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Abstract: This study used MALDI-TOF MS and molecular tools to identify tick species infesting
camels from Tamanrasset in southern Algeria and to investigate their associated microorganisms.
Ninety-one adult ticks were collected from nine camels and were morphologically identified as
Hyalomma spp., Hyalomma dromedarii, Hyalomma excavatum, Hyalomma impeltatum and Hyalomma
anatolicum. Next, the legs of all ticks were subjected to MALDI-TOF MS, and 88/91 specimens
provided good-quality MS spectra. Our homemade MALDI-TOF MS arthropod spectra database
was then updated with the new MS spectra of 14 specimens of molecularly confirmed species in this
study. The spectra of the remaining tick specimens not included in the MS database were queried
against the upgraded database. All 74 specimens were correctly identified by MALDI-TOF MS, with
logarithmic score values ranging from 1.701 to 2.507, with median and mean values of 2.199 and
2.172 ± 0.169, respectively. One H. impeltatum and one H. dromedarii (2/91; 2.20%) tested positive by
qPCR for Coxiella burnetii, the agent of Q fever. We also report the first detection of an Anaplasma sp.
close to A. platys in H. dromedarii in Algeria and a potentially new Ehrlichia sp. in H. impeltatum.

Keywords: MALDI-TOF MS; ticks; Hyalomma; camels; Anaplasma platys; Coxiella burnetii; Algeria

1. Introduction

Ticks are obligate hematophagous ectoparasites that infest most vertebrates worldwide,
from the warmest regions of the globe to the coldest ones [1]. To date, over 900 tick species
have been described around the world [2]. Ticks are significant vectors of a wide range
of microorganisms, including bacteria, helminths, viruses and protozoa [1,3–5]. They are
considered a major global human and veterinary public health problem by being reservoirs
and/or vectors of infectious disease agents to susceptible hosts [6].

Dromedary camel (Camelus dromedarius) populations are widespread in the Middle
East and North Africa, including Algeria [7–10]. They play an important role in the culture
and economy of some countries. In fact, they represent their main source of milk and meat
production because of their very unique adaptative physiological characteristics to arid
and semi-arid ecosystems [11,12]. Camel production is negatively impacted by zoonotic
diseases [7,13]. Ticks are one of the most predominant ectoparasites that negatively affect
their productivity as well as their performance by either transmitting infectious pathogenic
agents or causing traumatic lesions and severe anemia due to blood loss [9,14,15].
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Camels can be infested with different tick species, such as Hyalomma dromedarii, H.
impeltatum, H. excavatum, H. marginatum, H. anatolicum, H. impressum, H. truncatum, Rhipi-
cephalus sanguineus, R. pulchellus, Amblyomma variegatum and A gemma. Camel ticks have
been associated with several tick-borne pathogens, including Babesia spp., Rickettsia spp.,
Anaplasma spp., Coxiella burnetii, Ehrlichia spp. and Theileria spp. [7,16–19]. Anaplasma
phagocytophilum and A. marginale have been implicated in anaplasmosis in camels in India,
Iran, Saudi Arabia and Tunisia [20–24]. In Algeria, a molecular investigation of Anaplasma
species in dromedaries and their ticks is lacking. Nevertheless, C. burnetii, the agent of
Q fever, and Rickettsia africae, the agent of African tick bite fever, were detected in camel
Hyalomma spp. ticks from Algeria [17,25].

Tick identification is essential for the epidemiological mapping of vectors and tick-
borne diseases. Accurate identification is important for effective control strategies [1,6].
Tick characterization is mainly based either on their morphology or on the use of DNA-
based methods [26]. Nevertheless, the morphological identification of ticks still requires
tremendous entomological expertise. In some cases, the identification criteria can be
ambiguous in immature stages (larvae and nymphs), damaged or engorged specimens,
and cryptic species. The method is also limited by the availability of relevant taxonomic
keys. As for molecular methods, they are laborious, expensive and usually conditioned by
the choice of the relevant target gene and by the availability of good-quality sequences in
GenBank [27,28].

Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
(MALDI-TOF MS) has been used in medical entomology for the identification of many
arthropods of medical and veterinary importance [27,29–31]. This proteomic tool has been
successfully used in identifying tick species by analyzing the proteins extracted from their
legs [27,32,33].

Our study aimed to test the ability of MALDI-TOF MS to identify tick species infesting
dromedary camels in Algeria and to detect associated microorganisms using molecu-
lar tools.

2. Materials and Methods
2.1. Ethics Statement

Risk assessment was submitted to and approved by the ethics committee and deci-
sion board of the Inspection Vétérinaire (Direction des Services Agricoles) of Tamanrasset
province of Algeria. This institution is affiliated with the Directions des Services Veteri-
naires (Algerian Ministry of Agriculture and Rural Development). To facilitate fieldwork,
collaboration was established with the veterinary inspector of Tamanrasset province. The
dromedary camels were handled by local veterinarians. Importation authorization was ob-
tained from the relevant entity (DDPP/Prefecture of Bouches-du-Rhône, Marseille, France)
in August 2018 under the number ER 11/18.

2.2. Study Area and Tick Sampling

In August 2018, nine camels were examined for tick collection at the livestock market
in the commune of Tamanrasset, which is located in the province of Tamanrasset, in
southernmost Algeria, at the border with Mali and Niger (22◦47′25.069′ ′ N, 5◦31′9.577′ ′ E)
(Figure 1). Ticks were carefully removed using forceps and placed in individually labeled
tubes for each camel. The tubes contained 70% ethanol and were stored at room temperature.
Three months later, samples were transported to Marseille, France, for subsequent analysis.
Tick morphological identification was performed by using standard keys and descriptions
with a Leica EZ4 binocular microscope [34,35]. Specimens were codified according to the
genus, species and sex.
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Figure 1. Map of Algeria showing the location of tick collection (Tamanrasset) and the examined
dromedary camels. ArcGIS 10.3 software (http://www.esri.com, accessed on 25 October 2021).

ArcGIS 10.3 software (http://www.esri.com, accessed on 25 October 2021) was used
to map the spatial localization of tick sampling in our study region.

All specimens were then subjected to MALDI-TOF MS analyses after being morpho-
logically identified. For some specimens, molecular identification was also carried out as
described below.

2.3. Sample Preparation for MALDI-TOF MS

Ethanol-preserved ticks were rinsed with distilled water and then dried with filter
paper. Four legs from only one side were dissected using a sterile surgical blade used
for MALDI-TOF MS analysis. The leg sample preparation was performed using a previ-
ously described protocol [27]. One microliter of the supernatant of the protein extract of
each sample was spotted in quadruplicate onto a MALDI-TOF plate (Bruker Daltonics,
Wissembourg, France). All spots were left to dry and then covered with 1 µL of HCCA
matrix composed of saturated α-cyano-4-hydroxycynnamic acid (Sigma, Lyon, France),
50% acetonitrile, 2.5% trifluoroacetic acid (Aldrich, Dorset, UK) and HPLC grade water [27].
The target plate was left to dry at room temperature and then introduced into a Microflex LT
MALDI-TOF Mass Spectrometer device (Bruker Daltonics, Bremen, Germany) for analysis.

The tick’s remaining body was longitudinally cut into two halves, one half being used
for molecular identification and the detection of microorganisms and the other half being
preserved at −20 ◦C [27].

2.4. Molecular Identification of Ticks

Molecular identification was performed in order to validate the morphological identi-
fication of specimens whose MS spectra were added to our in-house arthropod spectra MS
database. It was also carried out to confirm the identification assigned by MALDI-TOF MS
of randomly selected specimens morphologically identified as Hyalomma spp.

