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Abstract: In this paper, two different torque control approaches for PMA-driven (PMA = Pneumatic
muscle actuator) revolute joints are presented and tested. In previous work controllers for PMA-
driven robots are typically customized for the use on a specific robotic system. In contrast,
the proposed controllers define a general control interface for every robot that is actuated by
PMA-driven joints. It will be shown that controlling the torque of a PMA-driven joint enables
the use of standard robotic motion control frameworks, because the torque represents the natural
input of the robotic equation of motion. Therefore, both proposed torque control approaches are
interconnecting PMAs and their challenging characteristics on the one hand and “conventional”
motion control strategies for robots on the other hand. After a detailed discussion of two different
torque control approaches, we show that a torque controller handles all characteristics and dynamics
of a PMA-driven joint internally, which implies that only its bandwidth and its static torque
characteristic must be taken into account for the design of the outer motion control loop. This feature
simplifies the integration of PMA-driven joints in robotic systems enormously, as will be demonstrated
by a design of a cascade-structured, flatness-based motion controller for an exemplary robot with one
degree of freedom.

Keywords: pneumatic muscle actuator (PMA); pneumatic artificial muscle (PAM); pneumatic-muscle-
actuator-driven joint; pneumatic system; pneumatic robot

1. Introduction

During the last decades, PMAs (PMA = Pneumatic muscle actuator, sometimes: PAM = Pneumatic
artificial muscle) have been integrated in many robotic systems [1]. Especially in applications involving
contact with human users, PMAs are particularly favored. The exoskeletons presented in [2,3],
the rehabilitation robot in [4], the two-link, planar robot presented in [5], the two-degree-of-freedom
parallel robot presented in [6,7] and the humanoid robot legs presented in [8] are only some examples
of using PMAs in robotic systems. It is conspicuous that all of these robots have one thing in common:
All of them are actuated only by PMA-driven joints.

After decades of investigating particular PMA-driven systems, the development of more
systematic concepts for integrating PMAs in robotic systems is one of the latest interest of PMA
research. In [9] a general design concept for antagonistic PMA-driven systems is given. This paper
gives an excellent guidance on how to combine PMAs with respect to their static force map. However,
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since robots are dynamic systems, a static analysis on its own is not sufficient for controlling a
PMA-driven robot.

Modelling and control of robotic systems is well described in the literature, see for example [10,11].
In the case of robots with only revolute joints, the equations of motion ([11] p. 271 ff) can be written in
a slightly rearranged form

ϕ̈ = M−1(ϕ) (τ − h(ϕ, ϕ̇)) , (1)

where τ is the joint torque and ϕ is the joint angle. The matrix M(ϕ) represents the system inertia
and h(ϕ, ϕ̇) lumps together all centripetal, Coriolis, mass and friction terms [11]. The torque τ can be
interpreted as the input and the vector (ϕ, ϕ̇)T as the state vector of the robotic system.

Although the theory of controlling robots is already well discussed, a general control framework
for a systematic integration of PMA-driven joints in robotic systems is still missing and only control
strategies for specific robots can be found in the literature. Taking a closer look at existing control
strategies for robots driven by PMA-driven joints, all strategies can be mainly subdivided into two
different groups. The first group is constituted by multiple-input-multiple-output (MIMO) controllers
with state feedback, like the linear controller presented in [12] and the non-linear sliding mode
controllers presented in [3,13]. Although it can be advantageous to control systems with a state
feedback controller, the effort to design such a controller can be very high, especially if the system
dynamics is non-linear like it is the case for PMA-driven joints. Alternatively, it is possible to split up
the control problem in smaller sub-problems. This procedure leads to a cascade-structured controller,
like it was e.g., implemented for a PMA-driven 2-DOF (DOF = degree of freedom) robotic system
in [14]. This robot is controlled by an overlying motion controller that generates torque trajectories,
while an underlying torque controller follows them. A similar cascade-structured controller was also
used by [6,7] to control a two-degree-of-freedom parallel robot.

The idea to use an inner torque controller as an “interface” between PMAs on the one hand
and the robotic equation of motion (1) on the other hand seems to be very intuitive. Provided that
any joint is torque-controlled, the design of a cascade-structured motion controller based on the
equation of motion is straight forward and can be done according to standard textbooks. Due to this,
a general discussion of a torque controller for PMA-driven joints seems to be essential for a systematic
integration of PMA-driven joints into new or even existing robotic systems. Nevertheless, to the best
of our knowledge, there exists no general concept and thorough discussion of a torque controller for
PMA-driven joints in the literature.

In the following paper a general discussion of two different torque controllers for PMA-driven
joints will be given. After explaining the general structure of a PMA-driven joint, two variants
of a torque controller for PMA-driven joints will be developed and discussed in Section 2. It will
be shown that PMA-driven joints are completely defined by their static torque characteristic and
their bandwidth. The second part of this paper will demonstrate how the two different torque
controllers can simplify the integration of PMA-driven joints into an exemplary robotic system.
A cascade-structured, flatness-based angular position controller for a 1-DOF robot will be designed in
Section 3, in combination with either of both presented torque controllers.

Finally, it must be noted that the findings of the following text are not limited to the use on a
specific robotic system; instead, they are shaping a general control interface for any robot which is
actuated by PMA-driven joints.

2. The PMA-Driven Joint

2.1. An Overview

A PMA-driven joint is a combination of two PMAs and a pulley with radius R, which can rotate
around a fixed center. The rotation can be initiated by the PMAs, which are connected to the pulley via
a rope or chain. As it can be seen in Figure 1, in this paper PMA+ pulls in clockwise and PMA− in
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counter-clockwise direction. Furthermore, the rotation-representing angle ϕ is defined to be positive
for clockwise rotation and the radius is supposed to be constant.
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Figure 1. Schematic of a PMA-driven joint

The torque τ that the PMA-driven joint can exert is defined as the product of the pulley radius
and the force difference.

τPMA = R
[
F+

PMA − F−PMA
]

(2)

Due to the kinematic coupling of the PMA lengths, they are only a function of the pulley angle ϕ and
given by

L+(ϕ) = Lm − R · ϕ and L−(ϕ) = Lm + R · ϕ. (3)

The mean length Lm is set to the length of half contraction, because this configuration leads to the74

widest angle range. Furthermore, the angle range is symmetric around ϕ = 0, which represents the75
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It will be shown that only the definition of the pressure trajectories p±ref limits the torque range85

that the PMA-driven joint is able to exert. Furthermore, it will be seen that the bandwidth of the torque86

controller is almost equal to the bandwidth of the pressure controllers.87

Figure 1. Schematic of a PMA-driven joint.

