C. coli multilocus sequence typing (MLST) database [27].

Antimicrobial resistance genes and point mutations of C. jejuni (n = 27) and C. coli
(n = 8) isolates previously assigned as resistant with the MIC test were detected in the
subset of isolates. MIC-sensitive campylobacters were not included in the analysis and
only genotypic resistance mechanisms corresponding to phenotypic AMR were identified
and reported in present study. AMRFinderPlus v3.10.23 with database v2021-12-21.1
(downloaded 3 March 2022) was used according to the default settings, except for the
organism “Campylobacter” and the “plus” options [28,29]. Genes with coverage of less than
80% were not included in the analysis.

2.4. Statistical Analysis

MS Excel 2010 software (Microsoft Corporation; Redmond, WA, USA) was used
to record the results. The Chi-squared test was used to test for statistically significant
associations between the antimicrobial resistance of Campylobacter spp. in fresh broiler
chicken meat from different sources. The results were considered statistically significant
for p values of ≤0.05.

3. Results

The results showed that a total of six (9.8%) isolates were sensitive to all the tested
antibiotics: four isolates from Estonian-origin chicken meat and two human Campylobacter
strains. Campylobacter isolates of broiler chicken meat origin showed the highest resistance
to quinolones, tetracycline and streptomycin. In addition, clinical Campylobacter isolates
were found to be most resistant against the same antibiotics. All Campylobacter strains
were sensitive to gentamicin (Table 1). Significant differences (p < 0.001) were found in
nalidixic acid, ciprofloxacin and tetracycline resistance among Estonian versus Latvian and
Lithuanian Campylobacter isolates from fresh broiler chicken meat. The Estonian broiler-
chicken-meat-origin Campylobacter isolates were significantly (p < 0.001) less resistant
to fluoroquinolones than those strains which originated from Latvian and Lithuanian
broiler chicken meat and Estonian human patients. There were no differences detected
in streptomycin, erythromycin or gentamicin resistance between Campylobacter broiler
chicken meat isolates of Estonian versus Latvian and Lithuanian origin. Resistance in
the human isolates and broiler chicken meat isolates of Latvian (p = 0.13) and Lithuanian
(p = 0.06) origin did not differ significantly. A total of 55 (90.2%) isolates were resistant
to one or more antibiotics: 10 (16.4%) were resistant to one antibiotic, 28 (45.9%) were
resistant to at least two antibiotics not belonging to the same group of antimicrobials
(fluoroqinolones and quinolone (ciprofloxacin, nalidixic acid), macrolides (erythromycin),
tetracyclines (tetracycline) and aminoglycosides (streptomycin, gentamicin)), and 17 (27.9%)
isolates were resistant to three or more antibiotics not belonging to the same group. The
proportion of isolates resistant to C. jejuni and C. coli was 87% and 100%, respectively.
Antimicrobial resistance to one or more antimicrobial was significantly higher (p < 0.001) in
the Campylobacter isolates from the broiler chicken meat of Latvian and Lithuanian origin
compared to that of Estonian origin. It was found that 27.9% of isolates were multidrug-
resistant, of which 11 isolates (18.0%) were of Lithuanian and 2 (3.3%) of Latvian broiler
chicken meat origin, and 4 (6.6%) were from Estonian human patients. Multidrug resistance
was defined as resistance to three or more antibiotics not belonging to the same group.
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All Latvian and Lithuanian isolates originating from broiler chicken meat were resistant
to fluoroquinolones.

Table 1. Resistance of C. jejuni and C. coli isolates of different origins to antibiotics.

Antibiotic
Resistant Campylobacter spp. Number of Isolates Depending on Origin/Total Isolates Tested (%)

Estonia Latvia Lithuania Human

Nalidixic acid 0/4 (0) 16/16 (100) 26/26 (100) 13/15 (86.7)
Ciprofloxacin 0/4 (0) 16/16 (100) 26/26 (100) 13/15 (86.7)
Tetracycline 0/4 (0) 3/16 (18.8) 20/26 (76.9) 12/15 (80.0)

Streptomycin 0/4 (0) 11/16 (68.8) 11/26 (42.3) 4/15 (26.7)
Erythromycin 0/4 (0) 1/16 (6.3) 3/26 (11.5) 0/15 (0)

Gentamicin 0/4 (0) 0/16 (0) 0/26 (0) 0/15 (0)

The resistance phenotypes of Campylobacter isolates are presented in Table 2. The
most prevalent antimicrobial resistance pattern was Cip/Nal/Tet, with 55.3% and 21.7% in
human and chicken meat isolates, respectively. Other common resistance phenotypes were
Cip/Nal/Tet/Str and Cip/Nal/Str.

