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Abstract: The work reported here was aimed at improving the practical efficiency of the model-based
development and integration of electromechanical actuators. Models are proposed to serve as
preliminary design, virtual prototyping, and validation. The first part focuses on the early phases
of a project in order to facilitate the identification of modelling needs and constraints, and to
build a top-level electromechanical actuator model for preliminary studies and sub-specification.
Detailed modelling and simulation are then addressed with a mixed view on the control, power
capability, and thermal balance. Models for the power chain are firstly considered by focusing on
the key practical issues in modelling the electric motor, power electronics, and mechanical power
transmission. The same logic is applied to the signal and control chain with practical considerations
concerning the parameters of the controller, its digital implementation, the sensors, and their signal
conditioning. Numerous orders of magnitude are provided to justify the choices made and to facilitate
decision-making for and through simulation activities.
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1. Introduction

Systems engineering extensively uses the Vee-model [1] to represent the life cycle of a product
graphically. On the left-hand side of this representation, the system or the development activities are
sequentially decomposed into less complex entities, making their design much simpler. Composition
(or integration) is performed on the right-hand side of the Vee-model. In recent years, the Model-Based
Design (MBD) concept [2] has been implemented efficiently for many phases of the life cycle, thanks
to the tremendous increase in commercially available off-the-shelf simulation environments. In the
field of engineering, each activity of the Vee-model (mainly requirements engineering, architecting,
sizing, production, integration, verification, and validation) can now be supported by modelling and
simulation. The level of abstraction used in the model of a given product, which varies inversely
to the model complexity, depends on the current phase of the life cycle that it has to support. For
instance, [1] mentions four levels for systems simulation: architectural, functional, behavioral, and
device physical. Another view defines levels as a function of the model numerical complexity, as done
in [3]: perfect, linear, nonlinear, hard nonlinear, and fully switched. Historically, numerical simulation
started to be developed for local (device physical) models to solve partial differential equations, mainly
for stress and strain analysis. Then, more global (behavioral) simulation software appeared to solve
differential (then algebraic differential) equations, mainly to support dynamics and control design at the
system level. Today, there is an extensive and rapidly progressing range of simulation environments.
However, the development and integration of complex technological systems still suffer from some
lack of knowledge and know-how, documentation, and public dissemination.

For the system-level simulation of high-performance and safety-critical ElectroMechanical
Actuators (EMAs), this particularly concerns the validation of top-level specifications, during the early
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phases of a project, and the virtual validation (or even qualification) of the product integration. Here,
complexity comes from the numerous crosslinks that are often antagonistic and generate design loops:
multi-physical domains (mechanics, electromagnetics, heat transfer, and signal and power electronics),
multiple activities with their engineering skills (architecting, sizing, control design, measurement
and signal processing, verification, and validation). There are many references dealing with the
modelling and simulation of EMAs at a system level. On the one hand, most of them are related to a
single engineering task such as motor control (e.g., motor drive [4], control performance [5], or health
monitoring [6,7]). Consequently, the proposed models fail to support development and validation
efficiently when the above-mentioned crosslinks play a significant role. On the other hand, when the
EMA components are addressed in detail, they are generally studied with distributed-parameter or
very detailed lumped-parameter simulations—e.g., [8] for current sensors or [9] for motors. In practice,
these models impose too great a computational burden and require too much simulation time to be
used for virtual integration at the EMA or even aircraft level.

The following developments are intended to meet the need for models and practical considerations
for their implementation to serve the very early phase and virtual validation of EMAs. They have
been generated in recent collaborative projects involving scientists and industrialists at Technology
Readiness Levels (TRL) 3 to 6. The proposed concepts address both power and signal levels, with
special attention paid to sub-specification and virtual verification/validation relative to control design,
power sizing, and thermal balance. The second section introduces EMAs and their power and signal
architectures. Section 3 deals with the preliminary models of EMAs to serve the early project phases,
in particular decision-making and the validation of sub-specifications. The fourth section suggests the
best practices regarding the modelling process for later phases of the product life. Sections 5 and 6
are dedicated to the modelling and simulation (M&S) of the power and signal chains, respectively.
Although simulations were run in the Siemens/LMS Amesim environment here, all the developments
are presented in such a way as to make them applicable to any other simulation platform, either in
code form or using library models.

2. Electromechanical Actuator Designs and Architectures

An example of electromechanical design and integration for a flight control EMA is given in
Figure 1. The direct-drive electromechanical unit comprises:

• A Permanent Magnet Synchronous Motor (PMSM);
• A ball-screw;
• A rotor angular position sensor;
• A rod extension sensor;
• An electric-off brake;
• All sealing and bearing devices.

An example of the generic architecture of control and electronics is given in Figure 2 for
position-controlled EMAs. It includes:

• The power electronics with the three legs of the inverter;
• The Pulse Width Modulation (PWM) switching to drive the power transistors of the inverter;
• The direct and inverse Park transforms to implement Field-Oriented Control (FOC) in the

D-Q frame;
• The excitation and conditioning of current, speed, and position sensors;
• The current loops with limitations, flux weakening, Proportional plus Integral (PI) controller with

anti-windup, and back electromotive force (BEMF) compensation;
• The motor speed and rod position loops with PI control and anti-windup;
• The clocks used for each control loop, speed sensor conditioning, and PWM;
• The DC-link, including the diode, capacitance, braking resistance, and chopper.
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control EMA for regional aircraft; see Figure 3. The actuator has an output power of 400 W. The 
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respectively. These choices avoid significant alterations to the open-loop phase margins occurring 
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Figure 2. Example of the generic architecture of an EMA control unit (electromechanical unit
partially shown).

Historically, system-level simulation was introduced to support dynamic analysis and control
design. With the rapid growth of MDB, progress of simulation techniques, and availability of
off-the-shelf commercial simulation software, system-level simulation is now used to serve wider and
wider engineering needs. For EMAs, this particularly concerns the power capability and power drawn
from sources, natural and closed-loop dynamics, thermal balance, energy balance, transients during
mode switching, or even responses to faults. The next sections introduce models and summarize the
lessons learnt, experience feedback, and practical considerations using the illustrative example of a
flight control EMA for regional aircraft; see Figure 3. The actuator has an output power of 400 W. The
bandwidths of the control loops are typically 10 Hz for rod position, 100 Hz for motor shaft speed, and
800 Hz for motor currents. The sampling frequencies are set to 500, 4000, and 8000 Hz, respectively.
These choices avoid significant alterations to the open-loop phase margins occurring due to the phase
lags introduced by sampling.
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load, are known, they can be considered to constitute the overall equivalent inertia 𝐽௘ at the motor 
shaft level. The mechanical impedance of the load, which acts downstream of the position loop, can 
also affect the actuator closed-loop performances. Figure 4 applies in the very common case where it 
is of low importance: the aircraft or system designers have managed the load kinematics to avoid any 
flutter or shimmy, without need for force feedback for active load damping. The proposed top-level 
EMA model only includes an outer position control loop with a proportional control of gain 𝐾௣. 
Damping is provided by an inner speed loop that controls the motor speed Ω with pure proportional 
gain 𝐾ஐ. The current (or electromagnetic torque) loop dynamics are considered as sufficiently rapid 
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Figure 3. Image of the actuator studied in the frame of the Astib project, courtesy of Umbra.