The torque τ that the PMA-driven joint can exert is defined as the product of the pulley radius
and the force difference.

τPMA = R
[
F+

PMA − F−PMA
]

(2)

Due to the kinematic coupling of the PMA lengths, they are only a function of the pulley angle ϕ and
given by

L+(ϕ) = Lm − R · ϕ and L−(ϕ) = Lm + R · ϕ. (3)

The mean length Lm is set to the length of half contraction, because this configuration leads to the
widest angle range. Furthermore, the angle range is symmetric around ϕ = 0, which represents the
angle of the PMA-driven joint when both PMAs are half contracted.

As depicted in Figure 1, each PMA is controlled by a pneumatic valve. By changing the electrical
control signal u± either the supply pressure ps or the atmospheric pressure p0 can be connected to the
PMA. Due to this, the PMA pressure p±, the PMA volume V± and its temperature T± are varying.

The creation of a torque controller for PMA-driven joints is the major goal of this paper.
As depicted in Figure 2 the general structure of the torque controller is subdivided in a pressure
trajectory generation and two pressure controllers, one for each PMA. The force difference between
both PMAs defines a joint torque that the PMA-driven joint exerts. This is called a “sensor-less”
approach [15] of a torque controller, because the torque is controlled without direct torque feedback.
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Figure 2. General structure of the sensor-less torque controller.

It will be shown that only the definition of the pressure trajectories p±ref limits the torque range
that the PMA-driven joint is able to exert. Furthermore, it will be seen that the bandwidth of the torque
controller is almost equal to the bandwidth of the pressure controllers.
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2.2. Torque Characteristic

A precise model of the PMA forces is essential to control the torque of a PMA-driven joint. Several
investigations of PMAs have shown, that the PMA force can be further subdivided into a static and a
dynamic force. The latter, dynamic force is constituted by hysteresis [16,17] and some thermodynamic
effects [18,19] and acts like a damper on the PMA-driven system [20]. Although measuring and
compensating the dynamic PMA force and their effects is possible [21], the effort to do so is very high
and the improvements are minor significant [17]. This implies that the static component dominates the
PMA force. This statement gets emphasized by the excellent control results presented e.g., in [14,22–24]
that were achieved only by modeling the PMA by its static force. Therefore, the influence of the
dynamic PMA force will be generally neglected for this paper.

The main features of the static PMA force model presented in [25] are discussed briefly in
Section 2.2.1. It will be seen that the PMA force FPMA(p, L) is a function of its pressure and length.
With (2) in mind, the idea is to translate the torque trajectory into two PMA pressure trajectories.
Obviously, this problem is underdefined, and therefore an additional algebraic constraint will be
introduced. This additional constraint can be chosen in many different ways and will lead to a second
equation such that the system of equations becomes solvable. A first variant of a constraint, discussed
in Section 2.2.2, is given by the idea of a common mean pressure pm of both PMAs. This idea is the most
popular constraint and was used e.g., in [14]. As an alternative approach, discussed in Section 2.2.3,
it is possible to separate the torque in two PMA forces such that each force equation can be solved
separately. This idea was first presented in [26].

2.2.1. PMA Force

As presented in [25], the static force characteristics of a Festo PMA (Festo Vertrieb GmbH & Co.
KG, Esslingen a.N., Germany) is a function of its length L and pressure p, and can be described by

FPMA(p, L) = −p · A(L) + B(L). (4)

The factors, denoted by A and B, can be explicitly written as

A(L) =

(
L2

Fiber − 3L2)

4πn2 (5)

B(L) =πH0ERU(L)


 −L2

nπ
√

L2
Fiber − L2

· D(L)− D0

D0
− L− L0

L0
· D(L)


 ,

where
LFiber =

L0

cos θ0
and n =

L0 tan θ0

πD0
. (6)

Although many other models can be found in the literature [14,19,25,27,28], (4) is most suitable
(in the sense of the smallest deviation from the measured force map) to approximate the static PMA
force [25]. The lower index 0, in (5), indicates the initial state of the PMA, with atmospheric pressure
p0, initial rubber tube length L0, inner diameter D0 and fiber angle θ0 [25]. While the initial tube
length and the inner diameter can be obtained easily, the initial fiber angle must be identified by
solving the optimization problem presented in [25]. In the current paper a Festo DMSP-20-300
(DMSP - <initial inner diameter in millimeter> - <initial length in millimeter>) will be used for all experimental
investigations. Following the procedure presented in [25,29], the initial fiber angle is identified as
θ
(DMSP−20−300)
0 = 25.9952◦ for the DMSP-20-300. The factor H0 (1.8 mm for a DMSP-20-300) represents

the membrane thickness and is identified by measurement. Important to know is that the PMA volume

V(L) =
L · L2

Fiber
4πn2 − L3

4πn2 (7)
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as well as the PMA diameter

D(L) =

√
L2

Fiber − L2

nπ
(8)

are only depending on the PMA length L [30]. This is the same for the modulus of elasticity

ERU(L) = c3L3 + c2L2 + c1L + c0, (9)

as is presented in [25]. The modulus of elasticity can be approximated by a third-order polynomial in
L, where the parameters c0,1,2,3 can be identified by the solving the optimization problem presented
in [25]. Using the optimization start parameters from [25], the correct results for a DMSP-20-300 can
be found in Table 1. The measured force map that is needed as a reference within the optimization
process can be found in Appendix B.

Table 1. Parameters c0,1,2,3 for a DMSP-20-300 as a result of the optimization problem presented
in [25].

c0 c1 c2 c3

DMSP-20-300 57.771 MPa −310.787 MPa/m 33.0518 MPa/m2 1.3377 GPa/m3

The maximum error between (4) and the measured force map of a DMSP-20-300 is 3.55%.

2.2.2. Pressure Trajectory Generation by Mean Pressure Definition—”PM-Approach”

Since the PMA force was accurately defined in the previous section, we now present a first
approach for solving (2) with respect to the pressures p±. By connecting both PMA pressures by the
constraint of a common mean pressure

pm =
p+ + p−

2
, (10)

the system of equations becomes solvable, such that p± can be calculated from a given torque trajectory.
Therefore, this torque control approach will be denoted as the PM-approach. Postulating the mean
pressure is known, the Equations (2) and (10) can be solved for pressures p+ and p−. For example,
p− is found to be

p− =
τ
R + 2pm A(L+) + B(L−)− B(L+)

A(L+) + A(L−)
. (11)

According to the PMA data sheet [31], their maximum contraction is about 25%. Taking a closer
look to (11), it is clear that A(L+) + A(L−) 6= 0 has to be guaranteed for all L± ∈ [0.75L0, L0], because
singularities would occur otherwise. Theorem A2 guaranties that A(L+) + A(L−) 6= 0 as long as
L ∈ [0.7L0, L0] and θ0 ∈ (0◦, 34.4332◦). The theorem itself and its proof can be found in Appendix A.
For the sake of safety, and just in case the PMA contraction is not in accurate accordance with the data
sheet, in this paper, the maximum contraction is supposed to be 30 %.