Table 2. Campylobacter-resistant phenotypes.

Antibiotic Resistance Phenotype a,b Campylobacter spp. Number of Strains (%)

Estonia (n = 4) Latvia (n = 16) Lithuania (n = 26) Human (n = 15)

Cip/Nal/Tet/Str/Ery - - 3 (11.5) -
Cip/Nal/Tet/Str - 2 (12.5) 8 (30.8) 4 (26.7)

Cip/Nal/Tet - 1 (6.2) 9 (34.6) 8 (53.3)
Cip/Nal/Str - 9 (56.3) - -
Cip/Nal/Ery - 1 (6.2) - -

Cip/Nal - 3 (18.8) 6 (23.1) 1 (6.7)

Resistant to one or more antibiotics 0 (0) 16 (100) 26 (100) 13 (86.7)
Susceptible to all antibiotics 4 (100) - - 2 (13.3)

Multidrug resistant c 0 (0) 2 (12.5) 10 (38.5) 4 (26.7)

Total number of tested isolates 4 (100) 16 (100) 26 (100) 15 (100)
a Tested antibiotics: NAL—nalidixic acid; Cip—ciprofloxacin; TET—tetracycline; STR—streptomycin;
ERY—erythromycin; GEN—gentamicin. b The number of resistant isolates was 55. The phenotypes of the
antibiotic-resistant isolates were calculated based on 55 isolates. c Multidrug resistant is defined as strain resistant
to three or more unrelated (not belonging to the same class of antibiotics) antimicrobials.

MIC values of Campylobacter are shown in Table 3. Very high minimum inhibitory
concentrations were found for four erythromycin-resistant, 26 ciprofloxacin-resistant,
31 tetracycline-resistant, 51 nalidixic acid-resistant and 26 streptomycin-resistant
Campylobacter isolates with MIC values≥ 128 µg/mL,≥16 g/mL,≥64 µg/mL,≥64 µg/mL
and ≥16 µg/mL, respectively.

Altogether, 28 C. jejuni and 7 C. coli isolates, of which 29 were of broiler chicken
meat origin and 6 were of human origin, previously assigned as resistant with the MIC
test, were sequenced and all their antimicrobial resistance genes and point mutations
are presented in Table 4. In total, 29 Campylobacter isolates from broiler chicken meat
and 6 Campylobacter isolates of human origin showed resistance to quinolones, and all
contained a point mutation T86I in the gyrA gene. The genotypic antibiotic resistance
against tetracyclines (tetO) was 62% and 83% in broiler chicken meat (n = 18) and human
isolates (n = 5), respectively. A total of 52% of broiler chicken meat isolates (n = 15) showed
resistance against aminoglycosides and macrolides. The resistance against macrolides in
human isolates was 50% (n = 3).
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Table 3. The minimum inhibitory concentrations of C. jejuni and C. coli isolates (n = 61).

No. of Isolates AA d No. of Isolates with MIC Value (µg/mL) of a

0.12 0.25 0.5 1 2 4 8 16 32 64 128

46 b

ERY - - - 40 2 -
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lates was 50% (n = 3). 

Table 4. Comparison of C. jejuni and C. coli phenotypic and genotypic antibiotic resistance, includ-
ing mechanisms, patterns, sources and origin. 

Antibiotic (Class) 
Phenotype/Genotype 

(n/n) 
Mechanism (n) Pattern (n) a Source (n) Country (n: j/c) b 

Streptomycin 
(Aminoglycosides) 

16/16 

aadE (5) c CIP/NAL/TET/STR (5) Chicken (5) Lithuania (5: 4j/1c) 
aadE-Cc (3) CIP/NAL/TET/STR/ERY (3) Chicken (3) Lithuania (3: 3c) 

aph(3’)-IIIa (8) 

CIP/NAL/STR (5) Chicken (5) Latvia (5: 5j) 

CIP/NAL/TET/STR (3) 
Chicken (2) 

Latvia (1: 1j) 
Lithuania (1: 1j) 