3. Top-Level EMA Model

In an MBD process, there is a need for a top-level model of the EMA. This preliminary model is
intended to validate the EMA specifications that are derived from the mission needs at the aircraft
level. In particular, this involves the power capability and closed loop performances. At this stage, the
main issue is to develop an EMA model that is sufficiently simple and requires a minimal number of
parameters because the EMA has not yet been designed.

3.1. Proposed Model

A top-level model is proposed in Figure 4. In the most common cases (flight controls and landing
gears), the EMA is position-controlled: the rod extension x must follow the position demand x∗ (pursuit)
and reject the disturbance coming from the load force F (rejection).
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Figure 4. Top-level model of an EMA for the validation of EMA power and control specifications.

This model can be used in the common general case where the natural behavior of the EMA in
pursuit mode is dominated by the motor rotor inertia. If other inertias, including that of the driven
load, are known, they can be considered to constitute the overall equivalent inertia Je at the motor shaft
level. The mechanical impedance of the load, which acts downstream of the position loop, can also
affect the actuator closed-loop performances. Figure 4 applies in the very common case where it is of
low importance: the aircraft or system designers have managed the load kinematics to avoid any flutter
or shimmy, without need for force feedback for active load damping. The proposed top-level EMA
model only includes an outer position control loop with a proportional control of gain Kp. Damping is
provided by an inner speed loop that controls the motor speed Ω with pure proportional gain KΩ. The
current (or electromagnetic torque) loop dynamics are considered as sufficiently rapid (around 1 kHz)
to be neglected with respect to the position and speed loop dynamics (respectively, in the ranges of
1–10 Hz and 50–200 Hz in common applications). Therefore, the basic model assumes that the effective
electromagnetic torque Te is established instantaneously and without limitation in response to the



Actuators 2020, 9, 94 5 of 29

torque demand T∗e that is issued by the speed controller. In Figure 4, the block-diagram of the “Power”
block, is established from Newton’s second law applied to the motor shaft. The transmission ratio Kt

characterizes the mechanical power transformation between the EMA motor shaft and rod—e.g., for a
direct-drive EMA:

Kt = 2π/l, (1)

where l is the lead per revolution of the nutscrew.
The compliance and backlash of the EMA mechanical transmission are not modelled at this

preliminary level. For common aerospace applications, they are sufficiently low to have no significant
effect on the power consumption. Thus, they have only little effect on the actuator closed-loop dynamics
if control is properly addressed. If the power limit and frictional losses are neglected, the EMA model
(Figure 4) can be simplified and redrawn as a pure second-order system, as shown in Figure 5 without
dashed boxes.
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Figure 5. Equivalent top-level model of the EMA when non-linear effects are neglected.

In this case, the pursuit and rejection transfer functions are given by:

x =
1

1 + 2ξ
ωn

s + 1
ωn2 s2

x∗ −
1

K f

1(
1 + 2ξ

ωn
s + 1

ωn2 s2
)F, (2)

where K f = KpKtKΩ is the stiffness of the closed-loop EMA.
With reference to Figures 4 and 5, the position and speed proportional control gains are directly

related to the undamped natural angular frequencyωn and the dimensionless damping ratio ξ. As
given by Equation (3), they only involve the transmission ratio Kt and the equivalent rotor inertia Je,
which merges all the inertance effects of the moving bodies at the motor rotor level.{

Kp = Ktωn/2ξ
KΩ = 2 Je ξ ωn

. (3)

Having only two state variables and three parameters (plus a very few others related to friction
and the power limit if needed), this models suits the early phases of the EMA development process
particularly well, where the intention is to model the specification itself—e.g., using a Property Model
Methodology (PMM) [10].

It can be seen from Equation (2) that there is a static position error under the permanent external
load when pure proportional controllers are used. The addition of an integral action of gain Ki in the
speed controller removes this static dependence on the external load. This controller introduces a
first-order effect of time constant:

τ = KΩ/Ki. (4)

This is an indicator of how fast the external load force disturbance is rejected. As the pole −1/τ is
significantly faster than the pole −ξ ωn, there is no significant change in the pursuit transfer function
x/x∗, while the load rejection transfer function x/F is multiplied by the integral effect of the transfer
function τs/(1 + τs).

At the project level, the top design parameters are ξ and ωn. The control gains Kp and KΩ are
obtained from these values if the motor torque constant KT and equivalent inertia Je are known. These
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values can be obtained using estimation models—e.g., based on scaling laws [11]—given the range of
EMA output power (velocity and force).

Beside the dominant effect of rotor inertia, power limitation and friction losses cannot be omitted
if the aim is to address the EMA power capability, energy consumption, and even closed-loop stability
or accuracy correctly.

3.2. Power Limitation Due to the Motor, Power Electronics, and Electric Supply

The effective motor torque is limited by several factors: electric supply, power electronics, iron and
copper losses at the motor, and even the control strategy (e.g., FOC). A power limit block is therefore
introduced to represent the airgap steady-state power capability, and the torque demand T∗e issued
by the speed controller is thus limited by a dynamic saturation as a function of the motor angular
velocity. This limitation is, for example, defined using a 1D table that covers the four power quadrants
of operation. In its simplest version, the table is symmetrical and provides the stall torque at null
speed, the rated torque at rated speed, and the maximal speed at null torque.

3.3. Friction Losses in the EMA Mechanical Transmission

The friction losses in the EMA mechanical transmission depend on the transmitted load and
velocity (and temperature, which is generally taken to be constant for a top-level model). They are
introduced into the generic model, shown in Figure 4, with a block that alters the load force as a function
of velocity. As a minimum, this block has to ensure that friction forces are dissipative, opposing motion
(or opposing the tendency to move in stuck conditions). A simple and common approach [12] consists
of considering:

• The load-dependent friction through direct and indirect efficiencies;
• The load-independent friction through tare losses to reproduce the no-load driving torque and

the no-drive back-driving load force.

Tare losses are particularly important because they directly influence the EMA power capability
and thermal balance—e.g., as reported in [13].

4. Detailed Models of EMA

There is also a need for detailed models, or virtual prototypes, of EMAs to serve as virtual
integration, verification, and validation. Although a single virtual prototype is welcome to address the
various engineering needs listed in Section 1, the main issue comes from over-modelling. There is a
wide offer of commercial simulation environments that include numerous, detailed component libraries.
Therefore, it becomes extremely easy to build a very detailed multi-physics, lumped-parameter model
by a click-and-drag sequence. Over-modelling thus becomes the default solution to compensate for
the lack of knowledge for making decisions during the modelling process. Of course, the detailed
model must be sufficiently realistic to avoid missing any effect that would change the conclusions
drawn. However, over-modelling increases the computer burden for simulation and requires numerous
parameters, many of which are kept at their default value in the absence of data or knowledge. The
main challenge is really to actively master the modelling activity to obtain a model having just-sufficient
complexity. The next sections of this paper provide key ideas and put forward some lessons learnt
regarding this objective.
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4.1. Dynamics in Presence

A preliminary mapping of the dynamics that are potentially present in the EMA under study
provides efficient support to the model development. As it comes at the beginning of the detailed
modelling process, this mapping does not require accurate values. However, it can be updated as the
project goes on, at least for capitalization, to provide inputs to future projects. It is important to note
that this mapping is a source of important information for decision-making during the development of
real-time models for integration tests [14]. An example of such mapping is given in Figure 6. The limit
of time scales reproduced by the model is set according to the modelling objective.Actuators 2020, 9, x FOR PEER REVIEW 7 of 28 
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4.2. Modelling Needs vs. Engineering Needs