By inserting (11) back into (10) the second pressure

p+ = 2pm − p− (12)

can easily be calculated.
The mean pressure, supposed to be known but not set to a specific value so far, can be used to

fulfill additional constraints. Because PMAs are only pulling actors and pulling forces are defined to
be positive for this paper, a very important constraint is that both PMA forces stay positive (F± ≥ 0) at
any time. This constraint guarantees tight ropes and, therefore, no loss of contact between the PMAs
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and the pulley. Figure 3 shows the characteristics of the mean pressure pm for the given constraint
F± ≥ 0.
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Figure 3. Overlay of two PMA force maps; PMA+ colored in black, PMA− colored in blue. (a) Overlay
of two PMA force maps such that both PMAs are connected at half contraction. Bottom lines are
representing the curve of zero PMA force. (b) Top view of the left picture; characteristics of the mean
pressure pm. The black respectively the blue area are showing the valid pressure ranges for PMA+ and
PMA−, such that tight ropes can be guaranteed.

A consequence of connecting two PMAs, each of which can exert a force, to one pulley, is that
the force map of the first PMA overlays the force map of the second. As already noted, both PMAs
are connected at half contraction and this is defined as ϕ = 0. If both PMAs are equivalent, their
connection at half contraction leads to a symmetric angle range, i.e., ϕmin = −ϕmax. The force map of
one PMA is a function of the PMA internal pressure and its length. The PMA lengths cannot be chosen
independently and are defined by the angular position of the pulley. Therefore, Figure 3a shows the
PMA force above the PMA pressure and the angular position of the pulley. Figure 3b is a top view of
Figure 3a. The angle range [ϕmin, ϕmax] is dependent on the initial PMA length and the chosen pulley
radius. The pressure range [p0, ps] is between the atmospheric pressure p0 and the chosen supply
pressure ps.

The colors black and blue in Figure 3 are related to F+ and F−, respectively. According to this,
the blue and black curved diagonals representing the zero-force lines of the force map of PMA+ p+0F
(black) and PMA− p−0F (blue) respectively. The area of F+ ≥ 0 is therefore the upper left, the area of
F− ≥ 0 the upper right, curved triangle.

At this point the question is how the mean pressure pm has to be defined in advance, to make
sure that no rope is hanging loose. This can be guaranteed by determining the common mean pressure
in the following way, and only by using an overlay of two static PMA force maps (Figure 3):

• For every angle the upper individual mean pressure—p−m (blue dashed) respectively p+m (black
dashed)—is set to be in the middle of p±0F and the supply pressure ps.

• The lower individual mean pressure is calculated such that the forces of both PMAs are equal,
if both PMAs are filled with their individual mean pressure.

• For any time the pressure p+ has to be inside the black, the pressure p− inside the blue area.
The pressures are limited by the supply pressure and the pressure of zero force p0F, because
otherwise the rope would hang loose. Furthermore, both pressures are always equidistant to
the mean pressure pm and the smaller force range, defined by the pressure range around the
individual mean pressures limits both pressure ranges.

• The common mean pressure pm (bold black line) is a result of (10).
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The torque characteristics of this pressure trajectory calculation can be seen in Figure 4. For any
application it is important to say that, as long as the torque stays within the range depicted in Figure 4,
the PMA forces will—with the calculated mean pressure pm—always be greater than zero and the
ropes will be tight.

2.2.3. Pressure Trajectory Generation by Force Separation—“FIT-Approach”

As first presented in [26], separating the torque in two forces and defining that each PMA is only
responsible for a torque in one direction, the forces are given through

F+ =

{ |τ|
R + FIT if τ ≥ 0

FIT if τ < 0
FIT ≥ 0 and (13)

F− =

{
FIT if τ ≥ 0
|τ|
R + FIT if τ < 0.

FIT ≥ 0 (14)

The force FIT can be interpreted as an initial tension. Therefore, this torque control approach will
be called the FIT-approach. The pressures p± can be easily calculated by inserting the PMA length and
its force in (4), which yields

p± =
B(L±)− F±

A(L±)
. (15)

An advantage of this approach is that it implicitly fulfills the important constraint F± ≥ 0,
without any further calculations. Theorem A1 guarantees that A(L) 6= 0 as long as L ∈ [0.7L0, L0] and
θ0 ∈ (0◦, 34.4332◦). The theorem itself and its proof can be found in Appendix A.

2.2.4. A Comparison of Two Torque Characteristics

In Sections 2.2.2 and 2.2.3 two different ways are shown, how one torque trajectory can be
translated into two pressure trajectories. In Figure 4, the resulting torque ranges, also denoted as the
torque characteristics are depicted.
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PMAs, the mean pressure approach seems to use most of the PMA forces as initial tension, such that177
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(a) (b)

Figure 4. Torque characteristics of a PMA-driven joint for two different pressure generation laws.
(a) gray: torque “FIT-approach” and FIT = 0; blue: “PM-approach”. (b) gray: torque “FIT-approach”
and FIT = 0; blue: torque “FIT-approach” and FIT = 0.15 max(FPMA).

While the approach of force separation has the ability to exploit the whole work potential of both
PMAs, the mean pressure approach seems to use most of the PMA forces as initial tension, such that
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only a small amount of force can be used to generate a torque. Especially at the edges of Figure 4a,
it stands out that no torque can be exerted anymore with the approach of a common mean pressure.
Furthermore, it is interesting to see that the maximum torque at the edges with the approach of force
separation can only be exerted in one direction. However, the maximum torque can only be exerted if
the force FIT equals zero. In case of FIT > 0 (see Figure 4b), the maximum torque as well as the angle
range are decreasing [26].

2.3. Bandwidth of the Torque Controller

As depicted in Figure 2, the torque controller consists of a pure algebraic pressure trajectory
generation and two pressure controllers with a given bandwidth. Accordingly the torque controller
must have the same bandwidth as the pressure controllers, i.e., the torque controller design boils down
to a design of two similar pressure controllers for each PMA. A decoupling servo pressure controller
for PMAs is presented in [32], and will be employed in the current publication as well.