Human (1) Estonia (1: 1j) 
Erythromycin 
(Macrolides) d 

4/4 23S A2075G (4) 
CIP/NAL/TET/STR/ERY (3) Chicken (3) Lithuania (3: 3c) 

CIP/NAL/ERY (1) Chicken (1) Latvia (1: 1c) 

Ciprofloxacin/ 
Nalidixic acid 
(Quinolones) 

35/35 gyrA T86I (35) 
CIP/NAL/TET (12) 

Chicken (8) 
Lithuania (7: 6j/1c) 

Latvia (1: 1j) 
Human (4) Estonia (4: 3j/1c) 

CIP/NAL/TET/STR (8) Chicken (7) 
Lithuania (6: 5j/1c) 

Latvia (1: 1j) 

- - - -

CIP 2 - - - - 1 7 5 (2) - - -

TET - - 3 -
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Table 4. Comparison of C. jejuni and C. coli phenotypic and genotypic antibiotic resistance, including
mechanisms, patterns, sources and origin.

Antibiotic (Class) Phenotype/Genotype (n/n) Mechanism (n) Pattern (n) a Source (n) Country (n: j/c) b

Streptomycin
(Aminoglycosides) 16/16

aadE (5) c CIP/NAL/TET/STR (5) Chicken (5) Lithuania (5: 4j/1c)
aadE-Cc (3) CIP/NAL/TET/STR/ERY (3) Chicken (3) Lithuania (3: 3c)

aph(3’)-IIIa (8)

CIP/NAL/STR (5) Chicken (5) Latvia (5: 5j)

CIP/NAL/TET/STR (3) Chicken (2) Latvia (1: 1j)
Lithuania (1: 1j)

Human (1) Estonia (1: 1j)

Erythromycin
(Macrolides) d 4/4 23S A2075G (4) CIP/NAL/TET/STR/ERY (3) Chicken (3) Lithuania (3: 3c)

CIP/NAL/ERY (1) Chicken (1) Latvia (1: 1c)

Ciprofloxacin/
Nalidixic acid
(Quinolones)

35/35 gyrA T86I (35)

CIP/NAL/TET (12) Chicken (8) Lithuania (7: 6j/1c)
Latvia (1: 1j)

Human (4) Estonia (4: 3j/1c)

CIP/NAL/TET/STR (8) Chicken (7) Lithuania (6: 5j/1c)
Latvia (1: 1j)

Human (1) Estonia (1: 1j)

CIP/NAL (6) Chicken (5) Lithuania (4: 4j)
Latvia (1: 1c)

Human (1) Estonia (1: 1j)
CIP/NAL/STR (5) Chicken (5) Latvia (5: 5j)

CIP/NAL/TET/STR/ERY (3) Chicken (3) Lithuania (3: 3c)
CIP/NAL/ERY (1) Chicken (1) Latvia (1: 1c)

Tetracycline
(Tetracyclines) 23/23 tetO (23)

CIP/NAL/TET (12) Chicken (8) Lithuania (7: 6j/1c)
Latvia (1: 1j)

Human (4) Estonian (4: 3j/1c)

CIP/NAL/TET/STR (8) Chicken (7) Lithuania (6: 5j/1c)
Latvia (1: 1j)

Human (1) Estonia (1: 1j)
CIP/NAL/TET/STR/ERY (3) Chicken (3) Lithuania (3: 3j)

a Tested antibiotics: NAL—nalidixic acid; CIP—ciprofloxacin; TET—tetracycline; STR—streptomycin;
ERY—erythromycin. Bold indicates concurrence between genotypic and phenotypic resistance. b j—C. jejuni;
c—C. coli. c One isolate also had the aad9 gene. d 50S L22 (A103V) modification was detected in 14 erythromycin
MIC-sensitive isolates.
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4. Discussion

As stated in the European Union Regulation No. 1831/2003, antimicrobials as growth
promoters in food animal production have been banned since 2006 [30]. Antimicrobials are
still used intensively in poultry for therapy and infection prophylaxis, which has caused the
spread of resistant strains to humans [31,32]. However, some countries are showing positive
trends, for example, antimicrobial use in poultry in Scandinavian countries is generally
low. Denmark has declared carbapenems, third- and fourth-generation cephalosporins,
fluoroquinolones and colistin as ‘critically important’, and the use of these antimicrobials is
restricted [33]. Based on the report of DANMAP [33], cephalosporins and colistin are not
used in Danish poultry production and the use of fluoroquinolones is close to zero.

