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Abstract: Acanthamoeba is a free-living protozoan known to cause keratitis most commonly, especially
among contact lens wearers. Treatment of Acanthamoeba keratitis is challenging as Acanthamoeba can
encyst from the active form, a trophozoite, into a hibernating cyst that is refractory to antibiotics and
difficult to kill; therefore, there is a need for more effective anti-amoebic strategies. In this study,
we have evaluated the anti-amoebic activity of the antimicrobial peptide mimic RK-758 against
Acanthamoeba castellanii. RK-758 peptidomimetic was subjected to biological assays to investigate
its amoebicidal, amoebistatic, anti-encystation, and anti-excystation effects on A. castellanii. The
anti-amoebic activity of the peptide mimic RK-758 was compared with chlorhexidine against the
Acanthamoeba castellanii ATCC30868 and Acanthamoeba castellanii 044 (a clinical strain) with the concen-
trations of both ranging from 125 µM down to 7.81 µM. All experiments were performed in duplicate
with three independent replicates. The data were represented as mean ± SE and analysed using a
two-sample t-test and two-tailed distributions. A p < 0.05 was considered statistically significant.
The peptidomimetic RK-758 had anti-Acanthamoeba activity against both trophozoites and cysts in a
dose-dependent manner. The RK-758 had amoebicidal and growth inhibitory activities of ≥50% at a
concentration between 125 µM and 15.6 µM against the trophozoites of both Acanthamoeba strains.
Inhibitory effects on the cyst formation and trophozoite re-emergence from cysts were noted at similar
concentrations. Chlorhexidine had 50% activity at 7.81 µM and above against the trophozoites and
cysts of both strains. In the haemolysis assay, the RK-758 lysed horse RBCs at concentrations greater
than 50 µM whereas lysis occurred at concentrations greater than 125 µM for the chlorhexidine.
The peptidomimetic RK-758, therefore, has activity against both the trophozoite and cyst forms
of Acanthamoeba and has the potential to be further developed as an anti-microbial agent against
Acanthamoeba. RK-758 may also have use as an anti-amoebic disinfectant in contact lens solutions.

Keywords: Acanthamoeba; free-living amoeba; anti-microbial peptides; peptidomimetics

1. Introduction

Acanthamoeba is a single-celled eukaryotic microorganism known to cause rare but
sight-threatening keratitis, especially among contact lens (CL) wearers [1,2]. Acanthamoeba
exists in two forms, the trophozoite is the pathogenic form which is metabolically active
and responsible for causing the corneal infection, whereas the cyst form is metabolically
dormant or inactive but resistant to disinfectants and antimicrobials [3]. The phenotypic
switching between the trophozoite and cyst stages makes it difficult to diagnose and treat
this infection [4]. Even if it is diagnosed early, the prognosis is poor due to a lack of effective
treatment modalities. The treatment of Acanthamoeba keratitis (AK) remains a challenge and
it can lead to corneal toxicity. The current treatment mainly involves topical medications
such as chlorhexidine (0.02–0.2%) or polyhexamethylene biguanide (PHMB) alone or in
combination with diamidines (propamidine isethionate or hexamidine (0.1% w/v), oral
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miltefosine, and penetrating keratoplasty in non-responding cases [3,5–7]. Furthermore,
the therapeutic agents need to be given to patients as topical drops hourly (day and night)
for at least the first few days after diagnosis [8]. The treatment of AK may continue for
up to 6 months to 1 year or even longer [4,9]. Topical biguanides are the commonly used
agents as they can be active against cysts in vivo, unlike many other drugs which have
limited cysticidal activity [9]. Even then, Acanthamoeba can be resistant to these normal
treatment modalities, allowing the disease to worsen [5]; therefore, there is a need for better
and more effective treatment options for this disease.

Antimicrobial peptides (AMPs) are naturally occurring molecules that have gained
importance due to their broad-spectrum antimicrobial properties [10]. AMPs have the
advantage that it is difficult for microorganisms to develop resistance to them [11]. A total of
3425 antimicrobial peptides have been registered and stored on the antimicrobial database
(APD3) as at June 2022 [12,13]. These AMPs can be classified into 18 categories based on
their activities [11]. Among them, the majority (85%) are antibacterial peptides, followed
by 37% showing antifungal properties, with some of the remainder being potentially useful
to treat cancer, having antiviral properties. Antiparasitic AMPs account for approximately
4% (140 out of 3425) [12].