2.3.1. Pressure Dynamics

The pressure dynamics of the PMA consists of three different parts: At first, the air inside the
PMA has its own fluid dynamics. Furthermore, the mass flow shaped by the pneumatic valve and the
valve dynamics must be included in the model. The PMA pressure dynamics

ṗ =
χRT

V
ṁ− χp

V̇
V

(16)

can be found e.g., in [32], where χ is the polytropic coefficient and R (288 Nm/kgK under reference
conditions) is called the ideal gas constant. In [14] the polytropic exponent was identified by
measurement as χ = 1.26 for PMAs, i.e., state changes of the included air are somewhere in between
isothermal (χ = 1) and isentropic (χ = 1.4) conditions.

Furthermore, the mass flow

ṁ =





C(x)psρ0

√
T0
T 0 ≤ p

ps
< b ∧ x ∈ [0, 1]

C(x)psρ0

√
T0
T

√
1−

( p
ps−b
1−b

)2
b ≤ p

ps
≤ 1∧ x ∈ [0, 1]

C(x)pρ0

√
T0
T

√
1−

( p0
p −b
1−b

)2

b ≤ p0
p ≤ 1∧ x ∈ [−1, 0)

C(x)pρ0

√
T0
T 0 ≤ p0

p < b ∧ x ∈ [−1, 0)

(17)

passing through a pneumatic valve can be calculated according to ISO 6358 or [33]. In this equation,
p0 = 100 kPa and T0 = 293.15 K represent the pressure and the temperature under reference conditions,
respectively. Furthermore, (17) can be read in the following way: dependent on the valve slide stroke
x and the pressure ratio p/ps, respectively, p0/p, the mass flow is divided in four different cases.
For x ∈ [0, 1]—i.e., inflation, the supply pressure ps is connected to the PMA volume. For x ∈ [−1, 0),
i.e., deflation, the PMA volume is connected to atmospheric pressure. Furthermore, the fluid flows with
the local speed of sound in at least one section of the valve for 0 ≤ p/ps < b, respectively, 0 ≤ p0/p < b
(choked flow) or with subsonic speed for b ≤ p/ps ≤ 1, respectively, b ≤ p0/p ≤ 1 (subsonic flow).

The general form of (17) is adapted to a specific form by inserting a specific critical pressure ratio
b and sonic conductance C, which characterize a particular valve. For the present paper this will be a
Festo MPYE-5-1/8-LF-010-B proportional servo valve. The critical pressure ratio of this valve can be
treated as constant and is identified by measurement to b = 0.35. The sonic conductance C has been
measured in dependency of the normalized valve slide stroke. The measured values are depicted in
Figure 5 and can be found in Appendix C.
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Figure 5. Sonic conductance C in dependency on the normalized valve slide stroke x of a Festo
MPYE-5-1/8-LF-010-B proportional servo valve
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x, numerical inversion is straight forward, and the dependency x(C) = u(C) can be calculated easily.226

Figure 5. Sonic conductance C in dependency on the normalized valve slide stroke x of a Festo
MPYE-5-1/8-LF-010-B proportional servo valve.

The slide stroke of the Festo MPYE-5-1/8-LF-010-B is controlled by an internal position controller.
According to [34,35] the transfer function, which relates the normalized valve control signal u ∈ [−1, 1]
and the normalized valve slide stroke x ∈ [−1, 1], can be approximated by a first-order lag filter.
The transfer function is given in the frequency domain, whereby X and U are the Laplace transform of
the control signal and the valve slide stroke, respectively:

X(s)
U(s)

=
1

Tvs + 1
. (18)

The time constant Tv = ω−1
v = (2π fv)−1 can be calculated from the valve cut-off frequency

fv = 95 Hz [34] provided in the data sheet of the Festo MPYE-5-1/8-LF-010-B proportional servo valve.

2.3.2. Controller Design

In [32], a pressure controller for PMAs is presented and tested. Furthermore, it is shown that a
linear controller design becomes feasible if the pressure changes, which are related to time-varying
volume, are treated as observable disturbance, which can be easily compensated. In contrast to the
controller design of [32], the first-order lag (18) is neglected in the current contribution. Therefore,
the input signal u equals the valve-slide stroke x.

Mass Flow as Virtual Input

In accordance to [32], the mass flow can be treated as a new, virtual input signal if (17) is inverted:

C =





ṁ
ρ0 ps

√
T
T0

0 ≤ p < bps ∧ ṁ ≥ 0

ṁ
ρ0 ps

√
T
T0

[
1−

( p
ps−b
1−b

)2
]− 1

2

bps ≤ p ≤ ps − pε ∧ ṁ ≥ 0

ṁ
ρ0 p

√
T
T0

[
1−

( p0
p −b
1−b

)2
]− 1

2

p0 + pε ≤ p ≤ p0
b ∧ ṁ < 0

ṁ
ρ0 p

√
T
T0

p0
b < p ∧ ṁ < 0.

(19)

To avoid singularities the pressure is limited to p0 + pε and ps − pε, where the pressure gap is set
to pε = 0.1 Pa.
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Since the sonic conductance C(x), as depicted in Figure 5, is a monotonically increasing function
of x, numerical inversion is straight forward, and the dependency x(C) = u(C) can be calculated easily.

Interpreting the Plant as a Linear Time-Invariant System

The latter summand χ
V pV̇ in (16) can be interpreted as a disturbance. By choosing the mass flow

ṁ = ˙̂m +
1

RT︸︷︷︸
=:Gd(s)

·pV̇, (20)

the disturbance can be compensated and ˙̂m becomes the new input mass flow. By choosing the mass
flow like this, each PMA is being decoupled pneumatically from every other PMA driving the system,
such that a separated and local pressure control design for each PMA is facilitated.

Through approximating the volume inside the PMA by a constant volume V = V and setting
the temperature to the constant ambient temperature T = Ta = T0, the new plant dynamics Gp is
described by the linear time-invariant system

Gp(s) =
p
˙̂m
=

χRTa

V
1
s

. (21)

2.3.3. Pressure Controller Design

The continuous plant dynamics (21) is sampled with a sampling frequency of T−1
s = fs =1 kHz,

i.e., the sampling frequency is about one decade higher than the highest plant frequency of 95 Hz,
defined by the pneumatic servo valve. Using a zero-order hold discretization, the z-transform of the
plant is given by

Hp(z) =
χRTa

V
Ts

(z− 1)
(22)

which has only an integrating pole at z = 1. Following the polynomial controller design procedure
explained in [36], a so called RST digital pressure controller can be designed for pressure regulation
inside a constant volume. It must be noted that the notation is in accordance with the notation of [36],
i.e., the controller polynomials are denoted by Sp(z), Tp(z) and Rp(z), and the controller consists of
two discrete-time transfer functions Hrt-p(z) = Tp(z)/Rp(z) and Hst-p(z) = Sp(z)/Tp(z), respectively.