Another way to support decision-making during model development has been applied with
success [15]. In particular, it facilitates discussions between project leader, partners, domain experts,
and person(s) in charge of simulation. It consists of making a table that links the engineering needs
(columns) to the phenomena that must be modelled or can be ignored (lines). An example is given in
Table 1, which is inspired by [15]. Different levels of models (e.g., functional, basic, advanced, expert)
are identified and configured for each engineering need. In that manner, the model development
follows an incremental process, in phase with the project progress. Each cell must be marked as
mandatory (M), optional (O), or useless (U). In addition, it is worth introducing the consequences of
modelling choices on the model complexity and computation burden, as shown on the right side of the
figure. The following sections focus on the phenomena that generally give rise to much discussion and
many modelling issues.
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Table 1. Example of matrix for decision-making in modelling vs. engineering needs.
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3—Discrete with timing

Sensors
1—Perfect (pure gain)
2—Plus accuracy, noise and dynamics
3—Plus detailed conditioning

Power electronics
1—Perfect (modulated power transformer)
2—Basic (averaged, with efficiency)
3—Advanced (losses, heat, switched)

Electric motor
1—Perfect (power transformer)
2—DC Equivalent (copper losses, inductance, inertia)
3—D-Q equivalent (copper losses, inductance, inertia)
4—3-phase, plus iron losses, cogging torque, cyclic L, saturation

Mechanical transmission
1—Perfect (pure gain)
2—Plus inertia and simplified friction
3—Plus detailed friction, compliance and backlash
4—Plus multiple degrees of freedom
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5. Detailed Modelling of the Power Chain

5.1. Motor and Power Electronics

The modelling of power electronics and motor cannot be done independently, as the model
interfaces must match. In practice, there are only a few possible combinations that are really interesting
in an MBD approach. Although rarely addressed, modelling the DC-link is important, as it impacts the
voltage supply of the inverter, the heat losses, and the spikes generated in the electric supply.

5.1.1. Motor Model

As mentioned in Table 1, there are different modelling levels for the EMA motor. In a progressive
modelling approach, it is therefore of major importance to ensure continuity between the uses of
these models, in particular by keeping the same current controller setting and supply parameters.
However, common models do not meet this continuity constraint and the simplest equivalent DC
models—e.g., [16]—do not address control, heat losses, and electric power consumption simultaneously.

This section intends to meet this need. The motor model development has followed a bottom-up
approach (from the three-phase to the top-level model) in order to easily identify how to enhance
the common DC model in order to reproduce the effects coming from the three-phase realization of
the motor.

Three-Phase Model and Motor Constants

A three-phase model (e.g., [17]) has the same physical electrical interfaces as the motor under
study, as shown in Figure 2. Consequently, it directly connects to the model of the three-leg inverter.
Realism can be progressively increased—e.g., as in [18]—to make an expert-level model that includes
cyclic inductances, cogging, magnetic saturation and iron losses, and multi thermal bodies. In
practice, significant work time and effort are wasted, in particular in collaborative projects, due to a
misunderstanding of the motor parameters and variables that are used by their models. The PMSM
constants, whatever the type of model considered, are hardly ever given with sufficient information:
peak or Root Mean Square (RMS), line-to-line (LL), or line-to-neutral (LN). Figure 7 is introduced to
settle this issue and avoid any misunderstanding. In particular, it clearly points out when the BEMF
constant KE and torque constant KT are equal and have to be used in the equivalent DC model of
the PMSM to be power conservative. The relations between the different BEMF constants follow the
relations between voltages, while the relations between torque constants are the inverse of the relations
between currents. It is also important to mention explicitly how the resistance and inductance of the
windings are defined (line-to-line or line-to-neutral).
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Two-PhaseMmodel

The Clark and Park transforms enable the three-phase model to be expressed as a two-phase
model using the d-q (direct-quadrature) frame [17]. Such a model is mainly used as a control to
simplify the control design and implementation, as mentioned in Figure 2. It is often implemented
internally in three-phase motor models because it reduces the model order (two instead of three) and
involves variables that are useful for motor operation analysis. The direct dq0 Clark/Park transform
establishes a link between the electrical quantities (voltages or currents) when they are expressed in
two different frames. Frame a-b-c corresponds to the electrical ports of the motor for a star winding
connection. Frame d-q corresponds to the direct and quadrature axes attached to the rotor. The dq0
transform given in Equation (5) combines the Park transform [19] and Clarke transform [20]. When
power and energy considerations are of interest, it is preferred because it is power-invariant, unlike the
Park transform, which is voltage-invariant (factor

√
2/3 is not present).

[
Xd
Xq

]
=

√
2
3

 cos(θe) cos
(
θe −

2π
3

)
cos

(
θe +

2π
3

)
−sin(θe) −sin

(
θe −

2π
3

)
−sin

(
θe +

2π
3

) 


Xa

Xb
Xc

. (5)

The elements of the transformation matrix are time-dependent as they use the motor electric angle
θe (the rotor/stator relative angular position pθ, where p is the number of pole pairs of the motor).
Figure 8 displays a block-diagram model of a non-salient pole motor in the d-q frame, when the dq0
transform is used. Dashed lines emphasize the influence of the d-axis on the q-axis.

Actuators 2020, 9, x FOR PEER REVIEW 10 of 28 

 

Two-PhaseMmodel 

The Clark and Park transforms enable the three-phase model to be expressed as a two-phase 
model using the d-q (direct-quadrature) frame [17]. Such a model is mainly used as a control to 
simplify the control design and implementation, as mentioned in Figure 2. It is often implemented 
internally in three-phase motor models because it reduces the model order (two instead of three) and 
involves variables that are useful for motor operation analysis. The direct dq0 Clark/Park transform 
establishes a link between the electrical quantities (voltages or currents) when they are expressed in 
two different frames. Frame a-b-c corresponds to the electrical ports of the motor for a star winding 
connection. Frame d-q corresponds to the direct and quadrature axes attached to the rotor. The dq0 
transform given in Equation (5) combines the Park transform [19] and Clarke transform [20]. When 
power and energy considerations are of interest, it is preferred because it is power-invariant, unlike 
the Park transform, which is voltage-invariant (factor ඥ2 3⁄  is not present). 

൤𝑋ௗ𝑋௤൨ = ටమయ ቈ 𝑐𝑜𝑠(𝜃௘) 𝑐𝑜𝑠(𝜃௘ − మഏయ ) 𝑐𝑜𝑠(𝜃௘ + మഏయ )−𝑠𝑖𝑛(𝜃௘) −𝑠𝑖𝑛(𝜃௘ − మഏయ ) −𝑠𝑖𝑛(𝜃௘ + మഏయ )቉ ൥𝑋௔𝑋௕𝑋௖ ൩. (5)

The elements of the transformation matrix are time-dependent as they use the motor electric 
angle 𝜃௘ (the rotor/stator relative angular position 𝑝𝜃, where 𝑝 is the number of pole pairs of the 
motor). Figure 8 displays a block-diagram model of a non-salient pole motor in the d-q frame, when 
the dq0 transform is used. Dashed lines emphasize the influence of the d-axis on the q-axis. 