Most AMPs are highly cationic and act by membrane disruption with selective binding
to the negatively charged surfaces of pathogens. The most membrane-active AMPs contain
both hydrophilic and hydrophobic groups which aggregate at the cell membranes after
initial electrostatic interactions with negatively charged lipid groups in prokaryotic mem-
branes, followed by insertion into the cell membrane using their hydrophobic meioties [14].
Cationic AMPs may have a reduced affinity towards eukaryotic cells as these cells generally
possess a neutral charge. AMPs are effective against eukaryotic microbes such as yeasts
(e.g., Candida sp., Cryptococcus sp., and Saccharomyces sp.) and protozoa (Leishmania sp.).
For example, histatin 5 is active against Candida sp. and Aspergillus fumigatus [15], and
dermaseptin is active against Leishmania major, Cryptococcus neoformans, and Plasmodium
falciparum [16]; however, these naturally occurring AMPs can be difficult to synthesize in
copious quantities and they are susceptible to proteolytic degradation [17,18].

The highly cationic peptide, protamine, its derivative, melimine, and magainin are
active against Acanthamoeba [10,19–21]. Magainin combined with silver nitrate or other
antimicrobial agents further enhances the activity against Acanthamoeba trophozoites and
cysts [20]. Ceragenin, a cationic steroid antibiotic (CSA)-13 that mimics the activity of
endogenous AMPs showed amoebicidal activity in a dose-dependent manner [22]. Ad-
ditionally, α-helical and β- sheeted AMPs based on trialysin and gomesin, respectively,
can permeabilise A. castellanii but these peptides were sensitive to the proteases released
by trophozoites [23]. Another α-helical peptide, Ci-MAM-A24, showed activity against
A. castellanii by permeabilising the cell membrane at relatively higher concentrations. This
AMP was also able to reduce the number of Legionella residing within the Acanthamoeba [24].
Poly-epsilon-lysine (pεK) peptide, alone or covalently attached to hydrogel contact lenses,
is active against Acanthamoeba trophozoites and cysts in a phosphate buffer saline or ex vivo
corneas [25]. AMPs derived from the antibiotic tyrocidine can have amoebicidal activity
and are able to inhibit the encystation of A. castellanii and Naegleria floweri [26]. A synthetic
decapeptide (KP) AMP had time-dependent amoebicidal activity against a A. castellanii
clinical isolate [27]. Nisin, a natural AMP produced by Lactococcus lactis, can also be active
against A. castellanii trophozoites at the end of a 24 h incubation [28]. Moreover, human
corneal limbal cells have shown significant upregulation in the gene expression for seven
out of eight AMPs studied after exposure to A castellanii trophozoites, indicating a possible
role in combating amoebic infection [29].

Peptidomimetics are synthetic compounds designed to mimic the biological function
of peptides and overcome the limitations of AMPs, such as their relatively short half-lives
in vivo that occurs due to proteolytic degradation, the high cost of their synthesis, and
the toxicity of certain AMPs. To mimic the biological function of natural AMPs, pep-
tidomimetic molecules contain amphiphilic, i.e., hydrophobic and hydrophilic backbones
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with a net positive charge [14]. Studies have shown that these peptidomimetics have an in-
creased stability to enzymatic degradation, improved bioavailability, potent activity against
multi-drug resistant bacteria, and synthetic flexibility [30]. Peptidomimetic antibiotic 10,
developed from human α- defensin 5, has improved killing activity against Gram-positive
and Gram-negative bacteria, including the multi-drug-resistant strains isolated from pa-
tients [31]. Novel pyridine-cysteine containing cyclic peptidomimetics have shown high
activity against Candida albicans and Gram-negative bacteria such as Pseudomonas aeruginosa,
Klebsiella pneumoniae, and Proteus vulgaris [32]. Benzodiazepine-based peptidomimetics
had activity against the protozoa, Trypanosoma brucei brucei, which causes sleeping sickness
in humans [33]. The current authors have developed various peptidomimetics which are
active against antibiotic-resistant bacteria such as Staphylococcus aureus, Escherichia coli [34],
and Pseudomonas aeruginosa [35]. Similarly, cholic acid-based AMPs also exhibited high
anti-bacterial potency against Gram-negative and Gram-positive bacteria [36]. Peptide
mimics of cathelicidin are highly cationic and have shown an efficient and fast (<30 min)
killing of methicillin-susceptible S. aureus [37].