We followed the same DNA extraction protocol described elsewhere [27]. DNA ob-
tained from each tick specimen was subjected to standard PCR in an automated DNA ther-
mal cycler (Applied Biosystems, 2720, Foster City, CA, USA) to amplify a 455 base-pair frag-
ment of the 16S rRNA gene using tick 16S primers (F-CCGGTCTGAACTCAGATCAAGT
and 16S-R CTGCTCAATGATTTTTTAAATTGCTGTGG) [36]. The amplified products
were purified and sequenced as described previously [32]. The obtained sequences were
assembled and corrected by Chromas Pro1.77 (Technelysium Pty. Ltd., Tewantin, Aus-
tralia) and a BLAST query was performed against the NCBI GenBank database (http:
//www.ncbi.nlm.nih.gov/blast/ accessed on 13 May 2021).

http://www.esri.com
http://www.esri.com
http://www.ncbi.nlm.nih.gov/blast/
http://www.ncbi.nlm.nih.gov/blast/
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2.5. Microorganism Detection

All tick specimens were screened for the presence of Rickettsia spp., Bartonella spp.,
Anaplasmataceae spp., Borrelia spp., Coxiella burnetii and Piroplasmida using previously
described primers and probes [37–42]. qPCR was performed using the CFX96 Real-Time
System (Bio-Rad, Marnes-La-Coquette, France). We used positive controls from our labo-
ratory cultures (DNA from Rickettsia montanensis, Bartonella elizabethae, Anaplasma phago-
cytophilum, Coxiella burnetii, Borrelia crocidurae and Babesia vogeli) and negative controls
(qPCR mix without any DNA) for each qPCR plate. For C. burnetii qPCR, two intergenic
regions were targeted IS30A and IS1111. Only samples that tested positive for both genes
were considered positive. The tick specimens were considered positive when the cycle
threshold (Ct) value was <36 [43]. Anaplasmataceae-positive samples were then subjected
to standard PCR using 3 different primers for species determination: 16S rRNA (Ehr-16S-
D GGTACCYACAGAAGAAGTCC and Ehr-16S-R TAGCACTCATCGTTTACAGC) [44],
23S rRNA (Ana23S-212f ATAAGCTGCGGGGAGTTGTC and Ana23S-753r TGCAAAAG-
GTACGCTGTCAC) [37] and groEL (Ehr-groEL-F GTTGAAAARACTGATGGTATGCA and
Ehr-groEL-R ACACGRTCTTTACGYTCYTTAAC) [45]. The obtained sequences were as-
sembled, corrected by Chromas Pro (Technelysium Pty. Ltd., Tewantin, Australia) and then
compared with the sequences available in GenBank. The phylogenetic tree reconstruction
was performed using MEGA 7 using the maximum likelihood and the model selected by
MEGA 7 [46]. Bootstrap analyses were conducted using 500 replicates.

2.6. Spectral Analysis and Database Creation

The reproducibility of the MS profiles of tick species was assessed using both Flex
analysis V 3.3 and ClinProTools v.2.2 software packages (Bruker Daltonics, Germany) [32].
Intra-species reproducibility and inter-species specificity were validated by comparing and
analyzing the spectral profiles obtained from the four spots of each individual specimen.
Poor-quality spectra were excluded from the analysis (<3000 arbitrary units (a.u.) and
background noise). Cluster analysis (MS dendrogram) was performed with MS spectra
of specimens of each species using MALDI-Biotyper 3.0 software. The database was then
created by adding high-quality MS spectra of each species to our homemade arthropod
spectra MS database after molecular confirmation.

2.7. Blind Test

All MS spectra obtained from tick leg specimens were subjected to blind test analysis,
except for those used to create the MS database (MS reference spectra). The log-score values
(LSVs), ranging from 0 to 3, were computed by the MALDI-Biotyper v.3.0 (Bruker Daltonic,
Germany). The LSVs refer to the degree of homology between MS reference spectra and
MS spectra used for the blind test [47].