The situation in Swedish broiler production is very good since the use of antibiotics is
infrequent [34]. Consequently, the prevalence of resistant bacteria isolated from animals in
Sweden is low [35,36].

FINRES-Vet [37] reports that the occurrence of antibiotic-resistant Campylobacter spp.
from broilers has been at a low level. Compared to previous years, in 2020, the proportion
of quinolone-resistant isolates dropped and the resistance to tetracycline, erythromycin,
gentamicin or streptomycin remained low.

The annual NORM-VET 2020 report showed improvements of antimicrobial resistance
in Norway [38]. As stated in this report, the prevalence of antimicrobial resistance among
C. jejuni isolates from broilers is low; 90.8% of isolates were susceptible to all tested antimi-
crobials. Although the isolates were commonly resistant to quinolones and streptomycins,
there were no multidrug-resistant isolates detected [38].

The rapid spread of antimicrobial resistance has been identified across the world and it
is associated with the use of antimicrobials [39]. According to the European Food Safety Au-
thority and the European Centre for Disease Prevention and Control (EFSA and ECDC) [40],
in 2019, ciprofloxacin resistance in human Campylobacter isolates was high to extremely
high (at the EU level it was 61.5% and 61.2% for C. jejuni and C. coli, respectively). The
resistance to erythromycin was low (1.5% and 12.9% for C. jejuni and C. coli, respectively).
C. coli erythromycin resistance was extremely high in Portugal (73.1%). The tetracycline
resistance proportions were 47.2% and 66.9% for C. jejuni and C. coli, respectively [40].
According to EFSA and ECDC [40], the resistance to gentamycin in 2019 was low. In
China, the prevalence of resistance in Campylobacter from human patients to ciprofloxacin,
tetracycline and nalidixic acid is very high (89.7%, 74.6% and 69.0%, respectively), due to
the extensive use of these antimicrobials without prescription [41]. In Ireland, compared to
the early 2000s, tetracycline resistance among Campylobacter spp. in broilers has risen by
approximately 10% [42]. In Portugal and Spain, Campylobacter spp. resistance to tetracy-
cline in broilers is high: between 90 and 100% [43,44]. In a study conducted in Lithuania,
Aksomaitiene et al. [23] found that C. jejuni isolates from human clinical cases were most
frequently resistant to ciprofloxacin (88.1%), but all human isolates were sensitive to gen-
tamicin and erythromycin. In our study, all the Estonian-origin broiler chicken meat
Campylobacter isolates (n = 4) were sensitive to all of the studied antimicrobials. The
small number of isolates was related to the very low Campylobacter prevalence (1.8% from
163 samples) in Estonian-origin broiler chicken meat [25]. The most frequently observed
resistance (86.7%) of human strains was against ciprofloxacin and nalidixic acid. This high
antimicrobial resistance among human strains probably indicates that ciprofloxacin and
nalidixic acid would not be suitable for human Campylobacter infection treatment. In Esto-
nia, the first choice of antibiotic treatment for human patients with severe Campylobacter
infection is azithromycin, followed by ciprofloxacin as the alternative choice. In the present
study, the proportions of Campylobacter isolates from fresh broiler chicken meat that were
resistant to ciprofloxacin and erythromycin, all of Latvian and Lithuanian origin, were
91.3% and 8.7%, respectively. According to the EFSA and ECDC [40], in 2019, the highest
levels of resistance in broiler meat were for nalidixic acid and ciprofloxacin (64–90%),
and also for tetracycline (43–53%). A previous Estonian study by Mäesaar et al. [45]
found similarly high proportions of fluoroquinolone resistance among Latvian (87.5%) and
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Lithuanian (84.8%) Campylobacter isolates originating from broiler chicken meat. In the
present study, fluoroquinolone resistance of Latvian and Lithuanian isolates originating
from broiler chicken meat was 100%, which probably reflects the wide use of these an-
tibiotics in poultry production in these countries. The use of synthetic fluoroquinolone
(enrofloxacin) for the treatment of respiratory and gastrointestinal infections in poultry
has been shown to induce fluoroquinolone resistance in Campylobacter spp. [46]. Similarly
to the results of the present study, Aksomaitiene et al. [23] found that all C. jejuni iso-
lates from broiler products from Lithuanian retail settings were resistant to ciprofloxacin.
Meistere et al. [24] reported that Latvia has one of the highest proportions of fluoro-
quinolone resistance among C. jejuni (97.5%) in broilers. Furthermore, Kovalenko et al. [47]
found a high proportion of Campylobacter isolates from Latvian broilers resistant to
fluoroquinolones (100%), ciprofloxacin (100%), nalidixic acid (87.9%) and streptomycin
(39.6%). In the present study, fluoroquinolone resistance among human isolates was 86.7%,
and 91.3% in broiler meat. Mäesaar et al. [45] found resistance to fluoroquinolones to
be higher for humans (67.9%) than for broilers (60.2%). Multidrug-resistant strains were
co-resistant to nalidixic acid and ciprofloxacin. Several studies in Canada and the USA
have reported Campylobacter spp. ciprofloxacin resistance in up to 47% of Campylobacter
strains [18,48,49]. In addition to high fluoroquinolone resistance among broiler chicken
meat isolates, the present study observed high tetracycline resistance among Lithuanian
broiler chicken meat isolates (76.9%) and high streptomycin resistance among Latvian
and Lithuanian broiler chicken meat isolates: 68.8% and 42.3%, respectively. Tetracy-
cline resistance among human isolates was 80.0%, which matched with the tetracycline
resistance found among Lithuanian broiler chicken meat isolates (76.9%). In Table 4,
the phenotypic resistance pattern and related genotypic mechanisms (gene, point mu-
tation) are shown. All phenotypic resistance found for aminoglycosides, macrolides,
quinolones and tetracyclines determined with the MIC test had corresponding genotypic
antibiotic resistance mechanisms. In previous studies, aad9, aadE, aadE-Cc and aph(3′)-IIIa
resistance genes [50–53] associated with aminoglycoside resistance were detected from
all isolates with corresponding phenotypic resistance. For tetracycline resistance only,
the tetO [54] gene was detected from isolates showing phenotypic resistance to tetra-
cycline in the MIC test. The latter has also been found in several other studies [54].
Two point mutations in 23S (A2075G) and gyrA (T86I) genes associated with erythromycin
and quinolone resistance [52,55] in campylobacters were also found in our study. In
addition, a previous study conducted in Estonia found gyrA (T86I) mutation in quinolone-
resistant C. jejuni ST5 isolates [56]. Additionally, 50S ribosomal protein L22 modification
(A103V) [31] was detected in 14 isolates with no corresponding phenotypic erythromycin
(macrolide) resistance found. The majority of isolates with matching geno- and phenotypic
resistance had high MIC, and often exceeded the maximum concentration ranges.