Although it is shown in [32] that one single controller, designed e.g., for the initial PMA volume V0,
is able to control the PMA pressure with satisfying results, in this paper an adaptive gain-scheduling
controller will be used for pressure regulation, because this approach improves the performance of
the pressure controller. Therefore, multiple RST-controllers are designed for ten different volume
values within V ∈ [V(L0), V(0.7L0)], and their coefficients are interpolated linearly in real time.
Furthermore, the controller is extended by a disturbance cancellation Hd(z), which is the z-transform
of Gd(s) from (20), as proposed in [32]. The whole control structure is schematically depicted in Figure 6.
In order to determine the time-derivative of the volume V̇ without amplification of measurement
noise, an algebraic derivative estimation algorithm presented in [37,38] is applied to the calculated
PMA volume (7).
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Figure 6. Pressure controller with two degrees of freedom and disturbance cancellation
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Figure 6. Pressure controller with two degrees of freedom and disturbance cancellation.

In the present paper, the controller is designed as a servo controller that can be used e.g., as the
inner controller of a cascade-structured controller. In case integral action is required or the controller
has to fulfill some other requirements like frequency suppression, this can be done very easily by
defining the zeros of Rp(z) and Sp(z) [36].

According to the degree condition given in [36], the degree of the closed loop polynomial
deg(Acl-p(z)) increases with any additional zero of Rp(z) and Sp(z). As a consequence of the chosen
two-degrees-of-freedom control structure, the closed loop poles can be further subdivided into so
called observer poles and so called controller poles and only the latter ones are defining the visible
dynamics of the closed control loop. The amount of the controller poles equals the number of plant
poles, such that the controller has only one controller pole and the remaining deg(Acl)− 1 poles are
all observer poles. The closed loop polynomial

Acl-p(z) = (z− Pc) ·
deg(Acl)−1

∏
i=1

(z− Po,i) (23)

shows that, independent of the number of observer poles, the two degrees of freedom control structure
enables their cancellation, such that only the controller pole

Pc = e−2πTs fbw (24)

defines the bandwidth fbw of the closed control loop. Therefore,

Hcl-p =
1− Pc

z− Pc
(25)

represents the transfer function of the closed pressure control loop. As already noted, the torque
controller must have the same bandwidth such that also the torque control loop can be described by

Hcl-τ =
1− Pc

z− Pc
. (26)

3. Angular Position Controller for an Exemplary Robotic Arm

In this section, an angular position controller for an exemplary robot with one degree of freedom,
as depicted in Figure 7, will be designed. Therefore, both of the torque controllers presented in the
previous section are used as inner controllers for the cascade-structured motion controller. Although
the robot is driven by PMAs, it will be shown that the motion controller design becomes simplified
by pre-controlling the torque of the PMA-driven joint, because only its bandwidth and torque
characteristics have to be taken into account for an overlying controller design.
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Load mass 1.25 kg

Robot arm

Center of rotation
Pulley with radius R
Angle sensor

Two PMAs Festo DMSP-20-300

Two valves Festo MPYE-5-1/8-LF-010-B

Figure 7. Robot arm with 1-DOF
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Figure 7. Robot arm with 1-DOF.

The target control platform is a MicroDAQ E2000 (Embedded Solutions, ul. Rzeszowska 74b,
39-100 Ropczyce, Poland), which can be programmed via a MATLAB (R2015b, The MathWorks, Inc.,
Natick, MA, USA) Simulink toolbox.

3.1. Inner Torque Control Loop

As depicted in Figure 2, the torque controller consists of two similar pressure controllers and
an algebraic pressure trajectory generation from (11) and (12) or (13) and (14). The torque control
bandwidth, represented by the controller pole Pc in (25), is set to 20 Hz, i.e., the closed-loop dynamics
of the torque control, sampled with a frequency of 1 kHz, is represented by

Hcl-τ =
1− 0.8819
z− 0.8819

. (27)

While all observer poles are set to ≥ 40 Hz, the further pressure controller design is carried out by
canceling the influence of measurement noise. Beside signals at the Nyquist frequency, also signals
with frequencies of 101.5 Hz, 203.67 Hz, 272 Hz, 305.67 Hz and 408 Hz get suppressed by the controller,
because frequency folding occurs otherwise. Furthermore, the controller design is repeated for ten
different volumes, which are chosen equidistantly within V ∈ [V(L0), V(0.7L0)].

The robot arm, depicted in Figure 7, is actuated by two Festo DMSP-20-300. The pulley radius
of R = 23.24 mm and a supply pressure of ps = 6 bar are resulting in a maximum joint torque of
35.92 Nm with the approach of force separation (FIT = 0) at the edges and 14.7 Nm with the approach
of a common mean pressure in the middle of the angle range, respectively (see Figure 4a). The valid
angle range is limited to ϕ ∈ [−97.15◦, 97.15◦]. During the experiments, it turned out that the system
stiffness of the PMA-driven joint is almost equivalent for both torque control approaches for an initial
force of FIT = 0.15 max(FPMA). Due to this, the “FIT-approach” was used with this initial force during
all experiments. Like as it can be seen in Figure 4b, the angle range as well as the maximum torque are
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decreasing through increasing the initial tension while using the “FIT-approach”. The maximum torque
of the “FIT-approach” controller with an initial tension FIT = 0.15 max(FPMA) is τ∗max = 19.4284 Nm.
The valid angle range is reduced to ϕ∗ ∈ [−58.19◦, 58.19◦].

To proof the functionality of the torque controller, the robot arm was fixed in an upright position
and screwed to a force sensor KD40 s ± 2 kN (ME-Meßsysteme GmbH, Neuendorfstr. 18a, DE-16761
Hennigsdorf, Germany). The measured force signal is amplified by a GSV-1A measurement amplifier
(ME-Meßsysteme GmbH, Neuendorfstr. 18a, DE-16761 Hennigsdorf, Germany) and multiplied with a
lever arm of 200 mm such that the exerted torque of the PMA-driven joint in this position becomes
measurable. This position represents the center of the angle range, i.e., ϕ = 0, and both PMAs are at
their mean length of 260.6 mm. The whole measurement setup can be seen in Figure 8a.
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(a) Torque measurement setup. The robot arm is
fixed in an upright position and screwed to a force
sensor.