3. Results
3.1. Morphological Identification of Ticks

Overall, 91 adult ticks were collected from 9 examined camels. These included 41
(45.05%) males and 50 (54.95%) females, all belonging to the Hyalomma genus. Engorged
females (n = 41; 45.05% of all ticks) were only identified at the genus level. For those
identified at the species level, the most abundant tick species were H. dromedarii (n = 42;
46.15%), followed by H. excavatum (n = 4; 4.4%) and H. impeltatum (n = 3; 3.3%). One
H. anatolicum (1.1%) was also identified (Table 1).
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Table 1. Ticks used for the creation of MALDI-TOF MS reference database and blind tests.

Morphological ID No. of Ticks No. of Males No. of Females Good-Quality
MS Spectra

Molecular ID n = Sequence
GenBank ID %

No MS Reference
Spectra Created Blind Test MS Blind Test ID Log-Score Value

(LSV) [Low-High]

Hyalomma spp. * 41 0 41 40
H. dromedarii (n = 12)

H. excavatum (n = 2) 99.52–100% 4 36/36
H. dromedarii (34) 1.890–2.507
H. excavatum (2) 1.801–1.880

H. dromedarii 42 33 9 40 H. dromedarii (n = 8) 99.76–100% 8 32/32 H. dromedarii 1.701–2.431
H. impeltatum 3 3 - 3 H. impeltatum (n = 1) 99.75% 1 2/2 H. impeltatum 2.081–2.083
H. excavatum 4 4 - 4 H. excavatum (n = 3) 100% 1 3/3 H. excavatum 2.046–2.204
H. anatolicum 1 1 - 1 H. dromedarii (n = 1) 100% - 1/1 H. dromedarii 2.342

Total 91 41 50 88 27 14 74/74 - -

* Engorged specimens.
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3.2. MS Identification of Dromedary Camel Ticks

A total of 91 tick leg samples were subjected to MALDI-TOF MS. The visualization of
all MS spectra using Flex analysis v3.4 software showed that 96.70% (88/91) of MS spectra
were of excellent quality. Representative MS profiles of the three tick species are presented
in Figure 2A. Cluster analysis (Figure 2B) revealed inter-species specificity, as all specimens
of the same species were clustered on the same branch.
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This was confirmed by a principal component analysis (PCA) diagram generated by Clin-
ProTools software, which revealed a visible distinction between the three species (Figure 3A).

Our homemade MALDI-TOF arthropod spectra database (MALDI-Biotyper 3.0) was
upgraded with the MS reference spectra of 14 specimens, 12 H. dromedarii, 1 H. excavatum
and 1 H. impeltatum, all of which were molecularly identified. The remaining 74 good-
quality spectra from tick legs were subjected to a blind test against our upgraded database
(Figure 4). The results showed that of the 36 specimens of ticks morphologically identified
as Hyalomma spp., 34 were identified by MALDI-TOF MS as H. dromedarii, with LSVs
ranging from 1.890 to 2.507, and two were identified as H. excavatum, with LSVs ranging
from 1.801 to 1.880 (Table 1). For those morphologically identified as H. dromedarii, all
were identified by MALDI-TOF MS as H. dromedarii as well, with LSVs ranging from 1.701
to 2.431. Those morphologically identified as H. impeltatum were identified by MS as
H. impeltatum, with LSVs ranging from 2.081 to 2.083. The three ticks morphologically
identified as H. excavatum were identified by MS as H. excavatum, with LSVs of 2.046–2.204
(Table 1) (Figure 4).
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Figure 4. Study design showing two sections: tick identification and microorganism identification.
The first section is summarized by a flowchart including morphological identification results (1.1),
molecular identification results (1.2) and MALDI-TOF MS analysis results (1.3). The second section
includes qPCR and sequencing results using different genes.

The tick whose morphological identification was corrected by sequencing was iden-
tified by MS as H. dromedarii [LSV: 2.342], in agreement with the molecular identifica-
tion (Table 1). The median of all log-score values was 2.199, and the mean LSV was
2.172 ± 0.169. All of the obtained score values of each species, H. dromedarii, H. im-
peltatum and H. excavatum, are presented in Figure 3B. Our camel tick MALDI-TOF MS
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database is publicly accessible and can be downloaded with the following DOI number:
https://doi.org/10.35081/srfb-n029, accessed on 25 October 2021.