 
Figure 8. PMSM equivalent model in the d-q frame: dq0 transform, non-salient poles. 

The magnetic fluxes in the d-q frame are expressed as: 𝜓ௗ = 𝜓௠ඥ3 2⁄ + 𝐿ௗ 𝐼ௗ, (6)𝜓௤ = 𝐿௤ 𝐼௤. (7)

From a pure control view, the d-q model is interesting because it can be directly connected to 
the  𝐼௤ and  𝐼ௗ current controllers. However, pure two-phase motor models are rarely used when 
energy (conduction and switching losses at inverter), power limitations (supply voltage), and 
switching strategy (space vector modulation) have to be considered. In this case, they need to 
interface with an equivalent two-phase inverter model, which is not easy to develop. 

Figure 8. PMSM equivalent model in the d-q frame: dq0 transform, non-salient poles.

The magnetic fluxes in the d-q frame are expressed as:

ψd = ψm
√

3/2 + Ld Id, (6)

ψq = Lq Iq. (7)

From a pure control view, the d-q model is interesting because it can be directly connected to
the Iq and Id current controllers. However, pure two-phase motor models are rarely used when
energy (conduction and switching losses at inverter), power limitations (supply voltage), and switching
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strategy (space vector modulation) have to be considered. In this case, they need to interface with an
equivalent two-phase inverter model, which is not easy to develop.

Equivalent DC Motor Model

Equivalent DC motor models are used extensively for their simplicity (a single-state variable, no
trigonometric functions), in particular during the early phases of design. Unfortunately, the models
published so far—e.g., [16]—are not intended to reproduce the dynamics, power drawn at supply, and
heat power simultaneously. The equivalent DC model proposed in Figure 9 is easily derived from the
d-q model if the current Id is assumed to be null at all times.
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All the dashed lines and associated blocks have therefore been removed in Figure 8. This condition
is achieved with a perfect FOC, implementing a constant torque angle control [17]. According to
Figure 7, the KE and KT constants are equal. The winding resistance and inductance are taken line
to neutral. In the linear domain of the PWM operation, the available line-to-line RMS voltage is

U′DC =
√

3
2
√

2
UDC. Figure 10 compares the responses of the full model of PMSM (Figure 2) and the

equivalent DC model (Figure 9).
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The results are obtained in the following conditions:

• Only a current loop is implemented with a P-I controller. The controller gains and sampling
frequencies are identical for both models.

• The system is at rest at time 0 (no current demand, no rotor speed). A step current demand is
applied at time t1, then a step motor speed is imposed at time t2. With these excitations, the
operation remains below the saturation limits.

• Both models are supplied with the same constant DC bus voltage.
• Current sensors are perfect in both models.
• In the full model, a symmetric triangle PWM is used to drive the three-phase inverter. The I∗d*

setpoint is set to null. Flux weakening and BEMF compensation are not enabled. The losses in
power electronics are quasi null. The Id current controller makes the Id current loop five times
faster than the Iq one.

It is clear that both models produce the same responses for the three engineering needs addressed:

• Control design: same static and dynamics for current and torque.
• Thermal balance and energy losses: same motor copper losses.

• Power drawn: same current from DC voltage source, thanks to the
√

3/
(
2
√

2
)

factor in the
equivalent DC motor model.

It is, however, important to recall that this excellent equivalence is altered when saturation occurs.
This is the price to pay to obtain a simplified model. Firstly, the voltage Ud induced by the current
Iq and the rotor speed Ω (coupling effect visible in Figure 8) represents a non-negligible part of the
maximum voltage U′DC. Secondly, the Id current can be demanded by the controller in the case of
flux weakening, or generated by the motor when its control is lost due to the saturation of the duty
cycle demand. In practice, there is a beneficial effect as the PWM can operate in a pseudo linear range
when the duty cycle demand does not saturate too much [21]. Extending the operation over this range
and even over the non-linear range generates unexpected Id current with all its above-mentioned
effects. In these conditions, it is almost impossible to make a single equivalent DC motor model that is
simultaneously representative of the power capability, power consumption, and energy losses.

5.1.2. Model of Power Electronics

Whatever the type of electronic control of motor power (H-bridge for DC motors, inverter for
PMSM), several modelling options exist. For each leg, the association of two independent models, one
for each solid-state switch, generates an algebraic loop for the calculation of the leg output voltage.
This issue is resolved by making a single model of the whole leg in which the two cell models are
combined analytically.

Linear models can be simulated quickly. They merge the diode and transistor conduction
characteristics to make a single linear resistor for each commutation cell. As far as non-linear models
are concerned, the voltage threshold and switching losses (possibly plus other effects) are considered
to reproduce the energy losses with better realism.

Averaging can also speed up the simulation significantly, as no switching events occur. Full
averaging applies to the whole leg set. It delivers the motor line voltages (Ua, Ub, Uc) vs. the voltage
demands (U∗a, U∗b, U∗c in Figure 2) without any need to model the PWM. Intermediate averaging
calculates the mean operation during one PWM period for each leg. Of course, averaging reduces
the realism of the simulation, in particular regarding the ripple and energy losses in the presence of
significant electric load inductance.

When the model must reproduce the control performance, the power capability, and the energy
consumption at the same time, it is mandatory to resort to non-linear, non-averaged models of the
power electronics.
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5.1.3. Model of DC-Link

The DC-link supplies the power electronics that control the motor. Its operation performs two main
functions: it stores electric energy to meet the high transient current demands from opposite loads, and it
avoids regenerative currents being sent back to the centralized power source under high aiding loads.
However, its operation also generates side effects. The DC-link voltage is not constant; regenerative power
is transformed into heat power when the DC-link voltage reaches the acceptable limit. It draws transient
positive currents to charge the capacitors when the DC-link voltage drops below the allowed value. In
an MBD approach, it is therefore important to make a DC-link model reproducing both functional and
parasitic effects. This helps to assess the closed loop performances, thermal balance and stability, and
energy consumption. It is also a precious means of validating the sizing of the power components of the
chopper. Modelling the DC-link is generally not considered for EMA simulation—e.g., [22]. A DC-link
model is proposed in Figure 11. In this simple version, the chopper average operation is modelled
using a variable resistor that is piloted according to the DC-link voltage. The table reproduces the static
characteristic, while the second-order model reproduces the mean dynamics. From a numerical point of
view, it also serves to avoid an algebraic loop. Once again, the model is thermally balanced thanks to the
thermal port. Energy and power sensors are added for analysis.
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5.2. Friction

Friction M&S must be addressed with care, because it directly affects the soundness of the
conclusions drawn from simulated responses. This concerns the closed-loop performance (accuracy
and stability) in particular, as well as the power capability, thermal balance, and energy consumption.
Friction losses appear at many locations in EMAs: mechanical motion transformation (e.g., nutscrew
or gears), bearings (e.g., axial thrust bearing or anti-rotation), joints (e.g., eye ends or gimbals for
anchorage to supporting a frame or attachment to a driven load), plain bearings (e.g., for cylindrical
pairs), or power management devices (e.g., brake, clutch, or torque limiter). Moreover, friction is
caused by various phenomena at each location: rolling, sliding, drag, churning, splashing, etc. This
makes friction M&S at the EMA level really challenging.

