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Abstract: In this paper, the structural behavior of a micro-electromechanical system (MEMS)
composed of two electrically coupled parallel clamped-clamped microbeams is investigated. An Euler
Bernoulli beam model is considered along with the nonlinear electric actuating force to get the
equation of motion governing the structural behavior of the actuator. A reduced-order modeling
(ROM) based on the Galerkin expansion technique, while assuming linear undamped mode shapes
of a straight fixed-fixed beam as the basis functions, is assumed as a discretization technique of the
equations of motion in this investigation. The results showed that the double-microbeam MEMS
actuator configuration requires a lower actuation voltage and a lower switching time as compared to
the single microbeam actuator. Then, the effects of both microbeams air gap depths were investigated.
Finally, the eigenvalue problem was investigated to get the variation of the fundamental natural
frequencies of the coupled parallel microbeams with the applied actuating DC load.

Keywords: MEMS; actuator; multi-layers; nonlinear structural behavior; electrically-coupled
parallel microbeams

1. Introduction

Since the 1980s, when micro-electro-mechanical-systems (MEMS) were initially commercialized,
the demands for these tiny devices have increased dramatically. This is principally due to their
outstanding properties (mechanical, electrical, thermal, etc.) as well as their unique features (small
sizes, easiness in fabrication, etc.). While they were used in the beginning mainly as sensors and
actuators, they are nowadays designed to be used in many other engineering applications [1]. To cite
few, they are being used as pressure sensors [2,3], accelerometers [4,5], microphones in cellphones [6],
micro-mirrors in plasma TVs [7], GPS [8] and many other useful applications. Moreover, they are still
being continuously explored by scientists and researchers, and these developments will hopefully lead
to more useful features and become even more important in life.

In the MEMS community, there are many different types of structures available and the selection
depends on the type of the application. For example, clamped-clamped microbeams form one of the
basic structures configurations for building MEMS devices. They have various preferred features
such as: easiness in the fabrication, high sensitivity, cost effectiveness, etc., make them very attractive
in many MEMS-related applications. Furthermore, their fabrication process is somehow trivial and
can be done by using the basic bulk and surface micromachining techniques [9,10]. Moreover, the
natural frequencies of the clamped-clamped microbeam are relatively higher as compared to other
microstructures such as cantilever or simply-supported microbeams. This feature is desirable in
increasing the sensitivity of the microstructures to be used as Radio Frequency (RF) filters [11], RF
switches [12] and resonant sensors [13]. Furthermore, the linear dynamic range of clamped-clamped
micro-beams is lower compared to micro-cantilevers [14]. In addition to that, a lot of researches proved
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that the performance of the clamped-clamped microbeam can be improved further. For example,
Kacem et al. [15] proved that by tuning the parameters linear behavior can be achieved up to the pull-in
point, which could have a great impact on the sensors’ resolution. In addition, Kacem et al. [16] showed
helpful analysis to enhance the sensors either by avoiding instability branches or gaining some desired
features. In another work, Kacem et al. [17] developed a method to improve the frequency stability and
the sensing of the resonators. The clamped-clamped microbeam configuration possesses numerous
applications and to mention some of them the projection display arrays [18], optical fibers [19] and
thermal actuators [20].

Another common configuration of microbeam based MEMS devices is the parallel-plates actuator
made from a single movable/flexible electrode. The use of this type of configuration provides an
extended range of travel compared to others, however with high power consumption and switching
time. These latter specifications are needed in many applications but not for others, where more
desirable features and better performing structures are required. One of the suggested alternatives is the
use of multi-layers based actuator instead of only one layer (movable electrode) based MEMS actuators.

There are few research groups discussed the applications for the double-microbeam. For example,
Afrang et al. [21] suggested the double-microbeam actuator to be used in micro-machined switches
application. Since, it has lower actuation voltage without high effect on the switching time. In addition,
Chaffey et al. [22] recommended the double cantilever microbeam for the tunable micro-cantilever
switches. This is due to the fact that it requires lesser voltage to reach to the pull-in voltage than
other single structures. In addition, Samaali et al. [23] assured that the use of double-microbeam
helps in reducing the actuation voltage and the static pull in voltage, which makes this structure
powerful for RF-MEMS switches. Additionally, Ouakad et al. [24] mentioned that the use of
double-microbeam is helpful for applications that require large response. Therefore, it is clear that
assuming a double-microbeam, or even multi-layers configuration, may increase the deflection of the
microbeam with the same voltage that is provided in a single microbeam. As a result, it might help
reducing the power consumption and the switching time for these types of applications where large
deformation is needed with minor power consumption as well lower switching time.

