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Abstract: To investigate the effect of the maternal gut microbiome on fetal endochondral bone
formation, fetuses at embryonic day 18 were obtained from germ-free (GF) and specific-pathogen-free
(SPF) pregnant mothers. Skeletal preparation of the fetuses’ whole bodies did not show significant
morphological alterations; however, micro-CT analysis of the tibiae showed a lower bone volume
fraction in the SPF tibia. Primary cultured chondrocytes from fetal SPF rib cages showed a lower cell
proliferation and lower accumulation of the extracellular matrix. RNA-sequencing analysis showed
the induction of inflammation-associated genes such as the interleukin (IL) 17 receptor, IL 6, and
immune-response genes in SPF chondrocytes. These data indicate that the maternal gut microbiome
in SPF mice affects fetal embryonic endochondral ossification, possibly by changing the expression of
genes related to inflammation and the immune response in fetal cartilage. The gut microbiome may
modify endochondral ossification in the fetal chondrocytes passing through the placenta.

Keywords: maternal microbiome; endochondral ossification; fetal chondrocytes

1. Introduction

The gut microbiome living in our body has recently been considered to act as one of our
organs [1,2]. As well as being involved in the maintenance of homeostatic processes in the
body, disturbances in the gut microbiome are closely linked to inflammatory diseases [3–5].
Furthermore, the gut microbiome can manage our health and even our behavior [6,7].

In recent years, the role of the gut microbiome in a single individual and the influence
of the intestinal microbiome over subsequent generations, such as in the maternal gut
microbiome, has attracted much attention. The composition of the maternal gut micro-
biome changes during pregnancy [8–10], and the gut microbiome of pregnant women with
gestational diabetes is more diverse than that of normal pregnant women [11]. Moreover,
analyzing the mechanistic interactions between the perinatal microbiome, immune system,
and nervous system has been continuously intensified [12]. Under germ-free (GF) condi-
tions or antibiotic treatment during fetal or postnatal periods, the development of immune
tissue and the expression of inflammatory factors in the nervous tissue are affected [13,14],
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suggesting that the maternal gut microbiome has a significant influence on the immunologi-
cal and neurological development of the fetus. The effect of the maternal gut microbiome in
children after birth has also been suggested. Maternal dietary intake has also been reported
to reduce asthma incidence in children [15,16]. In addition, using a high-fat model of GF
mice, the maternal gut microbiome was found to affect future metabolic functions in the
offspring [17]. These findings suggest that the maternal gut microbiome has an impact, via
the placenta, on the immune and metabolic function building of the offspring.

The gut microbiome is also known to be associated with bone homeostasis and bone
disease. The first report in 2012 showed that osteoclast differentiation is inhibited and
bone mass is increased under GF conditions [18]. Furthermore, it has been suggested that
short-chain fatty acids secreted by the gut microbiome may contribute to osteogenesis by
inhibiting osteoclast activity and increasing osteoblast activity [19,20]. Our group has also
reported an association between the gut microbiome and bone formation [21]; we found that
the microbiome enhances both osteoclast and osteoblast activities by changing expression
levels of transcription factors such as Forkhead box g1 and Gata-binding protein 3. As
mentioned above, it is becoming clear that the presence or absence of the maternal gut
microbiome can affect fetal immunity and nerve tissue; however, most of the reports on the
relationship between the gut microbiome and bone development have focused on a single
generation [22,23].

In the present study, we focused on the effects of the maternal gut microbiome on fetal
bone growth during the embryonic period, particularly endochondral bone formation, by
analyzing embryonic cartilage in the presence or absence of the maternal gut microbiome
and compared our results with previous reports obtained with adult mice.

2. Materials and Methods
2.1. Animals

Fetuses at embryonic day 18 from pregnant germ-free (GF) and specific-pathogen-free
(SPF) IQI/Jic mice were obtained from the Central Institute of Experimental Animals (CIEA,
Kanagawa, Japan). The mice were bred and maintained at the CIEA. The conditions for
breeding mice have been described previously [21]. Pregnant GF and SPF female mice were
euthanized at 18 days of age by cervical luxation. Thirteen GF and twelve SPF embryos
were collected with placentas by cesarean section under sterile conditions and transported
to Okayama University. The fetus and placentas were carefully separated, removing extra
blood vessels. The rearing of the mice was conducted according to the institutional rules
following approval from the Animal Experiment Committee of the Central Institute for
Experimental Animals in Japan (18069A).