3.3. Molecular Identification of Ticks

In total, 17 specimens morphologically identified as H. dromedarii (n = 8), Hyalomma
spp. (n = 4), H. excavatum (n = 3), H. impeltatum (n = 1) and H. anatolicum (n = 1) were
submitted to sequencing for the MS database creation (Figure 4). BLAST analyses of
ticks morphologically identified as H. dromedarii, H. impeltatum and H. excavatum were
99.52–100% (MN960589), 99.75% (MN960583) and 100% (KU130429/MK601704), respec-
tively, identical to their homologous sequences available in GenBank. The sequence of the
tick morphologically identified as H. anatolicum was in fact 100% identical to the sequence
of H. dromedarii (MN960589).

The sequences of four randomly chosen specimens morphologically identified as
Hyalomma spp. were 99.76–100% identical to H. dromedarii sequences (LC654693/MN960589)
(Table 1). Finally, only the MS spectra of 14 molecularly confirmed ticks (H. dromedarii
(n = 12), H. excavatum (n = 1) and H. impeltatum (n = 1)) were added to our homemade
MS database.

Ten tick specimens morphologically identified as Hyalomma spp., of which eight were
identified by MALDI-TOF MS as H. dromedarii and two were identified as H. excavatum,
were also submitted to molecular analysis to verify the MS identifications (Figure 4).
The sequencing results revealed that eight specimens were 99.73–100% identical to H.
dromedarii (MN960589), and two specimens were 100% identical to H. excavatum (MK601704).
Molecular tools confirmed the identification of ticks that were unable to be morphologically
identified to the species level. The 16S sequences of the ticks obtained in this study have
been deposited in the GenBank database under the following accession numbers: OL672219,
OL672220, OL672221, OL672222, OL672223 and OL672224 for H. dromedarii, OL672225 for
H. impeltatum and OL672226 for H. excavatum.

3.4. Microorganism Screening

A total of 10/91 (10.98%) ticks tested positive by qPCR for microorganisms, including
C. burnetii (2/91; 2.20%) and Anaplasmataceae spp. (8/91; 8.80%). The two ticks positive
for C. burnetii using both the IS30A and IS1111 sequences were one H. impeltatum and
one H. dromedarii. Anaplasmataceae spp. were detected in two H. impeltatum and six
H. dromedarii (Figure 4). No Borrelia spp., Piroplasma spp., Rickettsia spp. or Bartonella spp.
were detected.

The sequencing of a fragment of the Anaplasmataceae 16rRNA gene was only success-
ful for three out of eight specimens. BLAST analysis revealed that the two sequences
obtained from two positive H. dromedarii ticks showed 100% similarity to Candidatus
Anaplasma camelii (MT510533) and A. platys (MN630836), respectively. One sequence
detected in the H. impeltatum tick revealed 99.63% similarity to Candidatus Midichloria
mitochondrii (endosymbiotic bacterium), which was previously detected in an H. dromedarii
tick from Tunisia (MK416236) (Table 2). The maximum likelihood (ML) phylogenetic tree
based on the 16S rRNA gene (Figure 5) showed that Anaplasma detected in H. dromedarii
belonged to the cluster of Ca. A. camelii and A. platys.

Table 2. Molecular characterization of Anaplasmataceae identified in ticks.