100 101

2

3

4

5

Frequency f [Hz]

To
rq

ue
τ

[N
m

]

Ref. torque
PM approach
FIT approach FIT = 0.15 max(FPMA)

(b) Torque amplitude of a sinus torque trajectory the
PMA-driven joint exerts for different frequencies

Figure 8. Torque measurement setup and measured torque data for different frequencies

the measured torque amplitude of a "FIT-approach" torque controller with an initial force of 15 % of300
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controller. While both control approaches have a cut-off frequency of about 10 Hz, it can be seen that302

the cutoff frequency of the "PM-approach" controller is slightly higher. A reason for this can be found303

in the way the pressure trajectories are generated. Depending on whether the torque is positive or304

negative, the "FIT-approach" controller only varies one pressure, while the other one is kept constant.305

In contrast to this, the "PM-approach" controller always varies both pressures at the same time for306

exerting a given torque trajectory.307
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given by310

ϕ̈ =
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0
mgls

[
τ −

(
2δ
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0
ϕ̇−mgls sin ϕ

)]
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The parameters ω0 and δ were determined to ω0 = 6.1995 s−1 and δ = 0.025439 s−1, respectively,311

by analyzing the oscillation of the robotic arm around the stable equilibrium in the hanging position.312

Furthermore, the arm mass with additional load mass is m = 1.672 kg and the distance from the center313

of rotation to the arm center of mass is ls = 246.1 mm. The acceleration due to gravity g is about314

9.81 ms−2.315

By defining the system output as y = ϕ, all state variables

ϕ = y (29)

ϕ̇ = ẏ (30)

as well as the input

τ =
mgls
ω2

0

(
ÿ + 2δẏ−ω2

0 sin y
)

(31)

(a) (b)

Figure 8. Torque measurement setup and measured torque data for different frequencies. (a) Torque
measurement setup. The robot arm is fixed in an upright position and screwed to a force sensor.
(b) Torque amplitude of a sinus torque trajectory the PMA-driven joint exerts for different frequencies.

During measurements, the PMA-driven joint was following a sine torque trajectory with an
amplitude of 5 Nm and frequencies of 0.5 Hz, 1 Hz, 2 Hz, 5 Hz, 10 Hz and 20 Hz. All amplitudes of
the exerted torque as well as the reference of 5 Nm are depicted in Figure 8a,b. The black line shows
the measured torque amplitude of a “FIT-approach” torque controller with an initial force of 15% of
the maximum PMA force and the blue line shows the torque amplitude of a “PM-approach” torque
controller. While both control approaches have a cut-off frequency of about 10 Hz, it can be seen that
the cutoff frequency of the “PM-approach” controller is slightly higher. A reason for this can be found
in the way the pressure trajectories are generated. Depending on whether the torque is positive or
negative, the “FIT-approach” controller only varies one pressure, while the other one is kept constant.
In contrast to this, the “PM-approach” controller always varies both pressures at the same time for
exerting a given torque trajectory.

3.2. Outer Angular Position Controller

The equation of motion of the 1-DOF robotic arm, depicted in Figure 7, in an upright position is
given by

ϕ̈ =
ω2

0
mgls

[
τ −

(
2δ

mgls
ω2

0
ϕ̇−mgls sin ϕ

)]
. (28)
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The parameters ω0 and δ were determined to ω0 = 6.1995 s−1 and δ = 0.025439 s−1, respectively,
by analyzing the oscillation of the robotic arm around the stable equilibrium in the hanging position.
Furthermore, the arm mass with additional load mass is m = 1.672 kg and the distance from the center
of rotation to the arm center of mass is ls = 246.1 mm. The acceleration is about 9.81 ms−2.

By defining the system output as y = ϕ, all state variables

ϕ = y (29)

ϕ̇ = ẏ (30)

as well as the input

τ =
mgls
ω2

0

(
ÿ + 2δẏ−ω2

0 sin y
)

(31)

are defined only by the chosen output and its time derivatives. Likewise it can be said that the system
is differentially flat and the output ϕ can be denoted as one flat output of the system [39].

Due to the flat system characteristic, the control torque

τref =
mgls
ω2

0

(
ϕ̈ref + 2δϕ̇ref −ω2

0 sin ϕref + f (e, ė)
)

e = ϕ− ϕref (32)

can be further subdivided into a feed-forward controller—represented by the inverted equation of
motion—and feedback controller that stabilizes the system. The control structure can be found in
Figure 9.
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The controller (32) defines an error dynamics of the controlled system

ë + 2δė−ω2
0 cos ϕrefe− f (e, ė) = 0, (33)

which can be stabilized by

f (e, ė) = −ω2
0 cos ϕrefe− Kpe− Kd ė− Ki

∫
e dt. (34)

By transforming the resulting error dynamics to the frequency domain, the poles of the
characteristic polynomial

s3 + (2δ + Kd)s2 + Kps + Ki = 0 (35)

can be placed arbitrarily through a variation of the controller gains Kp, Ki and Kd. For this paper
the characteristic equation is separated in one conjugate-complex pole pair that dominates the error
dynamics and a third pole on the real axis. For the sake of stability, the real part of all three poles is
kept strictly negative. Stability as well as further requirements can be specified by defining a desired
error dynamics

(s2 + 2δ12s + ω2
12)(s + ω3) = 0, (36)

to which the original error dynamics (35) can be transformed by comparing the coefficients of (35) and
(36). The resulting controller gains are

Kd = 2δ12 + ω3 − 2δ

Kp = ω2
12 + 2δ12ω3

Ki = ω2
12ω3.

Figure 9. Flatness-based control architecture to stabilize the angle.

The controller (32) defines an error dynamics of the controlled system

ë + 2δė−ω2
0 cos ϕrefe− f (e, ė) = 0, (33)

which can be stabilized by

f (e, ė) = −ω2
0 cos ϕrefe− Kpe− Kd ė− Ki

∫
e dt. (34)

By transforming the resulting error dynamics to the frequency domain, the poles of the
characteristic polynomial

s3 + (2δ + Kd)s2 + Kps + Ki = 0 (35)

can be placed arbitrarily through a variation of the controller gains Kp, Ki and Kd. For this paper
the characteristic equation is separated in one conjugate-complex pole pair that dominates the error
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dynamics and a third pole on the real axis. For the sake of stability, the real part of all three poles is
kept strictly negative. Stability as well as further requirements can be specified by defining a desired
error dynamics

(s2 + 2δ12s + ω2
12)(s + ω3) = 0, (36)

to which the original error dynamics (35) can be transformed by comparing the coefficients of (35)

and (36). The resulting controller gains are

Kd = 2δ12 + ω3 − 2δ

Kp = ω2
12 + 2δ12ω3

Ki = ω2
12ω3.