5.2.1. Time-Dependent Variables Affecting Friction

In the field of control, friction is generally viewed as a speed-dependent phenomenon. Starting
with pure viscous friction, models enable linear analysis to be employed widely for preliminary control
design. Commonly, the models are then improved for numerical simulation, considering Coulomb
friction, Stribeck, and Dahl effects. Load and temperature effects are ignored most of the time. In
contrast, in the field of mechanical design, friction is considered as mainly load-dependent, in particular
with the extensive use of mechanical efficiency for power sizing. Temperature and speed effects are
only partly documented in component datasheets [23].
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According to tribology fundamentals [24], sliding friction forces can be expressed as the product of
the normal force at contact and the friction coefficient. This coefficient depends on the Hersey number,
SN, which involves the kinematic viscosity, ν, of the lubricant medium; the relative speed of facing
bodies at contact, Vr; and the pressure, P, in the lubricant medium at the interface between bodies.
Unfortunately, the lubricant viscosity depends hugely on temperature—e.g., in a 370:1 ratio between
−40 and +100 ◦C [25]. Therefore, it is clear that, for a given design, the sliding friction depends on the
temperature, relative speed, and normal load at contact. It is interesting to generalize this dependency
to make a generic friction model that also applies to other sources of friction—e.g., as documented by
ball- or roller-bearing suppliers [26].

5.2.2. Management of Sticking/Sliding Transition

The numerical management of the transition between sticking and sliding states is a well-known
issue in friction M&S. This comes from a change in causality for friction calculations; in sticking
conditions, the friction force opposes the other forces, while in sliding conditions, the friction force
opposes relative motion. There are many candidate solutions for this issue which have been extensively
documented—e.g., [27–29]. The most common ones are available in the commercial simulation
environments:

• The hyperbolic tangent model is very simple to implement, involving a single parameter to manage
the sticking/sliding transition. It enables each location of friction be modelled independently. The
main drawback lies in its inability to produce true stiction, unlike the following models, because
the simulated friction force is null at null speed. Moreover, it may generate numerical instability in
particular cases. This is due to the huge equivalent viscous effect produced near the null relative
speed to smooth the sign function.

• The Dahl and Reset Integrator models, or their generalization as the LuGre model, solve the
transition issue by considering the compliance of the asperities of the facing surfaces in sticking
conditions. This additional energy storage effect solves the causality issue by introducing a
first-order differential model. Unfortunately, the combination of contact stiffness with inertia
effect generates high-frequency natural dynamics that significantly increases the computational
burden of the integration algorithm. In practice, there is generally no engineering need to model
this compliance, except in very specific cases such as mirror positioning for imaging satellites.
Nevertheless, this type of model is often used implicitly for its ability to solve the transition issue.

• The “rendez-vous” model is very efficient but requires the numerical solver to be able to accurately
locate a state-event between two integration steps (external forces exceeding the breakaway friction
force for starting, or speed crossing zero for possible stopping). It also generates a multitude of
search functions that significantly increase the computational burden.

• Non-causal simulation languages—e.g., Modelica [30]—and associated solvers enable a particular
type of friction modelling that also reproduces true sticking. As an additional advantage, they
also allow inverse simulation, which is welcome for sizing. However, non-causal friction models
are implemented with assumptions for inverse simulation that are not always explicit. So far,
it is the author’s experience that industry sometimes hesitates to switch to these tools because
the engineers concerned are not sufficiently experienced and they fear that the tools may be
insufficiently mature for use in industrial projects.

• The Karnopp model is efficient to reproduce the true stiction and manage the sticking/sliding
transition with a little computational expense. It uses a single parameter, the velocity threshold,
below which relative speed is forced to null. Unfortunately, this means that the model is intimately
linked to the inertance model (mass for translation, moment of inertia for rotation). Therefore, the
friction model cannot be dissociated from the inertance model—with all the consequences for
causalities (e.g., difficulty in simulating friction between two moving bodies, or multiple frictions
on a single body).
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5.2.3. Proposed Generic Friction Model

According to the previous section, it is considered that a generic friction model meeting the
engineering needs for EMA design must:

• Aeproduce true stiction at the lowest computational expense;
• Enable multiple locations of friction to be modelled for a single rigid assembly;
• Enable the load, temperature, and velocity effects to be considered;
• Enable implementation within a wide set of commercial simulation environments, in particular

without resort to non-causal simulation languages and associated SW;
• As far as possible, reuse a friction model from the standard library of the simulation SW, which is

documented, verified, and numerically robust.
• Independently of the management of the sticking/sliding transition, the proposed friction model

architecture is given in Bond-graph and block diagram forms in Figure 12. It involves:
• Two mechanical power ports that feed the model with the linear velocities, V1 and V2, of each of

the facing bodies (or angular velocities Ω1 and Ω2), and obtains the friction force F f (or torque T f )
applied to each facing body from the model.

• A thermal power port that feeds the model with the temperature Θ at the contact interface, and
gets the heat power P generated by friction from the model.

• A signal port that inputs the transmitted load force, Fl (or torque Tl), to introduce the effect of the
normal force at the contact location.

• A parametric function or a multi-D table that shows the friction force vs. relative speed,
temperature, and transmitted load.
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transition management), (a) Bond-graph representation, (b) block-diagram representation.

Thus, the generic friction model is ready for use whatever the contributing factor considered.
The load force affects the friction force not only through its magnitude but also through its sign,
which, when multiplied with the relative speed, determines the power quadrant of operation (aiding
or opposite load). The sign of the external load itself may directly affect friction in very particular
cases—e.g., in non-symmetrical axial thrust bearings for landing gear-extension/retraction EMAs. In
any case, the proposed model architecture ensures energy balance at the model interfaces. It can be
transposed for the friction torque by replacing forces with torques and linear velocities with angular
velocities. This generic model has been successfully implemented in various simulation environments,
such as Matlab-Simulink, AMESim, and Dymola-Modelica.

5.2.4. Application to EMA

Two moving assemblies, each forming a rigid body, can be identified in Figure 1. The rotating
one includes the motor, the resolver and brake rotors, the inner races of bearings, and the screw nut.
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The translating one includes the screw, EMA rod, Linear Variometer Differential Transformer (LVDT)
measuring the rod extension, and ball joint lug end. The anti-rotation device is intended to make a
prism pair between the screw and the EMA housing. It balances the screw torque that is transmitted
by the nut. Therefore, it generates a friction force on the rod that depends on the torque driving the
screw. The transverse loads at rod seals and wear ring are negligible, making their friction force quasi
load-independent. Similarly, the axial thrust bearing is intended to balance the axial force produced
by the screw on the nut. It generates a friction torque that depends on the axial force developed by
the screw. The friction of seals on the rotating assembly is load-independent. The nutscrew friction
applies between the nut and the screw, but its detailed modelling is not straightforward [31] and
requires parameters that are difficult to handle. For this reason, the common approach is to lump the
nutscrew friction at either its rotating or its translating side. In the proposed model, it is considered at
the rotating side, as illustrated in Figure 13.
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Figure 13. Friction effects in a direct drive EMA (for aiding load, arrows are reversed).