Any potential therapeutics for Acanthamoeba must not cause the amoeba to encyst, as
this may result in a re-activation/re-infection after the cessation of therapy. The importance
of encystment was demonstrated in an Acanthamoeba keratitis worldwide outbreak. This
outbreak occurred as the result of contact lens wearers using Complete MoisturePlus
(Advance Medical Optics, Santa Ana, California) as a disinfecting solution [38,39]. There
was an independent association seen between AK among soft contact lens users and the
complete MoisturePlus multi-purpose solution [40]. It was subsequently found, after
the contact lens disinfecting solution had been recalled from sale, that a possible reason
why this disinfecting solution was associated with the Acanthamoeba keratitis outbreak
was that the solution, unlike other disinfectants, caused Acanthamoeba to encyst [41]. A
case-control study on AK cases between 2005–2007 in the USA highlighted the importance
of promoting healthy contact lens handling, safe hygiene practices among new contact
lens users and emphasised the need for standardised anti-Acanthamoeba testing of contact
lens solutions [39]. Similarly, the UK had an AK outbreak between 2010–2011 resulting in
three times higher incidence rates than between 2004–2009 [2]. Some of the risk factors
identified in this outbreak were an oxipol disinfection, contact lenses made of group IV
hydrogel contact lens materials (i.e., high water content, ionic hydrogel lenses), poor CL
hygiene practice, no or improper hand washing before CL handling, and swimming with
contact lenses [2,42]. In the AK infections associated with overnight orthokeratology lenses,
the risk factors identified were the use of tap water to clean lenses and cases, the use
of homemade saline, and the use of disinfecting solution added to the previously-used
remnants of solution in contact lens cases [43,44].

This study evaluated the anti-amoebic activity of an antimicrobial peptidomimetic,
RK-758, against Acanthamoeba trophozoites and cysts in comparison with chlorhexidine.

2. Materials and Methods
2.1. Acanthamoeba Culturing and Test Compounds

The Acanthamoeba castellanii strains ATCC30868 and 044 (a clinical isolate) [19] were
cultured in a 10 mL protease-peptone yeast glucose (PYG) medium (protease peptone
20 g/L, yeast extract 2 g/L and glucose 18 g/L without additives) [10] in 75 cm2 tissue
culture flasks at 32 ◦C for 5–7 days. Trophozoites were collected once a 90% confluency
was achieved by washing and resuspending in 1× phosphate buffered saline (PBS; NaCl
8 g/L, KCL 0.2 g/L, Na2HPO4 1.4 g/L, KH2PO4 0.24 g/L, and pH 7.2) or PYG (depending
upon the subsequent assay) by centrifugation at 500 g for 2 min. Cysts were obtained by
seeding approximately 5 × 105 trophozoites/mL on non-nutrient agar (NNA) plates (NNA:
NaCl 0.012 g/L, MgSO4. 7H2O 0.0004 g/L, CaCl2.6H2O 0.0004 g/L, Na2HPO4 0.0142 g/L,
KH2PO4 0.0136 g/L, agar 15 g/L, and pH 6.8) and incubating the plates at 32 ◦C for 14 days.
The cysts were scrapped and washed in PBS by centrifugation at 3500× g for 10 min and
resuspended in PBS [45]. The cysts were stored at 4 ◦C for a maximum of 14 days.
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The test compound in this study, peptidomimetic RK-758, was synthesized accord-
ing to the patents WO2018081869A1 and Australian Provisional Patent Application No.
2021902457, and its chemical structure has been published [35]. The chlorhexidine was
sourced from Sigma Aldrich (St. Louis, MO, USA).

2.2. Amoebicidal Assay

Briefly, 5 × 105 trophozoites/mL were incubated with the peptidomimetic RK-758
or chlorhexidine in 24-well plates at concentrations ranging from 125 µM to 7.81 µM in
PBS [46]. The chlorhexidine was used as a positive control [47]. PBS alone was used as a
negative control. The trophozoites were incubated at 30 ◦C for 24 h. The number of viable
trophozoites was determined by adding 0.1% trypan blue to each well. Dead trophozoites
that stained blue and live trophozoites that remained unstained were counted using a
Neubauer haemocytometer (Hirschmann, Germany) [46].