2.2. Skeletal Preparation

Embryos were fixed overnight in 95% ethanol after removing all the skin and internal
organs for 24 h at 4 ◦C. Cartilaginous parts were stained in Alcian Blue solution (150 mg/L
of Alcian Blue, 20% acetic acid, 76% ethanol, 4% water) overnight, and rinsed with 95%
ethanol for 3 h to remove excess dye, and the tissues were transparentized with 2% KOH.
The bony calcified tissues were then stained with 50 mg/L of alizarin red solution con-
taining 1% KOH. Finally, a 20% glycerol solution containing 1% KOH was used to remove
soft tissues.

2.3. Micro-CT Analysis

Tibias from embryos were fixed to be analyzed using Scanco medical AG uCT50
(Scanco Medical, Brüttisellen, Switzerland) by JEOL (JEOL Ltd., Tokyo, Japan). The mea-
surement parameters were as follows: voltage, 45 kV; current, 800 kA; resolution, 2 µm;
exposure time, 1500 ms. Calcified areas (%) in the trabecular bones were measured using
ImageJ. The tibial transverse sections taken with microCT were binarized, and the calcified
cancellous bone area and total section area were measured. Calcified area (%) = trabecular



Microorganisms 2022, 10, 1000 3 of 10

bone area/total cross-sectional area. Five identical locations were selected for each group,
and means ± standard deviations were calculated.

2.4. Primary Cell Culture

Rib cage chondrocytes were isolated and pooled from 9 GF embryos and 9 SPF
embryos, as previously described [24,25]. In brief, rib cartilage was collected from fetuses
under a microscope and digested with 0.25% trypsin at 37 ◦C for 5 min to remove soft
tissue. The cartilage was then digested with 2 mg/mL of collagenase A (Roche, Basel,
Switzerland) at 37 ◦C for 2 or 3 h to liberate chondrocytes. Harvested chondrocytes were
cultured in αMEM + 10% FBS + antibiotics at 37 ◦C under 5% CO2 and used for further
analysis. For Alcian Blue staining, cultured cells were washed with PBS and fixed in 95%
ethanol. The cells were then stained with 1% Alcian Blue stain containing 0.1 M HCI.

2.5. Cell Proliferation

Cell proliferation was quantified using the CellTiter 96 One Solution Cell Assay (MTS;
Promega, Madison, WI, USA), according to the manufacturer’s instructions. Primary
chondrocytes were seeded on 96-well plates. At 3, 9, and 14 days of culture, cells were
washed with PBS and incubated with 80 µL of CellTiter 96 solution. Every hour for 4 h,
the absorbance at 490 nm was monitored with a 96-well plate reader (SH1000, Corona,
Hitachinaka, Japan), and the absorbance was compared at each time point.

2.6. RNA Preparation and RNA Sequence

The RNA preparation was as previously described [21]. In brief, total RNA was
isolated from the chondrocyte using Trizol reagent (Invitrogen, Waltham, MA, USA),
according to the manufacturer’s instructions. Total RNA was further purified by RNeasy
Mini Kit (Qiagen, Hilden, Germany), according to the manufacturer’s instructions. Isolated
RNA was quantified by measuring the absorbance at 260 nm, and purity was determined by
the 260/280 nm absorbance ratio. The library construction and RNA-seq were performed
by DNA Chip Research Inc. (Tokyo, Japan). The NEBNext Ultra II Directional RNA
Library Prep kit for Illumina (New England BioLabs Inc., Ipswich, MA, USA) and NEBNext
Poly(A) mRNA Magnetic Isolation Module (New England BioLabs Inc., Ipswich, MA,
USA) were used for library preparation, according to the manufacturer’s protocol. The
libraries of the samples were sequenced using NextSeq500 (Illumina, San Diego, CA,
USA) in 75-base-pair (bp) single-end reads. The output raw reads were processed for
quality control using FastQC. After read-trimming, the acquired reads were aligned to the
reference genome using STAR (Spliced Transcripts Alignment to a Reference), and BAM
files were created. The mouse genome UCSC mm10 obtained from Illumina iGenomes (http:
//jp.support.illumina.com/sequencing/sequencing_software/igenome.html, accessed on
20 September 2019) was used for mapping. To analyze differences in gene expression,
k-mean clustering and enrichment analysis were performed using iDEP. 95 [26].