It is worth noting that the present model does not consider transverse loads that are generated
on the EMA bodies. However, such forces are introduced in practice by friction (at EMA anchorage
to supporting frame and transmission to load) and inertance effects (e.g., pivoting of the EMA in
a three-bar mechanism). If necessary, a 2D or 3D lumped-parameter model of the EMAs and their
kinematics to load can be developed using the mechanical libraries of the simulation software. In this
case, the external load used to modulate the friction model becomes a compound value—e.g., made
up of radial and axial forces for ball bearings. However, such a 2D or 3D mechanical model requires
numerous additional parameters, such as the stiffness and damping matrixes at each hinge joint. These
parameters are generally unknown. The addition of high stiffness generates high-frequency dynamics
that significantly slow down the simulation. This is why these effects are generally not modelled, as
long as the transverse forces remain much lower than the axial forces.

The presence of various locations of friction sources acting on a single moving assembly can be
dealt with in different manners for simulation. As the intention is to reproduce true sticking, tanh
friction models must be set aside. Lugre models would require local deformation of contact asperities
to be introduced at each friction location. This would require highly uncertain parameters to be set
and add unnecessary dynamics that would hugely increase the computational load. Non-causal
simulation tools cannot yet be considered as available for any team in charge of simulation, in particular
in a collaborative environment. Moreover, they have not yet demonstrated their robustness for the
simulation of multiple sources of friction applied to a single moving assembly. For all these reasons,
preference has been given to the Karnopp friction implementation (but keeping its drawbacks in mind).

An example of model structure and implementation is given in Figure 14. For simplicity, it is
assumed that there is no motion of the EMA housing. The Bond-graph models friction with two
modulated RS fields. According to the causality bars, the bond to the 1 junction introduces the speed
effect (R part of the MRS field), while the temperature effect comes from the thermal bound (S part of
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the MRS field). The load effect comes from the modulation signal (M part of the MRS field) that senses
the force or torque concerned through effort detectors (De).Actuators 2020, 9, x FOR PEER REVIEW 17 of 28 
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The model of the EMA mechanical parts links the motor shaft power port (airgap torque and
angular velocity) to the EMA rod power port (force to load and linear velocity of extension) functionally
through a perfect rotational/translational transformation (nutscrew). The model outputs the shaft
angle and rod position to feed the resolver and the LVDT sensor and conditioner models.

The friction model
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calculate the magnitude of the dynamic friction and torque. These values are sent to the inertia models
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causality issue, as the inertia/friction models are connected through the backlash/compliance model.

The use of Karnopp friction models introduces a specific issue here: the calculation of the friction
force generated by the anti-rotation device on the EMA rod uses the torque applied to the nut, including
friction. However, the shaft inertia model handles only the overall friction torque, including that of
seals and axial thrust bearing. The solution proposed consists of calculating the magnitude of the
nutscrew dynamic friction torque separately in
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. This enables its relative contribution to overall
friction torque to be determined. It is then assumed that this relative contribution remains constant
at all times. Therefore, this ratio is applied to the actual friction torque computed by the Karnopp
approach of the shaft inertia model in
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course, the friction model presented in Figure 14 can be implemented in a script version instead of
using a block-diagram representation. There is also no specific problem with applying the proposed
approach to gear-drive EMAs. In this case, each additional moving assembly has to be combined with
a transmission compliance/backlash to avoid any causality issues.

5.3. Compliance and Backlash

There are various ways to model compliance and backlash, as reviewed in [32]. Whatever the
solution used, the model requires a few parameters that are difficult to set without a trial and error
process: damping at contact and (if used) limit penetration for full damping for the elasto-backlash
model in addition to the reference speeds for the Karnopp friction models. This is emphasized when
the deformation is modelled as a power function of load, in order to reproduce the non-linear stiffness
of Hertzian contacts. However, these parameters can be pre-set using simple considerations:

• The viscous damping coefficient at contact can be determined to produce, e.g., a 0.2 dimensionless
damping factor when it combines the contact stiffness and attached load inertia to make a
second-order dynamic.

• The limit penetration for full damping can be set, e.g., to 1/100th of the backlash, or 1/10th of the
elastic deformation of the contact under the rated load.

• The reference speed for the Karnopp friction model can be set, e.g., to 1/10,000th of the rated speed
or, e.g., 50% of the resolution of the speed measurement.

As it is generally impossible to identify these parameters from measurements, the pre-set
parameters have to be adjusted using a trial-and-error process to produce a realistic simulation (a
few rebounds) without excessive computational burden. Using this approach, the model of the EMA
mechanical transmission, including friction and elasto-backlash, has shown an excellent robustness
with a short execution time. Such models have also been implemented in the Matlab/Simulink
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environment without difficulty. It has to be noted that setting the contact parameters is more tricky
when the deformation is modelled as a power function of the load, in order to reproduce the non-linear
stiffness of Hertzian contacts.

6. Detailed Modelling of the Signal and Control Chain

As pointed out for the power chain, several improvements in modelling practices for the signal
and control chain can make the MBD of EMA more efficient. Proposals generated by experience
feedback apply at all levels: controller and digital implementation (including parameters and timing),
sensors and conditioners (including position, speed, and current measurements).

6.1. Control and Digital Implementation

6.1.1. Controller Parameters

The EMA control may include flux weakening, the limitation of setpoints, and BEMF compensation.
These functions involve:

• The motor rotor angle and speed and the phase current signals.
• The motor parameters, such as the BEMF constant, winding resistance and inductance, and

number of pole pairs.

Respecting the difference between the parameters used by the motor model and those used in the
controller setting is of prime importance as the motor effective parameters vary with time, at least
in response to temperature changes. It must be kept in mind that, for a 100 ◦C temperature increase
(much lower than in real life at the actuator level), the electric resistivity of the copper increases by
~40%, the voltage offset of the IGBT transistors increases by ~25%, and the magnetic induction of the
samarium-cobalt magnets decreases by ~4%. This justifies the need to make the EMA component
models sensitive to temperature in order to validate the robustness of the controllers.

Another important point during modelling is related to the output limits for each controller. These
have to be set with care, but this is hardly ever mentioned. It has been verified that a proper setting, as
proposed in Table 2, avoids excessive saturation at the PWM function. This helps to keep the motor
under control by avoiding unexpected Id current.

Table 2. Recommended limits for the controller outputs.

Controller Practical Limit Assumption and Comment

Ω∗ speed setpoint issued by the
position controller.

|Ω∗| ≤ U′DC
Allowing the PWM to operate in the

pseudo linear domain.

I∗q and I∗d current demands issued
by the speed controller and flux

weakening function.

√
I∗2q + I∗2d ≤ Irms

√
3

Irms must be the max transient value
permitted.

U∗q and U∗d voltage demands
issued by the current controllers.

√
U∗2q + U∗2d ≤ UDC/

√
2

Allowing the PWM to operate in the
pseudo linear domain. In the simplest

form, each U∗q and U∗d voltage is

limited to ≤ UDC/
√

2.

6.1.2. Timing for Digital Implementation

The timing of the control loops and PWM can significantly affect the EMA closed-loop
performances, in particular for the current loop, which is the most dynamic one. Beside sensors
and signal conditioners, the computation of the control laws, sampling, conversion (analog to/from
digital), and updating of the PWM all generate time lags that increase the open-loop phase lag, with its
negative effect on the closed-loop stability. These effects are usually modelled by merging them into a
single first-order lag model—e.g., [21]. In an MBD approach, a proper simulation of this timing as
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early as possible has been found to be very fruitful. It enables the choices made for implementing
the controllers to be assessed, in particular regarding consistency between the expected closed-loop
performances, control design output, and selected software/hardware solutions. This particularly
applies to the relative timing between the current loop sampling and PWM update, as illustrated by
the following example.