It is clear from the afore-summarized literature review that it is important to study the structural
behavior of electrically coupled double-microbeams MEMS actuator. More scopes may still be
discovered that may open new perspectives of MEMS actuators of interesting features, or even
inventing new smart MEMS devices of improved structural and electrical behaviors. This paper will
shed light on a simple model of double-microbeam configuration. First, the problem formulation of this
system will be discussed, and followed by the reduced-order modeling (ROM) derivation. Then, the
static analysis of the system will be presented and a parametric study on the air gap depths will be
undertaken. Finally, the eigenvalue problem will be solved to variation of the natural frequencies and
the mode shapes of the system will be discussed.

2. Problem Formulation

To be able to compare both actuator configurations, we will consider both models for a
single-microbeam MEMS based actuator configuration and a double-microbeam configuration are
shown in Figure 1a,b, respectively. All shown microbeams in both models are assumed to be
clamped-clamped and actuated by a parallel-plates DC bias of amplitude (VDC) in Volt. For the
double microbeam configuration, we consider dielectric layers for each electric field.

Assuming the so-called Newton second law under the assumption of the Euler Bernoulli’s
shallow-thin beam theory, the governing static equation of motion for the single-microbeam
configuration of Figure 1a and its respective boundary conditions can be written as [25]:

EI
d4ŵ
dx̂4 =

EA
2L

Lw

0

(
dŵ
dx̂

)2

dx̂

 d2ŵ
dx̂2 +

ε0bVDC
2

2 (d− ŵ)2 (1)
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ŵ(0) = 0, ŵ(L) = 0,
dŵ
dx̂

(0) = 0,
dŵ
dx̂

(L) = 0 (2)

where: E is the microbeam Young’s modulus of elasticity; ρ is its mass density; I = (1/12)bh3 is its
moment of inertia, where b and h are its respective width and the thickness, respectively; ŵ is its static
deflection function; A = bh is its cross sectional area; L is its initial length; ε0 is the parallel-plates
capacitor dielectric constant; and d is its initial air gap depth.Actuators 2016, 5, 22  3 of 13 
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Figure 1. Schematic of a parallel-plates based DC electrostatic actuator assuming: (a) a single-microbeam;
(b) a double-microbeams configuration.

For the double-microbeams configuration shown in Figure 1b, the lower and upper microbeams
static equations are respectively given as:

Lower Microbeam→ EI d4ŵ1
dx̂4 =

(
EA
2L

r L
0

(
dŵ1
dx̂

)2
dx̂
)

d2ŵ1
dx̂2 + ε0bVDC

2

2(d1−ŵ1)
2 − ε0bVDC

2

2(d2+ŵ1−ŵ2)
2

Upper Microbeam→ EI d4ŵ2
dx̂4 =

(
EA
2L

r L
0

(
dŵ2
dx̂

)2
dx̂
)

d2ŵ2
dx̂2 + ε0bVDC

2

2(d2+ŵ1−ŵ2)
2

(3)

and their respective boundary conditions are set as follows:{
ŵ1(0) = 0, ŵ1(L) = 0, dŵ1

dx̂ (0) = 0, dŵ1
dx̂ (L) = 0

ŵ2(0) = 0, ŵ2(L) = 0, dŵ2
dx̂ (0) = 0, dŵ2

dx̂ (L) = 0
(4)

where: ŵi, i=1,2 are the static deflections of each microbeam and di, i=1,2 are the two different air gaps
for both parallel-plates capacitors.

As it is more convenient to handle calculations and resolutions of equations in the micro-scale in
normalized form, we write the above equations of motion in non-dimensional form while assuming
the following non-dimensional variables:

w =
ŵ
d

, w1 =
ŵ1

d1
, w1 =

ŵ1

d1
, w2 =

ŵ2

d1
, x =

x̂
L

(5)

Now, substituting Equation (5) into Equations (1)–(4) result into the following normalized
equations of motion and their respective boundary conditions:
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• For the single-microbeam based actuator:

d4w
dx4 = α1Γ

d2w
dx2 +

α2VDC
2

(1− w)2 (6)

w(0) = 0, w(1) = 0,
dw
dx

(0) = 0,
dw
dx

(1) = 0, (7)

• For the double-microbeams based actuator: Lower Microbeam→ d4w1
dx4 = α3Γ1

d2w1
dx2 + α4VDC

2

(1−w1)
2 − α4VDC

2

(d2/d1+w1−w2)
2

Upper Microbeam→ d4w2
dx4 = α3Γ2

d2w2
dx2 + α4VDC

2

(d2/d1+w1−w2)
2

(8)

{
w1(0) = 0, w1(1) = 0, dw1

dx (0) = 0, dw1
dx (1) = 0,

w2(0) = 0, w2(1) = 0, dw2
dx (0) = 0, dw2

dx (1) = 0,
(9)

where the nondimensional parameters assumed in Equations (6)–(9) are defined as follows:

α1 = 6
(

d
h

)2
, α2 = 6ε0L4

Eh3d3 , α3 = 6
(

d1
h

)2
, α4 = 6ε0L4

Eh3d1
3 , Γ =

r 1
0

(
dw
dx

)2
dx, Γi, i=1,2 =

r 1
0

(
dwi
dx

)2
dx.