2.7. Real-Time PCR

Real-time PCR was performed as previously described [21]. The primer sequences
are listed below (Table 1). The mRNA levels were standardized with each mRNA level of
Gapdh for each sample [21].

Table 1. Primers used for real-time PCR analysis.

Gene F/R Primer Sequences (5′–3′)

Agg F gttcctgcacagcttcacaa
R aaacagcccagtgaccattc

Col2a1
F gaactgcaacacattgtggg
R attgatggtgaggtgtgcaa

http://jp.support.illumina.com/sequencing/sequencing_software/igenome.html
http://jp.support.illumina.com/sequencing/sequencing_software/igenome.html
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Table 1. Cont.

Gene F/R Primer Sequences (5′–3′)

IL6
F agttgccttcttgggactga
R cagaattgccattgcacaac

IL17re
F cagtaacagtgacgctagac
R acccactagagcggtgagag

IL13ra2
F gcaaaggaggacaaagaggtc
R gatttagtgtgctgaaagctctactc

Gapdh F tgtgatgggtgtgaaccacgagaa
R gagcccttccacaatgccaaagtt

2.8. Statistical Analysis

Data were presented as the means ± standard deviation. Student’s unpaired t-tests
were used to compare GF and SPF mice to determine whether there were any significant dif-
ferences. All calculations were performed using the statistical software package SPSS 22.0
for Windows (SPSS Japan, Tokyo, Japan). A p-value of less than 0.05 was considered
statistically significant [21,27].

3. Results
3.1. Comparison of Fetal and Placental Size from GF and SPF Embryos

To explore the effects of the maternal gut microbiome on fetal physiology, we first
compared the fetal physiology and placenta weight. The length of the fetus was measured
from the top of the head to the bottom of the rump. Significant differences in fetal head
length and body weight were not observed between germ-free (GF) and specific-pathogen-
free (SPF) fetuses, whereas the placental weight was significantly greater in SPF mice
than in GF mice, indicating more blood supply to the fetus from the SPF uterus of the
mother (Figure 1).
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Figure 1. Size of GF and SPF fetus and their placental size. Comparison of body height (A) and
weight of GF and SPF embryos (B). (A) The length of the crown-rump length of each fetus were
measured. (B) Measurement of the weight of each fetus after caesarean section. (C) Measuring
placental weight after caesarean section. Fetuses at embryonic day 18 (E18) were collected from GF
and SPF pregnant mothers. The data are presented as the mean ± SD (n = 8, t-test, * p < 0.05).

3.2. Less Mineralization in Fetal SPF Bone

We reported that the bone mass in SPF mice is lower than that of GF mice in mature
mice [18]. In this study, the fetal skeleton was further examined to determine whether
differences in the development of the body mass and size were observed at birth or in the
fetal period. First, the differences in skeletons between GF and SPF embryos were checked
by transparent skeletal preparations, but no significant differences were observed in the