Through iterative, hardware-in-the-loop testing the parameters of the desired error dynamics
where finally set to ω12 =15.625 s−1, δ12 =10 s−1 and ω3 =15.625 s−1.

3.3. Experimental Investigation of the Trajectory Following Behavior

The presented cascade-structured angle controller is tested by experimental investigation of its
ability to follow a given angle trajectory. The chosen flatness-based controller always needs, in addition
to the reference angle, also its first and second time derivative. Therefore, the reference trajectory is
calculated such that it guarantees a continuous time evolution of the angle, the angular velocity and the
angular acceleration. Figure 10 shows the defined reference angle trajectory and the tracking behavior
of the presented angle controllers. While Figure 10a shows the angle tracking behavior with the
underlying “PM-approach” torque controller, Figure 10b shows the angle tracking performance with
the same flatness-based angle controller, but with the underlying “FIT-approach” torque controller.
The initial force of this approach is set to FIT = 0.15 max(FPMA), because this initial force leads to
almost equivalent system stiffness as the “PM-approach”.

On the left hand side of Figure 10, it can be seen that the trajectory as well as the system angle are
almost identical and this is the same for both torque control approaches. The error, defined as e = ϕ−
ϕref, is almost the same for both torque control approaches and only minor differences can be noticed.
While the maximum error angle is about 3◦ the error seems a little rougher for the “FIT-approach” than
for the “PM-approach”. In other words: the “PM-approach” reacts a little bit faster such that control
errors can be counteracted a little better in comparison to the “FIT-approach”. This correlates with the
slightly higher bandwidth of the “PM-approach” torque controller (see Figure 8). Nevertheless, both
torque control approaches lead to excellent results and both are representing a very useful interface
controller for an overlying motion controller, like e.g., the presented flatness-based controller. But also
any other motion controller can be easily interconnected to a robot with PMA-driven joints via one of
the presented torque controllers. Furthermore, the presented control framework is not limited to a
one-degree-of-freedom robot but is suitable for any robot with multiple degrees of freedom.



Actuators 2018, 7, 82 16 of 22

Version November 21, 2018 submitted to Actuators 15 of 21

Through iterative, hardware-in-the-loop testing the parameters of the desired error dynamics where321

finally set to ω12 =15.625 s−1, δ12 =10 s−1 and ω3 =15.625 s−1.322

3.3. Experimental investigation of the trajectory following behavior323

The presented cascade-structured angle controller is tested by experimental investigation of its324

ability to follow a given angle trajectory. The chosen flatness-based controller always needs, in addition325

to the reference angle, also its first and second time derivative. Therefore, the reference trajectory326

is calculated such that it guarantees a continuous time evolution of the angle, the angular velocity327

and the angular acceleration. Fig. 10 shows the defined reference angle trajectory and the tracking328

behavior of the presented angle controllers. While Fig. 10a shows the angle tracking behavior with the329

underlying "PM-approach" torque controller, Fig. 10b shows the angle tracking performance with the330

same flatness-based angle controller, but with the underlying "FIT-approach" torque controller. The331

initial force of this approach is set to FIT = 0.15 max(FPMA), because this initial force leads to almost332

equivalent system stiffness as the "PM-approach".333

0 5 10 15 20 25
−40

−20

0

20

40

60

Time t [s]

A
ng

le
ϕ

[d
eg

]
Measurement
Trajectory

0 5 10 15 20 25

−4

−2

0

2

4

Time t [s]

Er
ro

r
an

gl
e

e
[d

eg
]

(a) Angle controller performance with underlying PM-approach torque controller

0 5 10 15 20 25
−40

−20

0

20

40

60

Time t [s]

A
ng

le
ϕ

[d
eg

]

Measurement
Trajectory

0 5 10 15 20 25

−4

−2

0

2

4

Time t [s]

Er
ro

r
an

gl
e

e
[d

eg
]

(b) Angle controller performance with underlying FIT-approach torque controller
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Figure 10. Angle controlled, exemplary robot arm is following a given angle trajectory. (a) Angle
controller performance with underlying “PM-approach” torque controller; (b) Angle controller
performance with underlying “FIT-approach” torque controller.

4. Conclusions

In this paper, a new control framework for robots driven by PMA-driven joints was presented
and successfully applied to a robot with one degree of freedom. This framework connects PMA-driven
joints and their challenging characteristics, on the one hand, and “classic” robotic control methods,
on the other hand. By using a torque controlle—one for every PMA-driven joint—as an interface, the
design of an overlaying motion controller becomes simplified, even for robots with multiple degrees
of freedom. Furthermore, once the PMA-driven joint is torque-controlled, all difficulties of controlling
a PMA-driven joint get handled internally, i.e., the PMA-driven joint can be treated as pure torque
source with a given bandwidth. The maximum torque amplitude that the PMA-driven joint can exert
is limited by a static torque characteristic that is defined by the chosen torque control approach.

At the beginning of this paper, two variants of a torque controller were developed. The first
torque control approac—“PM-approach”—defines a common mean pressure for both PMAs that are
driving one joint, i.e., only the symmetric pressure difference around the mean pressure defines the
torque the PMA-driven joint exerts. In contrast to this, the second approach—“FIT-approach”—directly
separates the forces for each PMA, i.e., the PMA force equation can be solved for both PMA pressures
separately. Although it is shown that the cut-off frequency of both approaches is almost the same
(about 10 Hz for a PMA-driven joint with two Festo DMSP-20-300 for this pape), it can be seen that the
“PM-approach” is slightly faster. The reason is that the “PM-approach” varies both PMA pressures, i.e.,
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one PMA works in collaboration with the other PMA to exert a desired torque. In contrast to this, the
“FIT-approach” uses only one PMA to exert a positive torque and the other one a torque in the opposite
direction. An advantage of this approach is its ability to use the full work potential of each PMA, while
the “PM-approach” uses most of the PMA force as initial tension. In summary it can be said that the
“PM-approach” is slightly faster than the “FIT-approach” torque controller, but the maximum torque
can be higher with the second approach. However, controlling the torque of a PMA-driven joint is
suitable with both approaches.

Finally, both torque controllers have been included in a flatness-based angle controller design for
an exemplary robotic arm. By investigation of their trajectory following behavior, it was demonstrated
that both torque control approaches can lead to high performance angle controllers with very low
tracking error. However, for the presented robot and the tracking control task, the “PM-approach”
leads to slightly better results, because of its higher bandwidth.