2.3. Amoebistatic Assay

Briefly, 2 × 105 trophozoites/mL were incubated with the peptidomimetic RK-758
or chlorhexidine in 24-well plates at concentrations ranging from 125 µM to 7.81 µM in
PYG [46]. The PYG medium alone was used as a control. After incubation at 30 ◦C for 48 h,
the number of viable trophozoites was determined using a Neubauer haemocytometer
after the addition of 0.1% of trypan blue to each well as mentioned.

2.4. Encystation Assay

To measure the ability of the peptidomimetic RK-758 or chlorhexidine compared to
the ability of the trophozoites to encyst, an encystment medium was prepared by adding
50 mM MgCl2 and 10% glucose to 1× PBS by filter sterilization using 0.22 µM membrane
filters (Merck, Dublin, Ireland) [48]. The trophozoites (5 × 105 trophozoites/mL) were
incubated with either peptidomimetic RK-758 or chlorhexidine in 24-well plates with
concentrations ranging from 125 µM to 7.81 µM in the encystment media. The encystment
medium alone was used as a control. The trophozoites were incubated at 30 ◦C for 72
h followed by adding 0.25% (w/v) sodium-dodecyl sulphate to each well to burst the
trophozoites leaving the cysts intact [41]. The number of cysts was determined by counting
on a Neubauer haemocytometer.

2.5. Excystment Assay

In this assay [45,48], 5 × 105 cysts/mL were incubated with the peptidomimetic RK-
758 or chlorhexidine in 24-well plates at concentrations ranging from 125 µM to 7.81 µM in
PYG. The PYG medium alone was used as a control. The plates were observed every day
at a 10× and 40× magnification to assess the emergence of trophozoites during incubation
at 30 ◦C for 72 h. At the end of the incubation period, the number of trophozoites that
re-emerged was counted using a Neubauer haemocytometer.

2.6. Lysis of Horse Red Blood Cells (RBCs)

The haemolytic activities of both the chlorhexidine and peptidomimetic RK-758 were
determined using horse red blood cells (HRBCs; Oxid, Australia) as described previ-
ously [49,50]. Briefly, the HRBCs were washed three times with PBS at 470× g for 5 min.
Chlorhexidine and peptidomimetic RK-758 concentrations ranging from 200 µM to 12.5 µM
were added to the washed HRBCs and incubated at 37 ◦C for 4 h. The PBS was used as
a negative control to achieve a 0% lysis. HRBCs in distilled water were used as positive
controls to achieve 100% lysis. At the end of the incubation, the cells were pelleted at
1057× g for 5 min, and the supernatant was removed to assess the release of haemoglobin
by measuring the OD at 540 nm. The relative OD of the HRBCs treated with the compounds,
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chlorhexidine and peptidomimetic RK-758, was compared to that of those treated with
distilled water and used to determine the relative percentage of haemolysis as follows:

% Haemolysis = (absorbance of test compound) − (absorbance of diluent)

/(absorbance of positive control) − (absorbance of diluent) × 100

2.7. Statistical Analyses

The statistical analyses were performed using the GraphPad Prism 8.4.3 software
(GraphPad Software, La Jolla, CA, USA). All the experiments were performed in duplicate
with three independent replicates. The data were represented as mean ± SE and anal-
ysed using a two-sample t-test and two-tailed distributions. A p < 0.05 was considered
statistically significant.

3. Results
3.1. Amoebicidal Assay

Amoebicidal assays were performed to determine the activity of the peptidomimetic
RK-758 in comparison to the chlorhexidine on the viability of A. castellanii ATCC30868 and
044 strains. The number of viable trophozoites was 1.73 × 105 for A. castellanii ATCC30868
and 2.69 × 105 for A. castellanii 044 following a 24 h incubation in PBS alone. The RK-758
caused statistically significant killing of trophozoites between 79%, 87%, and 76% against A.
castellanii ATCC30868 (the number of viable trophozoites reduced to 3.58 × 104 (p = 0.03),
2.17 × 104 (p = 0.01), and 1.6 × 104 (p = 0.03), respectively) (Figure 1A), and 98%, 87%,
and 57% against A. castellanii 044 (the number of viable trophozoites reduced to 5 × 103