Microorganisms 2022, 10, 1000 5 of 10

calcified bone and cartilage between the two groups (Figure 2A). We also performed a micro-
CT analysis of the fetal tibia to monitor the ossification of the fetal bone (Figure 2B,C). The
bone volume fraction [bone volume (BV)/total volume (TV)] and trabecular number (Tb.N)
tended to be smaller in SPF fetuses compared to GF fetuses (Figure 2C). A comparison
of the calcified areas in the cross-sectional views with image analysis showed that the
SPF fetuses had smaller calcified areas than the GF fetuses (Figure 2B). On the other
hand, bone mass intervals (Tb.Sp) tended to be greater in SPF fetuses than in GF fetuses.
Regarding the trabecular thickness (Tb.Th), a similarity was observed between the two
groups (Figure 2C). These results may indicate that the maternal gut microbiome affects
fetal internal ossification structures, passing through the placenta from the embryonic stage.
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Figure 2. Morphology of GF and SPF embryos. (A) Skeletal preparation. (B-1) Micro CT analysis
of GF and SPF tibiae (E18). Corresponding sagittal and transverse planes were shown. (B-2) Av-
erage of mineralized area (µm2)/total area (µm2) from 5 different cross-sections in (B-1) is shown.
(t-test, * p < 0.05). (C) Mineralized parameters from micro-CT analysis. The ratio of bone volume
to total volume (BV/TV) and Tb.N tended to be lower in the SPF group than in GF bones. BV/TV,
bone volume/tissue volume; Tb.N, trabecular number; Tb.Sp, trabecular separation; Tb.Th, trabecu-
lar thickness.

3.3. Decelerated Chondrocyte Proliferation and Accumulation of Extracellular Matrices in
SPF Cartilage

Our micro-CT results showed that fetuses in the uterus of the mother mice with
the microbiome tended to have less bone mass, indicating decelerated endochondral
ossification during longitudinal osteogenesis, at least in part. We therefore decided to
isolate and culture primary chondrocytes from the rib cartilage of GF/SPF fetuses. First,
we compared the growth rates between SPF and GF embryonic chondrocytes. MTT-based
cell-proliferation assays were performed in 3-, 9-, and 14-day cultures. At all culturing
timepoints, the cell number was significantly lower in SPF fetus chondrocytes than in GF
fetuses (Figure 3A). Cultured chondrocytes from SPF fetuses for 1 month showed less
accumulation of the extracellular matrix compared to GF fetuses (Figure 3B). These results
indicate that the maternal gut microbiome regulates the proliferation rate and extracellular
matrix formation of the fetal chondrocytes.
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Figure 3. The effects of maternal microbiome on proliferation and accumulation of extracellular
matrix in fetal chondrocytes from GF and SPF lib cages. (A) Cell proliferation, (B) (left) accumulation
of Proteoglycan stained with Alcian Blue, (right) staining intensity measured by FIJI/ImageJ. The
data are presented as mean ± SD (n = 3, t-test, * p < 0.05). OD = optical density.

3.4. Gene-Expression Analysis in GF and SPF Fetal Chondrocytes

Based on the comparison of the proliferation rate of primary chondrocytes and extracel-
lular matrix formation, we hypothesized that the growth of the chondrocytes was inhibited
in the SPF uterus environment. We therefore decided to compare the transcriptome varia-
tion in each cell. First, we picked up the gene expression variation by RNA-sequencing
analysis, and then we confirmed the gene expression in real-time PCR. K-means clustering
showed that genes were differentially expressed between GF and SPF embryo-derived
chondrocytes (Figure 4A and the enlarged image in Figure S1), and we focused on two
clusters: C. gene pathways related to ossification and growth and development (ossification,
skeletal system development, tissue development), which showed higher expression in the
GF group; and A. gene pathways related to inflammation (inflammatory response, response
to bacteria, immune response, response to cytokines), which showed higher expression
in the SPF group. Based on Figures 3B and 4A, genes involved in skeletal development
and inflammation were selected, and RT-PCR further confirmed their expression. The
expressions of chondrocyte extracellular matrix genes, such as aggrecan (Agg) and type II
collagen (Col2a1) mRNAs, which are involved in skeletal development, were suppressed in
SPF fetal chondrocytes compared to GF chondrocytes (Figure 4A,B). This is in line with the
results shown in Figure 3B. Furthermore, gene expressions of the pro-inflammatory factors
interleukin (IL) 6 (Il6), IL17 receptor (Il17re), and IL13 receptor 2 (Il13re2) mRNAs were
significantly enhanced in SPF fetuses’ chondrocytes compared to GF (Figure 4B). These
results indicate that the presence of the maternal gut microbiome may be responsible for the
expression of inflammatory-related factors in fetal chondrocytes and impair extracellular
matrix formation.
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4. Discussion

The impact of the gut microbiome on our homeostasis seems no longer confined to
the individual’s microbiome, as increasing evidence shows that the maternal microbiome
affects the growth and metabolism of fetal cells. For the first time, our study shows that the
maternal gut microbiome has an inhibitory effect on fetal endochondral bone formation,
which suggests that endochondral bone growth is regulated from the start of maternal life.