High Campylobacter resistance in chicken meat can be a key risk factor for the treatment
of severe human campylobacteriosis cases in Estonia. The high proportions of resistance
and similar antimicrobial pheno- and genotypes found from imported broiler chicken meat
products and for Estonian human clinical isolates indicate that the consumption of imported
broiler chicken meat might pose the risk of Campylobacter to the Estonian population.

The application of a vertically integrated management system and strict biosecurity
and biosafety measures at all levels of broiler chicken production may be the reason for
the very low Campylobacter prevalence and counts as well as low antimicrobial resistance
among Campylobacter strains isolated from the Estonian-origin fresh broiler chicken meat.

5. Conclusions

Among the Campylobacter strains isolated from broiler meat in 2018–2019, a total of
90.2% were resistant to one or more kind of antibiotics. Multidrug resistance was found in
27.9% of isolates. Campylobacter isolates from Estonian fresh chicken meat were sensitive to
all of the tested antibiotics. Isolates of Latvian and Lithuanian origin were 100% resistant to
one or more of the antibiotics, and 86.7% of the Estonian human strains were resistant to
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one or more of the antibiotics. There was high antibiotic resistance in Campylobacter spp.
in Lithuanian and Latvian isolates from fresh broiler chicken meat in the Estonian retail
market. There was also a high antibiotic resistance in Campylobacter spp. of human origin.
This suggests that broiler chicken meat poses a potential risk to humans as it is well known
that broiler chicken meat is a main source of human campylobacteriosis. To minimize the
emergence of Campylobacter resistance, it is crucially important to follow common policies
and implement good practices on antimicrobial usage at the farm level. Resistant bacteria
in the food production chain can easily reach the consumer and pose a serious risk to
public health.
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