3. Reduced-Order Model (ROM)

To solve the nonlinear differential equations governing the structural behavior of the above
described MEMS actuators, various methods can be assumed such as the Finite-Element Method [26],
the Finite-Difference Method [27], Differential-Quadrature Method [27], the Shooting Method [28,29],
etc., which are considered to be computationally expensive and in some cases unstable since some
rely on initial guesses. Another powerful technique is the so-called Galerkin expansion discretization
which is mainly used to derive Reduced-Order Models (ROM) from distributed (continuous) systems.
This method is a well-used technique in the literature of MEMS devices [30].

As a result, in order to get the ROM, the previous equations, i.e., Equations (6)–(9), will be
discretized using Galerkin method and this can be done by expanding the static deflections of the
assumed microbeams as:

w(x) = ∑N
i=1 kiφi(x), w1(x) = ∑N

i=1 fiφi(x), w2(x) = ∑N
i=1 giφi(x) (10)

where the coefficients ki, fi, and gi are time-independent constants and φi(x) are trial functions assumed
to be the linear mode shapes of a clamped-clamped beam. To solve for the time-independent unknowns
constants ki, fi, and gi, it is essential to substitute Equation (10) into Equations (6)–(9), then multiply the
outcome by φj(x), and finally integrate the outcome from x = 0 to x = 1 while using the orthogonality
of the mode shapes functions of a clamped-clamped beam. Following the previous procedure, we get
the following reduced-order modeling equations bot both assumed actuators as follows:

• For the single-microbeam based actuator:

r 1
x=0 φj(x)

N
∑

i=1
kiφ

iv
i (x)dx =

r 1
x=0 φj(x) α2V2

DC(
1−

N
∑

i=1
kiφi(x)

)2 dx

+
r 1

x=0 φj(x)

(
α1

r 1
0

(
N
∑

i=1
kiφ
′
i(x)

)2

dx

)
N
∑

i=1
kiφ

′′
i (x)dx

(11)
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• For the double-microbeams based actuator:

Lower Microbeam→
r 1

x=0 φj(x)
N
∑

i=1
fiφ

iv
i (x)dx =

r 1
x=0 φj

((
α3

r 1
0

(
N
∑

i=1
fiφ
′
i(x)

)2

dx

)
N
∑

i=1
fiφ
′′
i (x)

)
dx+

α4V2
DC

r 1
x=0

φj(x)(
1−

N
∑

i=1
fiφi(x)

)2 dx−
r 1

x=0
φj(x)(

d2/d1+
N
∑

i=1
fiφi(x)−

N
∑

i=1
giφi(x)

)2 dx

 (12a)

Upper Microbeam→
r 1

x=0 φj(x)
N
∑

i=1
giφ

iv
i (x)dx = α3

r 1
x=0 φj

((
r 1

0

(
N
∑

i=1
giφ
′
i(x)

)2

dx

)
N
∑

i=1
giφ

′′
i (x)

)
dx+

+α4V2
DC

r 1
x=0

 φj(x)(
d2/d1+

N
∑

i=1
fiφi(x)−

N
∑

i=1
giφi(x)

)2

dx
(12b)

4. Static Analysis

In this section, the static analysis for both single and double-microbeams configuration is carried
out using the earlier derived ROM. The main problem with this approach is that the distributed
electrostatic force comes in an integral form in the resulting ROM equations, and consequently this
integral form is not easy to deal analytically due to nonlinearities arising from its denominator. As an
attempt to overcome this challenge, some groups [31,32] used Taylor-series expansion procedure,
which brings the nonlinearity to the numerator of the electrostatic force and hence simplifies the
calculation of nonlinear ROM integrals. Others suggested multiplying the resultant equation of motion
by the electrostatic force denominator and hence the evaluation of the integral in the ROM equation
will not be problematic anymore [25]. We adopted to use this latter approach which is numerically
stable and more convenient in dealing with nonlinear forcing terms.