(p = 0.001), 3.3 × 104 (p = 0.003), and 1.1 × 105 (p = 0.01),respectively) (Figure 1B), at
test concentrations ranging between 125 µM, 62.5 µM, and 31.25 µM, respectively, when
compared to the PBS alone. Similarly, chlorhexidine caused statistically significant killing of
trophozoites by 96%, 81.5%, and 82% against A. castellanii ATCC30868 (the number of viable
trophozoites reduced to 6.67 × 103 (p = 0.01), 3.17 × 104 (p = 0.03), and 3.08 × 104 (p = 0.02),
respectively) (Figure 1A), and 98%, 90% and 73% against A. castellanii 044 (the number of
viable trophozoites reduced to 5.8 × 103 (p = 0.001), 2.5 × 104 (p = 0.002), and 7.1 × 104

(p = 0.004), respectively) (Figure 1B), at the same test concentrations when compared to the
PBS alone. In addition, chlorhexidine showed statistically significant amoebicidal activity
of 62% and 53% against A. castellanii 044 (the number of viable trophozoites reduced to
1 × 105 with p = 0.02, and 1.24 × 105 with p = 0.04, respectively) (Figure 1B) at 15.6 µM and
7.81 µM in comparison to PBS alone. There was no statistically significant difference noted
between the activities of the RK-758 and chlorhexidine at each test concentration against
both the strains evaluated (p < 0.05).

3.2. Amoebistatic Assay

Growth inhibition assays were performed to determine the amoebistatic activity of
the peptidomimetic RK-758 and chlorhexidine against the A. castellanii ATCC30868 and 044
strains. The number of viable trophozoites was enumerated to be 3.08 × 105 for A. castellanii
ATCC30868 and 2.17 × 105 for A. castellanii 044 following a 48 h incubation in PYG alone.
The RK-758 showed the statistically significant growth inhibition of trophozoites between
97% and 63% against A. castellanii ATCC30868 (the number of viable trophozoites reduced
to 9.17 × 103 at 62.5 µM (p = 0.0008) and 1.13 × 105 at 7.81 µM (p = 0.03) (Figure 2A),
and 100% and 85% against A. castellanii 044 (the number of viable trophozoites reduced
to 3.08 × 104 at 7.81 µM (p < 0.0001) (Figure 2B), at test concentrations ranging between
125 and 7.81 µM when compared to the PYG alone. Additionally, the chlorhexidine caused
a statistically significant growth inhibition against trophozoites between 99% and 83%
against A. castellanii ATCC30868 (the number of viable trophozoites reduced to 1.67 × 103

at 125 µM (p = 0.0007) and 5.25 × 104 at 7.81 µM (p = 0.002) (Figure 2A), and 100% and
98% against A. castellanii 044 (the number of viable trophozoites reduced to 4.17 × 103 at
7.81 µM, p < 0.001) (Figure 2B), at similar concentrations when compared to the PYG alone.
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There was no statistically significant difference noted between the activities of the RK-758
and chlorhexidine at each test concentration against both the strains evaluated (p < 0.05),
except for the A. castellanii ATCC30868 at 125 µM, where the chlorhexidine had greater
activity (p = 0.005).
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Figure 1. Amoebicidal activity of peptidomimetic RK-758 in comparison with chlorhexidine against
Acanthamoeba castellanii ATCC30868 (A) and A. castellanii 044 (B). In brief, 5 × 105 A. castellanii
trophozoites were incubated with the peptidomimetics RK-758 and chlorhexidine at 30 ◦C for
24 h after which the viability was determined by staining with trypan blue using a Neubauer
haemocytometer. The results show significant anti-Acanthamoeba activity when compared to the
negative control (amoeba alone). * p < 0.05 using a two-sample t-test and two-tailed distribution.
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Figure 2. Amoebistatic activity of the peptidomimetic RK-758 in comparison with chlorhexidine
against Acanthamoeba castellanii ATCC30868 (A) and A. castellanii 044 (B). In brief, 2 × 105 A. castellanii
trophozoites were incubated with the peptidomimetics RK-758 and chlorhexidine at 30 ◦C for
48 h after which the viability was determined by staining with Trypan blue using a Neubauer
haemocytometer. The results showed significant anti-Acanthamoeba activity when compared to the
negative control (amoeba alone). ** p < 0.001; * p < 0.05 using a two-sample t-test and two-tailed
distribution.