During the fetal period, the body size and weight of SPF embryos are not significantly
different from those of GF embryos, suggesting that the differences in body size due to the
presence or absence of a gut microbiome only become apparent after birth. In addition,
mineralization parameters (BV/TV and Tb.N) in the skeleton of SPF fetuses tended to be
lower than those of GF fetuses. Previous studies have shown that the bone volume of the
adult SPF mice was lower than that of GF mice [18,19,21]. Our results point to the fact that
the degree of internal ossification is not determined after birth but tends to be present from
the start of the prenatal period.

The gut microbiome has further been reported to contribute to the deterioration of
cartilage tissue, particularly in osteoarthritis [28]. Genomic comparison of the bacterial
flora of the knee joint in healthy subjects and osteoarthritis patients reported that Gram-
negative bacteria were detected more frequently in osteoarthritis patients. In SPF primary
chondrocytes from fetal cartilage, the proliferation rate of the cells was significantly lower
than that of GF fetal-derived chondrocytes, and the accumulation of cartilaginous extra-
cellular matrices was also lower. These results suggest that the growth and maturation of
chondrocytes are suppressed in SPF fetuses.

The gut microbiome and immune function are closely linked [29–31]. Health con-
ditions during pregnancy have been recently reported to significantly impact immune
responses and metabolic functions during the embryonic period and postnatally. Transplan-
tation of the gut microbiome of pregnant mothers with inflammatory bowel disease (IBD)
in GF mice has been reported to reduce Treg cells and IgA+ B-cell subsets in the colonic
lamina propria [32]. Another study focusing on short-chain fatty acid (SCFA) receptors
reported that SCFAs secreted from the gut microbiome of pregnant mice may prevent the
development of metabolic syndrome by affecting the postnatal energy homeostasis of the
fetus by acting on the fetal short-chain fatty acid receptors [17]. In the present study, the
expression of inflammatory factors and receptors was higher in chondrocytes from SPF
fetuses than those in GF fetuses. IL-6 and IL-17 were known to inhibit the chondrogenic
differentiation of human mesenchymal stem cells [33]. In addition, IL-13Rα2 is a decoy
receptor for IL-13, but it has been reported that TNFα and IL-17A synergistically enhance
its inflammatory signaling by inducing the expression of IL13Rα2 in fibroblasts [34]. Thus,
the presence or absence of maternal intestinal microflora may have a regulatory effect on
the cartilage of the fetus through maternal factors. Moreover, such factors could lead to the
activation of both osteoclasts and osteoblasts in the presence of the bacterial flora, as we
have previously reported [21].

One point is that placental weight was reduced without a gut microbiome. Recent
studies on the microbiome of the placenta have been reported, but with conflicting results
and no definitive conclusion [35,36]. The placenta provides nourishment for the embryo
and protects the embryo from any damage. It is also a place of communication between
the fetus and the mother. We previously reported that the estimated fetal growth was
suppressed in pregnant women with periodontal disease in late pregnancy compared
with healthy controls [37]. As placental nutrient transport is associated with placental
weight [38], maternal-gut-microbiota-derived substances may have reached the fetus via
the placenta and triggered inflammatory gene expression on the fetal side. Further research
is required.

This study focused on the effect of the presence or absence of the maternal gut mi-
crobiome on skeletal development on the embryonic side; however, the mechanism of
placental function and how the maternal gut microbiome’s condition transferred to the
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fetus remains unexplored. Further analysis of the potential influence of the maternal gut
microbiome on the skeletal development of offspring is also needed.

5. Conclusions

The presence of the mother’s gut microbiome influences fetal bone development,
including endochondral ossification.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/microorganisms10051000/s1, Figure S1: Effect of the presence or
absence of maternal gut microbiome on enriched pathways expressed in fetal-derived chondrocytes.
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