Finally, it should be noted that the presented control framework is not limited to the use
of the presented one-degree-of-freedom robot. The application of this framework to multiple-
degrees-of-freedom robots will probably be included in future work.
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Appendix A. Proof A(L) 6= 0 and A(L+) + A(L−) 6= 0

According to the PMA data sheet [31], their maximum contraction is about 25%. For the sake of
safety, in this paper the maximum contraction is supposed to be 30%, i.e., the initial length L0 and
0.7L0 are limiting the PMA length range. It is of interest to know if A(L), defined in (4) becomes zero
within this length range, because this would cause singularities in (15). Where A(L) becomes zero is
mostly defined by the initial fiber angle θ0. For the DMSP-20-300, used as an exemplary PMA in this
paper, the initial fiber angle is identified as θ

(DMSP−20−300)
0 = 25.9952◦. The factor n in (5) represents

the number of windings of the fibers inside the PMA membrane (see [25] for more information) and
according to (6) it stays strictly positive for 0◦ < θ0 < 90◦.

Theorem A1. Let L represent the length of a Festo PMA and θ0 its initial fiber angle. If θ0 ∈ (0◦, 34.4332◦)
then A(L) = (L2

Fiber−3L2)/4πn2 6= 0 ∀L ∈ [0.7L0, L0].
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Proof. Let L ∈ [0.7L0, L0], θ0 ∈ (0◦, 34.4332◦) and A(L) = 0. It follows that

A(L) =

(
L2

Fiber − 3L2)

4πn2 = 0

4πn2>0⇐==⇒ L2
Fiber − 3L2 = 0

⇐⇒ L2
Fiber = 3L2

⇐⇒ L2
0

3(cos θ0)2 = L2 L>0
==⇒ L =

√
L2

0
3(cos θ0)2 =

(
1√

3 cos θ0

)

︸ ︷︷ ︸
∈(0.5774,0.7)

·L0 /∈ [0.7L0, L0]  

According to this, A(L) 6= 0 ∀L ∈ [0.7L0, L0] holds true for all Festo PMAs with θ0 ∈
(0◦, 34.4332◦).

Furthermore, it is important to know if A(L+) + A(L−) becomes zero for any L ∈ [0.7L0, L0],
because this would cause singularities in (11) and (12), respectively.

Theorem A2. Let L± ∈ [0.7L0, L0] represent the lengths of two PMAs of a PMA-driven joint and let θ0 be their
initial fiber angle. If A(L±) 6= 0 ∀θ0 ∈ (0◦, 34.4332◦) then A(L+) + A(L−) 6= 0 ∀θ0 ∈ (0◦, 34.4332◦).

Proof. According to Theorem A1, A(L) does not change the leading sign for L ∈ [0.7L0, L0] and
θ0 ∈ (0◦, 34.4332◦). Furthermore, as a combination of continuous functions, A(L) is a continuous
function. This implies that A(L+) + A(L−) must have the same sign, such that

A(L+) + A(L−) = 0 ⇐⇒ A(L+) = 0 ∧ A(L−) = 0.

It follows that A(L+) + A(L−) 6= 0 ∀L± ∈ [0.7L0, L0] holds true for all Festo PMAs with
θ0 ∈ (0◦, 34.4332◦).
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Appendix B. Force Map Festo DMSP-20-300

Force [N]

Rel. Pressure [Pa]

Length [mm]
224 226 227 229 231 232 234 235 238 240 243 245 250 253 260 264 276 278 289 290 296 297 299

10,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 9
50,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3 11 91 96
100,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −7 0 13 101 125 209 216
150,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 83 12 123 212 245 331 343
200,000 0 0 0 0 0 0 0 0 0 0 0 0 1 0 69 12 176 112 236 325 370 456 471
250,000 0 0 0 0 0 0 0 0 0 0 0 0 60 12 141 91 270 212 353 440 495 580 599
300,000 0 0 0 0 0 0 0 0 1 0 47 12 119 76 214 170 365 313 470 556 622 706 729
350,000 0 0 0 0 0 0 2 0 43 12 96 67 178 140 287 249 460 413 588 671 748 831 857
400,000 0 0 0 0 1 0 40 10 86 58 145 121 237 204 360 329 555 513 705 787 874 955 986
450,000 0 0 0 0 35 10 78 52 129 105 193 174 295 268 433 409 649 613 822 902 1000 1080 1115
500,000 0 0 1.5 22 70 47 116 93 171 151 242 228 354 332 505 488 744 713 939 1018 1125 1204 1243
550,000 0 6 21.5 54.5 105 84 154 134 214 198 291 281 413 396 578 566 838 813 1056 1132 1250 1328 1371
590,000 0 28 46 80.5 132 114 184 166 248 235 329 324 460 447 636 629 913 892 1149 1224 1348 1427 1472
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Appendix C. Sonic Conductance Festo MPYE-5-1/8-LF-010-B

x C(x)·10−8 x C(x)·10−8 x C(x)·10−8

−1 −1.19 −0.3 −0.23 0.4 0.44
−0.9 −1.07 −0.2 −0.07 0.5 0.57
−0.8 −1.00 −0.1 −0.02 0.6 0.69
−0.7 −0.83 0 0.00 0.7 0.82
−0.6 −0.70 0.1 0.02 0.8 0.94
−0.5 −0.56 0.2 0.07 0.9 1.05
−0.4 −0.42 0.3 0.23 1 1.20

References

1. Andrikopoulos, G.; Nikolakopoulos, G.; Manesis, S. A survey on applications of pneumatic artificial muscles.
In Proceedings of the 2011 19th Mediterranean Conference on Control & Automation (MED), Corfu, Greece,
20–23 June 2011; pp. 1439–1446.

2. Caldwell, D.G.; Tsagarakis, N.G.; Kousidou, S.; Costa, N.; Sarakoglou, I. “Soft” exoskeletons for upper and
lower body rehabilitation—Design, control and testing. Int. J. Humanoid Robot. 2007, 4, 549–573. [CrossRef]

3. Cao, J.; Xie, S.Q.; Das, R. MIMO sliding mode controller for gait exoskeleton driven by pneumatic muscles.
IEEE Trans. Control Syst. Technol. 2018, 26, 274–281. [CrossRef]

4. Noritsugu, T.; Tanaka, T. Application of rubber artificial muscle manipulator as a rehabilitation robot.
IEEE/ASME Trans. Mechatron. 1997, 2, 259–267. [CrossRef]
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