Tick Species Host 16SrRNA Gene
(n = Sequence; % ID)

23S rRNA Gene
(n = Sequence; % ID)

groEL Gene
(n = Sequence; % ID)

Hyalomma dromedarii
Camelus dromedarius

Candidatus A. camelii
(n = 2; 100%)

Anaplasma sp.
(n = 2; 99.78–100%) -

Hyalomma impeltatum
Candidatus Midichloria

mitochondrii
(n = 1; 99.63%)

Candidatus Ehrlichia
rustica

(n = 1; 97.28%)

E. Canis
(n = 1; 94%)

https://doi.org/10.35081/srfb-n029
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BLAST of the 23S rRNA gene sequences obtained from these three Anaplasmataceae-
positive samples showed that two sequences from H. dromedarii ticks were 99.78–100%
identical to an uncultured Anaplasma sp. (MN626401), and the sequence obtained from
H. impeltatum was 97.28% identical to Candidatus Ehrlichia rustica (KT364330) (Table 2).
The 23S sequence of Ca. A. camelii was not available in GenBank. The ML phylogenetic
tree based on the 23S rRNA gene (Figure 6) revealed that the two sequences from the
Anaplasma-positive samples (H. dromedarii) belonged to the main cluster of A. platys. More
specifically, the obtained sequences formed a separate and well-supported subcluster with
the uncultured Anaplasma (referred to as A. platys-like) isolated from the blood of camels
from Egypt (MN626401) but closely related to the subcluster of A. platys. One sequence of
Ehrlichia sp. (n = 1; 1.10%) obtained from H. impeltatum formed an independent subcluster.
However, it was close to the subcluster of E. canis.

The H. impeltatum specimen positive for Anaplasmataceae, whose sequence was close
to “Candidatus Ehrlichia rustica” for the 23S rRNA gene, was then subjected to sequencing
with the groEL gene for confirmation. BLAST analysis showed that the obtained groEL
sequence was 94.59% identical to E. canis (Table 2). The groEL ML phylogenetic analysis
(Figure 7) revealed that the sequence of Ehrlichia sp. (H. impeltatum) formed an independent
and well-supported (bootstrap support ≈ 100%) branch separated from the other Ehrlichia
spp., showing that it may potentially be a novel species of Ehrlichia.
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In summary, two ticks, one H. impeltatum and one H. dromedarii, were positive for
C. burnetii using both IS30A and IS1111 primers, confirming the presence of C. burnetii
DNA. In two other H. dromedarii (2.20%), we identified an Anaplasma sp. closely related
to A. platys using the 16S and 23S genes and a potentially new Ehrlichia sp. using 23S and
groEL in H. impeltatum. The sequences of the ticks and microorganisms have been deposited
in GenBank, and the accession numbers of these sequences are OL672236, OL672237 and
OL672238 for the 16SrRNA gene, OL672216, OL672217 and OL672218 for the 23S rRNA
gene and OL757650 for the groEL gene.

4. Discussion

In recent years, MALDI-TOF MS has been used to accurately and rapidly diagnose
bacterial species and identify fungi [48,49]. This method is now incorporated into diagnostic
routines in many clinical laboratories [50]. MALDI-TOF MS has also been used in medical
entomology to identify several species of arthropods, such as ticks, mosquitoes, bed bugs,
fleas, sandflies and others, using protein extracts from different body parts [28,31,33,51,52].
More recently, MALDI-TOF MS has also been used in malacology [53]. Once the device has
been purchased for a technological platform, there is no additional cost for its use because
this technique is inexpensive, simple and fast in comparison to conventional methods [26].
As previously mentioned, the robustness of MALDI-TOF MS for arthropod identification
has been evaluated for several years using laboratory-reared and field-collected samples.
MALDI-TOF MS profiling uses a highly standardized protein extraction method coupled
with a spectrum acquisition approach to generate reference spectra that will be specific and
reproducible enough to identify specimens of the same species [54]. MALDI-TOF MS has
especially shown its reliability and usefulness in field studies by significantly decreasing
the costs and time of identification but also allowing the detection of low-occurrence
species [55]

Camels can be infested with different tick species of various genera [9,10,14,15]. In
our study, the ticks belonged to the genus Hyalomma. The morphological identification
of engorged females was only possible at the genus level because some morphological
criteria were distorted and not visible, making their identification challenging. In our study,
three species, namely, H. dromedarii, H. impeltatum and H. excavatum, were identified using
molecular, morphological and proteomic tools. Similar observations have been reported
by other researchers on these tick species infesting camels in Algeria, Tunisia and other
parts of the world [10,18,56–58]. The camel tick H. dromedarii was the most frequent tick
species found on camels. This species is known to have a host preference for dromedary
camels but can also infest sheep, goats and horses, and it adapts well to extreme dryness
and desert climates [34]. However, another study in Tunisia showed that H. impeltatum was
the most abundant in Camelus dromedarius, followed by H. dromedarii, as described in [59].