3.3. Encystation Assay

Encystation assays were performed to determine the anti-encystation ability of the
chlorhexidine and peptidomimetic RK-758 against A. castellanii ATCC30868 and 044 strains.
At the end of the 72 h incubation, 9.75 × 104 cysts of A. castellanii ATCC30868 and 8.75 × 104

cysts of A. castellanii 044 had formed in the encystment medium. The RK-758 inhibited cyst
formation by 81% and 68% against A. castellanii ATCC30868 (the number of cysts formed
were 1.83 × 104, p = 0.001, and 3 × 104 with p = 0.002, respectively) (Figure 3A) at 125 µM
and 62.5 µM test concentrations, respectively, in comparison to the encystment medium.
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Similarly, RK-758 inhibited cyst formation between 98% and 70% for A. castellanii 044 (the
number of cysts formed between 1.67 × 103 at 125 µM, p = 0.0003 and 2.63 × 104 at 7.81 µM,
p =0.005, respectively) (Figure 3B), at test concentrations ranging between 125 and 7.81 µM
in comparison to the encystment medium.
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Figure 3. Inhibition of cysts formation by the peptidomimetic RK-758 in comparison with chlorhex-
idine against Acanthamoeba castellanii ATCC30868 (A) and A. castellanii 044 (B). In brief, 5 × 105

A. castellanii trophozoites were incubated with the peptidomimetics RK-758 and chlorhexidine at
30 ◦C for 72 h after which cysts were determined by solubilising trophozoites adding 0.25% SDS. The
number of cysts was counted using the Neubauer haemocytometer. The results showed significant
anti-Acanthamoeba activity when compared to the negative control (amoeba alone). ** p < 0.001;
* p < 0.05 using the two-sample t-test and two-tailed distribution.
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Chlorhexidine inhibited cyst formation by between 94% and 54% for A. castellanii
ATCC30868 (the number of cysts formed were 5.42 × 103 at 125 µM, p =0.0002, and
4.42 × 104 at 15.6 µM, p =0.008,respectively) (Figure 2A), at test concentrations ranging
between 125 to 15.6 µM in comparison to the encystment medium. Additionally, chlorhexi-
dine inhibited cyst formation between 100% and 75% against A. castellanii 044 (the number
of cysts formed were 2.13 × 104 at 7.81 µM, p =0.002) (Figure 2B) at test concentrations
ranging from 125 to 7.81 µM in comparison to the encystment medium. There was a statis-
tically significant difference noted between the activities of the RK-758 and chlorhexidine
against the A. castellanii ATCC30868 at 62.5 µM and 31.25 µM concentrations (p = 0.003 and
p = 0.04), respectively. Similarly, a statistically significant difference was noted between
the activities of the RK-758 and chlorhexidine against the A. castellanii 044 at 62.5 µM and
15.6 µM concentrations (p = 0.02 and p = 0.04, respectively).

3.4. Excystation Assay

Excystation assays were conducted to assess the activity of the chlorhexidine and
peptidomimetic RK-758 on the re-emergence ability of trophozoites from cysts on the
A. castellanii ATCC30868 and 044 strains. At the end of the 72 h incubation, 2.56 × 105

trophozoites of A. castellanii ATCC30868 and 2.52 × 105 trophozoites of A. castellanii 044 had
re-emerged in the PYG medium. The peptidomimetic RK-758 inhibited the trophozoites’
re-emergence between 100% and 98% at concentrations ranging from 125 µM to 7.81 µM
against A. castellanii ATCC30868 (the number of trophozoites excysted were 2.92 × 103

at 7.81 µM (p = 0.0008, Figures 4A and 5) in comparison to the PYG medium. Against
A. castellanii 044, the peptidomimetic RK-758 inhibited the trophozoites’ re-emergence
between 100 and 60% concentrations ranging from 125 µM to 15.6 µM concentrations (the
number of trophozoites excysted were 1.00 × 105 at 15.6 µM (p = 0.007, Figures 4B and 6)
in comparison to the PYG medium. Similarly, the chlorhexidine inhibited the trophozoite
re-emergence by 100% at all the test concentrations between 125 µM and 7.81 µM for A.
castellanii ATCC30868 and A. castellanii 044 (p < 0.05, Figure 4A,B) in comparison to the
PYG medium.

There was a statistically significant difference between the activities of the RK-758
and chlorhexidine at 7.81 µM against A. castellanii ATCC30868 (p = 0.03) and between the
activities of the RK-758 and chlorhexidine against A. castellanii 044 at 15.6 µM and 7.81 µM
concentrations (p < 0.001 and p = 0.006, respectively).