In this application, the current loop sampling period and PWM carrier period are identical (noted
Ts). The PWM is implemented using a symmetrical triangle carrier. In the first simulation, it was
implicitly assumed that the PWM was updated in phase with the current loop clock, as in Figure 15,
introducing a total time lag of t04 = 1.36 Ts between the real current and the update of the PWM.
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The preliminary estimation of the t23 time spent for the Analog-to-Digital Conversion (ADC) and
computation of the control law gave a value lower than 0.25 Ts. This small value suggested that the
PWM update should be specified at the falling edge of the current loop clock. With a new value of
t04′ = 1.36 T, the total time lag was reduced by 36%. An example of model implementation is given in
Figure 16. The improvement is illustrated in Figure 17, where the simulation is run using the full EMA
model without BEMF compensation. An I∗q step of magnitude 1 A is applied at t = 0.001 s. Then, a shaft
speed disturbance step of magnitude 1000 rpm is applied at ts = 0.006 s. The comparison of responses
for initial and modified PWM implementation clearly show a gain in the current loop stability, and
also the magnitude of the transient disturbance produced by the rotor speed.
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It is interesting to note that the carrier generation and the comparison are performed digitally,
at a frequency much higher than that of the carrier. The ratio between these two frequencies defines
the accuracy of the comparison. In practice, simulating the comparison frequency would generate
numerous time events at some tens of megahertz. In order to avoid the resulting addition to the
computational burden, and thanks to the linearity of the triangle carrier, the proposed model substitutes
quantization for sampling, as can be seen on the left of Figure 16.

6.2. Sensors and Conditioners

The sensors used for the EMA control may introduce significant limitations for high-performance
applications. At the project level, however, it is of prime importance to address the modelling and
simulation of sensors and conditioners with attention, at least to confirm that their dynamics do
not need to be modelled in the virtual prototype developed for the engineering need addressed.
Additionally, for all sensor models, simulation is significantly more realistic when two generic inputs
are added on the measurement chain model:

• Electric noise coming from the harsh vibration and electromagnetic environment. For example, it
is set to ±2 LSB (Least Significant Bit) of the ADC conversion for the better reproduction of ripple
and chattering.

• Offset for the better consideration of the drift of the sensor and its electronic conditioning—e.g.,
under thermal effects.

To reduce the simulation time and cost, the conversion time of ADC is not introduced at the sensor
model level. For each loop, it is merged with the time spent on computing the control signal and is
modelled as a pure delay located at the output of the controller. In the absence of detailed information,
the overall delay can be set to 25% of the sampling period, for example.
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6.2.1. Rod Position Sensor

In the very common case, the closed-loop position control of the actuated load uses an LVDT
position sensor that is embedded in the EMA, and that measures the rod to the housing relative
position [33]. This enables the sensor to be integrated in a clean location of the actuation physical unit,
and therefore limits the number of wires and connections, thus increasing the reliability and reducing
costs. LVDT signal demodulation is generally based on the ratiometric concept, which involves:

• Supplying the primary coil with the carrier, a constant magnitude, and a constant frequency sine
voltage (a few volts, a few kilohertz).

• For each of the secondary coils, performing the rectification and low-pass filtering of the
secondary voltage.

• Sampling the secondary voltages to compute the ratiometric value, the image of the
measured position.

Common system-level models either do not introduce the dynamics and non-linearity of
LVDT-based position sensing or focus too much on the sensor design itself—e.g., [34]. The proposed
block diagram model is presented in Figure 18 A first block models the LVDT sensor itself, with its
amplitude modulation operation. The two functions
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calculate the magnitude of the secondary
voltages, according to the LVDT datasheet. The second block models the amplitude demodulation,
the Analog-to-Digital Conversion (ADC), and the ratiometric calculation. ADC is performed at the
position loop sampling frequency. The low pass filter that removes the high-frequency carrier is set to
act as an anti-aliasing function at the sampling frequency. The ratiometric value is computed digitally
in function
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. LVDTs are prone to bias that can reach
5% of the full scale for a 100 ◦C variation in temperature. Therefore, it becomes relevant to introduce
the measurement offset. Of course, the LVDT can be modelled at a more detailed electrical level,
including winding resistances, inductance, and flux linkage, if necessary. When the LVDT conditioning
is performed by an integrated circuit—e.g., Analog Device AD598—its model parameterization can be
facilitated by consulting the supplier’s datasheet.
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Figure 18. Model of the position measurement chain.

Figure 19 displays the quantization, sampling, and phase lag effects for the response of the position
measurement chain. The rod position input frequency and magnitude are set according to the −3
dB performance test. The LVDT excitation frequency is 500 times the actuator bandwidth, and the
sampling frequency is 50 times the actuator bandwidth. A 12-bit resolution is used, assuming ±2 LSB
uniform noise and 16 LSB (0.4%) offset. The difference between the physical quantity and the value
used for control feedback highlights the importance of modelling the measurement chain.
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Figure 19. Response of the position measurement to a sine input.

6.2.2. Rotor Position/Speed Measurement

As seen in Figure 2, the motor shaft angle and speed measurements contribute to numerous
functions in the EMA. The speed signal not only provides the feedback signal for the EMA speed loop
but is also used for the BEMF compensation of the current loop and for the determination of the I∗d
current setpoint vs. the actual operating point when a flux weakening feature is implemented. Except
in very specific sensor-less applications, the motor shaft angular position signal is needed to control
the motor phase voltages according to the electric angle between the motor rotor and stator. Therefore,
the rotor angle/speed measurement dynamics and resolution must be consistent with the expected
performance of both the speed and current loops.

When high performance and reduced-torque ripple are required, EMA motors are controlled
using an FOC approach. In this case, resolvers are seen as the best mature choice for rotor angle/speed
measurement. However, for such a technology, the excitation, signal conditioning, and ADC become
complex when a wide range of operation, high static accuracy, low tracking error, and high dynamics
are expected. For this reason, chip manufacturers design off-the shelf programmable Resolver to
Digital Converters RDC) to integrate these functions within a single physical unit: e.g., PGA411-Q1
from Texas Instruments (64 pins), AD2S1210 from Analog Devices (48 pins), or ACT5028B from
Aeroflex (48 pins). Given the complexity of the circuit, the suppliers’ RDC datasheets usually provide
a simplified dynamic model of the measurement chain. The following example of modelling applies
to the AD2A1210 [35]. Simulating a full discrete model of the RDC would introduce numerous time
events at the RDC operation frequency (e.g., 8.192 MHz). For this reason, a simplified continuous time
domain model is implemented, as illustrated in Figure 20. In order to reduce the acceleration error,
the RDC acts as a closed-loop double integrator system applied to the input angle to be measured.
Stability of the loop is provided by a lead/lag filter
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. The proposed model uses a specific parameter
that enables the user to model the RDC setting (10-, 12-, 14-, and 16-bit resolution). Quantization
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kept within one revolution range with a modulo function
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. Position and speed signals are finally
sampled according to the control function they serve. As for the position measurement, a noise of, e.g.,
±2 LSB magnitude can to be added to increase the realism of the angle and the speed digital signals.
For the virtual validation of the control design and actuator integration, it is not necessary to develop
an electrical model of the resolver windings, although it does not raise any issues.
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clock is set at the rated value of 8.192 MHz. The simulated responses are plotted in Figure 21. They 
give rise to the following comments that justify the interest of modelling the speed measurement 
chain realistically: 

• For 12/14-bit resolutions, the overshoot of the speed measurement chain is 23%/21%, while the 
±5% response time is 0.877/2.13 ms. Given these values, the RDC behaves globally as a second 
order system having a dimensionless damping factor of 0.45 and a natural frequency of 907/373 
Hz. If the phase margin of the speed loop is measured at 100 Hz, the parasitic phase lag 

Figure 20. Model of the rotor/speed measurement chain made of a resolver and RDC.