In order to upgrade our database with MS spectra, as well as to randomly verify MS
identifications, we used the 16S rRNA tick gene for the sequencing and definitive identifi-
cation of ticks. We obtained a discrepancy between morphological and molecular/MALDI-
TOF MS identifications for one tick specimen, with the MS identification in agreement
with molecular identification. As previously stated, the taxonomy of the genus Hyalomma
includes several species with important within-species morphological variability, which
makes their morphological identification challenging, even for tick experts [60,61]. The
morphological error may also be due to the invisible characters of this specimen. We
therefore relied on molecular tools as well as MALDI-TOF MS to overcome morphological
errors and ambiguous identification.

The MALDI-TOF MS results were shown to be in agreement with all molecular
identifications. As for the ten specimens morphologically designated as Hyalomma spp.,
MALDI-TOF MS enabled the correct identification of those ticks at the species level. All
ticks were identified by MALDI-TOF MS with high LSVs. This study highlights the ability
of MALDI-TOF MS to overcome the limitations related to ticks’ taxonomical identification,
such as the identification of damaged or engorged specimens and the lack of taxonomy
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keys, suitable documentation and entomological expertise [26,32]. Walker et al. (2003)
reported that the accurate identification of H. dromedarii and H. impeltatum is confusing,
especially those in the engorged state [34]. Here, the MS dendrogram and PCA results
show that MALDI-TOF MS can discriminate between these two species, regardless of the
engorged state.

Molecular tools, including polymerase chain reaction and sequencing, have enabled
a major advance in the study of zoonotic pathogens and their reservoirs. In this work,
we were able to detect C. burnetii in ticks. This intracellular Gram-negative bacterium
is the causative zoonotic agent of Q fever. However, certain ruminants are considered
the principal reservoirs for the transmission of C. burnetii to humans. Coxiella burnetii
transmission to humans can be through aerosol inhalation or the ingestion of infected
animal products, such as unpasteurized or insufficiently pasteurized milk products or
derivatives [7]. Transmission can occur through birth products, including the placenta
and amniotic liquid. These represent a major risk to veterinarians and livestock or dairy
farmers [62]. This bacterium has been detected in more than 40 hard and at least 14 soft
tick species, but they are considered to play only a secondary role in the transmission to
humans [63]. In Algeria, C. burnetii has been detected in ticks (Rhipicephalus and Hyalomma)
and in the blood of small ruminants [10,64] and camels [10], but only one human case was
reported in 2012 in the northwest of the country [65]. Coxiella burnetii has also been found in
camels and their ticks in several countries [7,66,67]. The long-term persistence of C. burnetii
is possible in camels, and this may pose a threat to public health as well as breeding farms.
However, the role of camels in the transmission of C. burnetii should be further evaluated [7].
In our survey, C. burnetii was amplified in H. impeltatum and H. dromedarii. However, a
recent study on C. burnetii isolated it from H. impeltatum, H. dromedarii and H. excavatum in
Algeria [10]. In Tunisia, C. burnetii was reported in H. impeltatum and H. dromedarii, and in
Egypt, H. dromedarii was positive for C. burnetii [68,69].