3.5. Haemolysis Assay

Chlorhexidine and peptidomimetic RK-758 caused haemolysis in a dose-dependent
manner. Chlorhexidine showed a negligible haemolysis between 31.25 µM and 7. 81 µM.
The therapeutic index (i.e., haemolytic concentration/antimicrobial concentration) for
the chlorhexidine ranged from 16 to 4. The peptidomimetic RK-758 showed haemolysis
of < 50% between 31.25 µM and 7.81 µM. The therapeutic index of the RK-758 ranged
from 8 to 1.
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Figure 4. Inhibition of trophozoites’ re-emergence from cysts by the peptidomimetic RK-758 in compari-
son with chlorhexidine, against Acanthamoeba castellanii ATCC30868 (A) and A. castellanii 044 (B). In brief,
5 × 105 A. castellanii cysts were incubated with the peptidomimetics RK-758 and chlorhexidine at 30 ◦C
for 72 h after which the trophozoites were determined by counting on a Neubauer haemocytometer. The
results showed significant anti-Acanthamoeba activity when compared to the negative control (amoeba
alone). ** p < 0.001; * p < 0.05 using a two-sample t-test and two-tailed distribution.
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Figure 5. Inhibition of trophozoite emergence from cysts of Acanthamoeba castellanii ATCC30868 by
the peptidomimetic RK-758 (A–E) in comparison with chlorhexidine (F–J), with concentrations of
both ranging from 125 µM to 7.81 µM. In brief, 5 × 105 A. castellanii trophozoites were incubated with
the peptidomimetics RK-758 and chlorhexidine at 30 ◦C for 72 h and observed for the emergence of
trophozoites. PYG alone was used as a control (K). PeptidomimeticsRK-758 inhibited the tropho-
zoite emergence between concentrations of 125 µM and 31.25 µM (A–C) whereas the chlorhexidine
inhibited their emergence between 125 µM and 7.81 µM (F–J). Arrowheads indicate trophozoites.
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Figure 6. Inhibition of trophozoite emergence from cysts of Acanthamoeba castellanii 044 by the
peptidomimetic RK-758 (A–E) in comparison with chlorhexidine (F–J), with concentrations of both
ranging from 125 µM to 7.81 µM. In brief, 5 × 105 A. castellanii trophozoites were incubated with
the peptidomimetics RK-758 and chlorhexidine at 30 ◦C for 72 h and observed for the emergence
of trophozoites. PYG alone was used as a control (K). Peptidomimetic RK-758 inhibited the tropho-
zoite emergence between concentrations of 125 µM and 31.25 µM (A–C) whereas the chlorhexidine
inhibited their emergence between 125 µM and 7.81 µM (F–J). Arrowheads indicate trophozoites.

4. Discussion

This study demonstrated that the peptidomimetic RK-758 was active against both the
trophozoite and cyst forms of Acanthamoeba castellanii, most probably due to its cationic
charge [19,20,25]. The anti-amoebic effects of any test compounds on both trophozoites



Microorganisms 2022, 10, 2377 12 of 15

and cysts are crucial as the trophozoites can remerge and lead to a relapse of the disease
upon stopping treatment [1,4,5]. This may possibly be due to the risk of cysts’ formation
in corneal tissue during Acanthamoeba infections [51]. A laboratory study examining
the in vitro sensitivity of 23 isolates from 23 patients to 13 different drugs found that
PHMB and chlorhexidine were the most successful agents against both trophozoites and
cysts [52]. Recently, a retrospective study showed that treatment with biguanides and
diamidines resulted in a 64% improvement in the best-corrected visual acuity in patients [5].
A feature that is commonly seen in AK is an initial worsening of inflammation upon
starting treatment, and this may possibly be due to the antigens released by the dead
organisms [8,53]. The current results show that the peptidomimetic RK-758 possessed
amoebicidal and cysticidal activity against both the ATCC and the clinical strain tested,
which is essential in tackling an Acanthamoeba infection.

Previous studies have already established that peptidomimetics are highly effec-
tive against bacteria [35–37], but before this study, the anti-Acanthamoeba effects of pep-
tidomimetics had not been evaluated.