The response of the rotor angle/speed measurement chain is simulated, assuming that the RDC
clock is set at the rated value of 8.192 MHz. The simulated responses are plotted in Figure 21. They
give rise to the following comments that justify the interest of modelling the speed measurement
chain realistically:

• For 12/14-bit resolutions, the overshoot of the speed measurement chain is 23%/21%, while the
±5% response time is 0.877/2.13 ms. Given these values, the RDC behaves globally as a second
order system having a dimensionless damping factor of 0.45 and a natural frequency of 907/373 Hz.
If the phase margin of the speed loop is measured at 100 Hz, the parasitic phase lag introduced
by the 14-bit RDC at this frequency is 14.5◦. This value is not negligible in comparison with the
phase lag introduced by the equivalent delay of the speed loop sampling.

• The amount of quantization is verified with respect to the datasheet (0.088◦ and 176◦/s for
12-bit configuration, 0.0217◦ and 21.6◦/s for 14-bit configuration). For angle measurement, the
12-bit resolution could be acceptable for motors having a small number of pole pairs (e.g., the
quantization error is 0.44◦ of the electric angle for five pole pairs). In contrast, the 12-bit resolution
provides a very poor speed signal with a resolution of 146 rpm for the electric speed, even for a
motor having five pole pairs. When the RDC model is integrated in the full model of the EMA,
this poor resolution generates a high magnitude ripple on motor winding currents. This ripple is
introduced at the current setpoint computed by the speed controller, the flux weakening function,
and the BEMF compensation.
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6.2.3. Current Measurement

Current measurement is required to implement the winding current loops. The more
straightforward method is to place current sensors in-line on the motor phase connections. Compared
with shunt measurement, the Hall effect current sensors have become widely used because they accept
a high common mode voltage, provide galvanic isolation between the power and signal lines, and
can operate in DC conditions. Their main drawbacks (sensitivity and offset vs. temperature) have
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been significantly reduced with the newest generation. Electronic chip suppliers provide off-the-shelf
bidirectional current-sensing eight-pin integrated circuits, all having a similar dynamic response: e.g.,
Melixis MLS91205, Texas Instruments TMCS1100, and Allegro ASC724. Again, the available models are
generally devoted to the sensor design—e.g., [7]—and do not meet the needs of realistic system-level
simulation. As shown by Figure 22, the simulation model developed for the current measurement
chain includes:

• A model of the current sensor, identified from the ASC724 data sheet [36], which combines a pure
delay of 3.49 µs and a first order lag of time constant 1.25 µs.

• A model of the signal conditioning that combines a buffer (also acting as an antialiasing filter),
and the ADC (range limit, sampling, and quantization).
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Figure 22. Model of the current measurement chain model.

The response of the current measurement chain is given in Figure 23, with a current loop sampling
frequency of 8 kHz, a buffer cut-off frequency of 4 kHz, and 12-bit resolution for ±5 A. As given by a
formal calculation, the current-sensing chain introduces a total tracking delay of 44.4 µs. The current
sensor dynamics contributes to only 10% of this value. Therefore, it is not a limiting factor to be
considered during control design.
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Acronyms 
ADC Analog-To-Digital conversion 
AW Anti Windup 
BEMF Back ElectroMotive Force 
EMA ElectroMechanical Actuator 
FOC Field Oriented Control 
IGBT Insulated Gate Bipolar Transistor 
LL Line to Line 
LN Line to Neutral 
LSB Least Significant Bit 
LVDT Linear Variometer Differential Transducer 
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7. Conclusions

Several proposals have been made to increase the efficiency of MBD for EMAs. Being driven
by needs and constraints, they provide practical considerations that come from experience feedback
and lessons learnt in recent collaborative projects where scientists and industrialists worked together.
Modelling and simulation have been addressed, with special consideration given to the process used
for model development and its implementation for simulation. Multi-domain and multi-physics
concern issues addressed simultaneously to provide proposals that have been successfully applied
to various simulation platforms at both the signal- and power-chain levels. Proposals relative to
motor and power electronics facilitate decision-making and avoid misleading parameterization. The
suggested architecture of friction models potentially enables the main contributing phenomenon to be
reproduced, while it conciliates scientists’ and engineers’ views. It has been shown how the proper
modelling of controllers, sensors, and conditioners can provide useful criteria and means of assessment
during preliminary design, sizing, and virtual verification or validation. The work is currently being
extended to use simulation as a means to specify the real validation tests. The proposed models are
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consistent with the latest object-oriented concepts used for the structuring of the models’ libraries. This
work also aims to contribute to the total removal of real tests, in favor of virtual tests, by increasing
their acceptance by the regulatory authorities.
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Abbreviations

Acronyms
ADC Analog-To-Digital conversion
AW Anti Windup
BEMF Back ElectroMotive Force
EMA ElectroMechanical Actuator
FOC Field Oriented Control
IGBT Insulated Gate Bipolar Transistor
LL Line to Line
LN Line to Neutral
LSB Least Significant Bit
LVDT Linear Variometer Differential Transducer
MBD Model-Based Design
M&S Modelling and Simulation
PI Proportional-Integral
PMM Property Model Methodology
PMSM Permanent Magnet Synchronous Machine
PWM Pulse Width Modulation
RDC Resolver to Digital Converter
TRL Technology Readiness Level
Nomenclature
a, b, c Phase labels (-)
f Frequency (Hz)
F Force (N)
I Current (A)
J Moment of inertia (kg·m2)
K Gain (depends on context)
l Lead (m/revolution)
L Inductance (H)
m Modulation factor (-)
p Number of pole pairs (-)
P Pressure (Pa)
P Heat power (W)
R Resistance (Ohm)
s Laplace variable (s−1)
t Time (s)
T Torque (N.m)
V Velocity (m/s)
x Position (m)
X General variable (depends on context)
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U Voltage (V)
ψ Flux linkage (Wb)
ξ Damping factor (-)
ω Angular frequency (rad/s)
θ Angular position (rad)
Ω Angular velocity (rad/s)
τ Time constant (s)
Θ Temperature (◦K)
ν Kinematic viscosity (m2/s)
Subscript
d Direct axis, or drive
DC Direct current
e Equivalent
E Electric
f Force
i Integral
I Current
l Limited, load
m Motor
n Natural, nut
r Relative
rms Root mean square
q Quadrature axis
t Transmission
T Torque
x Position
Ω Velocity
Superscript
* Setpoint
~ Measure
‘ Maximal value in pseudo linear mode
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