In our study, we report the first detection in Algeria of an Anaplasma sp. in H. dromedarii,
and the species is closely related to canine A. platys. A potential new Ehrlichia sp. was
also detected in H. impeltatum. Bastos et al. [70] reported a novel species genetically close
to A. platys in camels and named it “Candidatus Anaplasma camelii”. Other studies have
recorded Ca. A. camelii in dromedary camels from Saudi Arabia [70], Tunisia, Morocco [20],
Nigeria [18], Kenya [71] and Iran [72]. Recently, the occurrence of “Candidatus Anaplasma
camelii”was reported in cattle and deer in Malaysia [73] and camel keds (Hippobosca
camelina) [71]. The prevalent variations are likely to be the result of differences in the distri-
bution of vectors in camel-sampling localities, reservoir hosts or tick control programs [56].
In Xinjiang, China, Li et al. (2015) reported the presence of canine A. platys in Camelus
bactrianus (two-humped camels) and their ticks [74]. However, this strain was genetically
divergent from the Anaplasma strain infecting dromedaries.

In order to characterize the obtained Anaplasmataceae species, we amplified frag-
ments of three genes, one of which (groEL) is specific to Ehrlichia. The phylogenetic tree
analysis based on the 16S rRNA gene revealed that the Anaplasma strain from H. dromedarii
in our study clustered with “Candidatus Anaplasma camelii” from the dromedary camel of
Kenya and A. platys from dog blood. To see whether the obtained sequences were identi-
cal to “Candidatus Anaplasma camelii”or A. platys and to differentiate the two Anaplasma
strains, we targeted the 23S rRNA gene because of its ability to identify a large panel of
Anaplasmataceae. As reported, this marker is ideal for discriminating between two closely
related Anaplasma species and potentially detecting new species [37]. The phylogenetic
analysis revealed that the obtained sequences formed an independent subcluster belong-
ing to A. platys. In addition, the partial 23S rRNA sequence of “Candidatus Anaplasma
camelii”does not exist in GenBank. Indeed, the 23S rRNA gene was able to separate
Anaplasma sequences isolated from H. dromedarii and A. platys sequences. Consequently, we
followed the proposition of Bastos et al. on the status of “Candidatus Anaplasma camelii”.

Furthermore, phylogenetic analysis based on 23S rRNA revealed that the sequence of
Ehrlichia sp. detected in H. impeltatum formed an independent branch close to the subcluster
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of E. canis. The phylogenetical analysis based on groEL and a gene specific for Ehrlichia
showed that the sequence of Ehrlichia formed an independent branch and was separate
from other species of Ehrlichia. Previously, Bastos et al. confirmed the presence of a novel
Ehrlichia species that is genetically close to E. canis, and another study revealed E. canis
infections in camels in Saudi Arabia [16,70]. Just recently, a study reported the presence of
an Ehrlichia sp. genetically related to E. canis, E. regneryi and E. ruminantium isolated from
the blood of sick camels and ticks (Amblyomma spp. and Rhipicephalus spp.) in Kenya [75].
The occurrence of canine pathogens in camels may be due to the close association and
cohabitation of camels and livestock in the desert area, which amplifies the chances of
spreading vector-borne diseases [16,71]. This may also be due to the fact that some dog
ticks and camel ticks have relatively low host specificity and/or are quite aggressive ticks.
In addition, high temperatures make ticks particularly aggressive and further decrease host
specificity. Nevertheless, further investigations are required to clarify the veterinary and
medical importance of the novel species.

5. Conclusions

Our study showed that MALDI-TOF MS is a useful tool for the rapid identification of
tick species stored in ethanol and that it could be used to overcome morphological limita-
tions. We report the first detection of an Anaplasma sp. close to A. platys in H. dromedarii in
Algeria and a new Ehrlichia sp. in H. impeltatum. Ehrlichia sp. and Anaplasma sp., genetically
related to A. platys detected in camels, have not been characterized yet. However, further
studies are necessary to clarify their potential zoonotic and veterinary risks. Additionally,
we detected C. burnetii in camel ticks (H. dromedarii and H. impeltatum), as previously re-
ported in Algerian camel ticks. In Algeria, camels and ticks could be a significant reservoir
or source for the transmission of Q fever to animals and humans.
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