Previously, the naturally occurring antimicrobial peptide protamine had been shown
to have amoebicidal activity at 228 µM, and its derivative melimine inhibited Acanthamoeba
trophozoites’ adhesion to contact lens at a concentration of 152 µg per lens [10,19]. Addition-
ally, another naturally occurring antimicrobial peptide magainin had minimal inhibitory
(90% reduction) and minimal amoebicidal (99.9% reduction) activities between 8 and
16 µM [20,21]. The antimicrobial peptide poly-epsilon-lysine was amoebicidal to tropho-
zoites and cysts at 540 µM producing an 80% death of trophozoites and 76% death of
cysts at the end of a 24 h incubation [25]. An AMP derived from tyrocidine, when used at
100 µg/mL and 250 µg/mL, killed 35% and 84% of trophozoites, respectively, at the end of
a 24 h incubation and reduced the transformation of trophozoites to cysts by 58% and 93%,
respectively, at the end of a 72 h incubation [26]. The exposure of A. castellanii trophozoites
to nisin, a bacteriocin AMP, resulted in reductions in cultivable numbers after a 24 h expo-
sure but there was a recovery in the amoeba growth after a 72 h exposure. This may have
been due to the lack of a nisin effect on the membrane integrity of the trophozoites [28]. A
synthetic decapeptide AMP (called KP) killed 57% of trophozoites at 25 µg/mL after a 24 h
incubation [27]. The peptidomimetic RK-758 was effective between 7.81 µM and 62.5 µM
against both the strains evaluated. This was somewhat less effective than reported for
magainin, but was improved over the reports for protamine and poly-epsilon-lysine. Initial
proteolysis assays with trypsin (unpublished) showed that RK-758 was proteolytically
stable for 18 h, possibly due to its substituted guanidine end cap. Magainin, however, can
be cleaved by proteases [54], which may be one of the reasons it did not outperform the
antibiotic ofloxacin in a Phase III clinical trial against bacteria [55].

The current study found that RK-758 performed almost equivalently to the currently
used topical treatment, chlorhexidine. Chlorhexidine has previously been reported to have
minimum cysticidal activity against nine Acanthamoeba clinical isolates at 3.1 to 25 µg/mL
(6 to 49 µM) [56] and the current study showed similar results against both trophozoites
and cysts; however, chlorhexidine has been reported to be toxic to the eyes causing corneal
irritation and abrasions [57]. Future studies should determine the ocular safety of RK-758
to determine if it has an improved ocular safety profile over chlorhexidine.

A haemolysis assay is often used as a primary measure of the toxicity of antimicrobial
peptides [35]. The RK-758 produced minimal haemolysis at 15.6 µM and 7.81 µM, giving
a therapeutic index of up to eight. Using LD50 (a dose causing 50% death in mice) as a
measure of toxicity, polyhexamethylene biguanide, another commonly used therapeutic for
Acanthamoeba keratitis [8,58], has a therapeutic index of 3.2 [59]. However, haemolysis and
LD50 are not directly comparable; therefore, experiments directly comparing the therapeutic
index of currently used therapies with RK-758 are required. A previous study showed that
chlorhexidine at 20 µg/mL (31.97 µM) gave a 20% lysis of rabbit red blood cells after 2 h of
incubation [60]. Similarly, the current results showed a negligible lysis of horse red blood
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cells at a similar concentration (31.25 µM) and a higher concentration (62.5 µM) after 4 h of
incubation.

The current study used PBS as a negative control to evaluate the viability of tropho-
zoites in an amoebicidal assay; however, a previous study reported that PBS alone induced
28% encystment after 24 h of incubation [41]. A later study showed only a 4% encystment
at the end of a 24 h incubation and no effect on the viability of A. castellanii. The authors
suggested that the inclusion of 50 mM of MgCl2 and 10% glucose in the PBS formula-
tion induced encystment [48]. Elsewhere, PBS solutions containing 0.25 ppm PHMB and
increasing concentrations of propylene glycol and povidone stimulated encystment in a
dose-dependent manner [61]. The current study did not find any encystment during the
evaluation of the trophozoite viability.

In summary, the peptidomimetic RK-758 has excellent anti-Acanthamoeba activity on
the trophozoites and cysts of A. castellanii ATCC30868 and 044 strains. Its activity is very
similar to chlorhexidine, which indicates that RK-758 has the potential to be developed as a
new therapeutic agent for the treatment of Acanthamoeba keratitis or a new disinfectant for
contact lenses with good activity against Acanthamoeba.
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