In order to ascertain the convergence of the implemented ROM, we start the calculation of the
microbeams’ deflections with only one mode in the ROM. For the single microbeam, we solve for the ki
in Equation (11), whereas for double microbeam we solve for fi, and gi in the coupled Equation (12a,b),
and this can be done by several methods like the harmonic balance method coupled with the asymptotic
numerical method [33,34], which enables the capture of stable and unstable branches or using the
so-called Newton’s method. We adopted the latter approach by using the command FindRoot in
Mathematica software. Then increase the number of assumed modes in the ROM by one. The previous
steps are to be repeated until the maximum deflection variation with VDC for both microbeams is
converging. The maximum deflection of the upper microbeam is presented versus the applied DC
voltage in Figure 2 for the case study of Table 1. It can be noted from the graph that when the number
of modes is increased the solution is varying slightly, until convergence is reached at almost three
modes in the ROM.
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Table 1. Selected case study of a double-microbeams based actuator.

Parameter Value Parameter Value

Beam Length (L) 150 µm Effective young‘s modulus (E) 124 GPa
Beam thickness (h) 1.0 µm Density (ρ) 2332 kg/m3

Beam width (b) 4.0 µm Air gap depth (d1 and d2) 1.25 µm

Next, a parametric study is carried out to investigate the effect of changing the air gaps between
the movable microbeams on their static profiles. Three different sets of air gaps are assumed, which
are: 1.0, 1.25 and 1.5 µm and they were all restricted by the following condition (to be able to compare
with the single-beam based actuator with initial gap of 4 µm):

d1 + d2 + h = d = 4 µm (13)

Accordingly, three different cases were considered, which are:

• Case 1: d1 = d2 (where both initial gaps are set equal to 1.25 µm)
• Case 2: d1 > d2 (where d1 = 1.5 µm and d2 = 1.0 µm)
• Case 3: d1 < d2 (where d1 = 1.0 µm and d2 = 1.5 µm)

4.1. Case 1 (d1 = d2)

For this first case, the maximum static deflection versus the applied DC voltage for both
microbeams (upper and lower) is presented in Figure 3. It is clear from the figure that, the upper
microbeam is deflected downward (positive value in Figure 3), which seems to be reasonable, since
the upper microbeam is affected by the force from the lower microbeam, which pulls it downward.
In contrast, the lower microbeam is deflected upward (negative value in Figure 3), which means that
the force which results from the potential between the two microbeams is higher than the force from
the fixed (stationary) electrode. In addition, the downward deflection for the upper microbeam is
higher than the lower microbeam and it reaches pull-in first, which is about 23 Volt.Actuators 2016, 5, 22 7 of 13 
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microbeams and for the case when d1 = d2.

4.2. Case 2 (d1 > d2)

In this particular case, the behavior of the maximum static deflection for both microbeams is
similar to the previous case, as displayed in Figure 4. Again, the upper microbeam reaches the pull-in
instability first at about 15 Volt. As compared to the previous case, the pull-in voltage is reduced and
more deflection will occur in this case if similar voltages are assumed.
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4.3. Case 3 (d1 < d2)

In this latter case, when calculating and then displaying the maximum static deflection versus
the applied voltage, as shown in Figure 5, we can identify some interesting and different outcomes in
comparison to the two previously investigated cases. To mention a few, the lower microbeam, in this
particular case, is deflected downward, which means the force resulting from the fixed electrode is
higher than the force exerted by the upper microbeam. Furthermore, the magnitude of the deflection
for the lower microbeam is higher than the upper and it reaches the pull-in instability first at about
23 Volt. Moreover, when the lower microbeam undergoes the pull-in instability (losses its stiffness) at
around 23 Volt, the upper microbeam is still safe and possess some stiffness which states that it can be
still used as actuator (with more range of travel).Actuators 2016, 5, 22 8 of 13 
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Finally, a comparison between the static deflection for the upper microbeam, when considering
all three investigated cases as well as the case considering only single microbeam is presented in
Figures 6 and 7. Therefore, in all of the three investigated cases more deflection will be provided at
the same voltage if assuming the double-microbeams rather than a single-microbeam arrangement.
However, the pull-in voltage is reduced by a significant amount, since for the single-microbeam shape,
the pull-in voltage is about 236 Volt. Hence, more stroke with lower power consumption. Table 2
compares the pull-in voltage for the three cases with the single microbeam.
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Table 2. Comparison of pull-in voltage of all cases shown in Figure 7.

Assumed Structure Pull-in Voltage

Double-microbeams

Case d1 = d2 23 Volt

Case d1 > d2 15 Volt

Case d1 < d2 23 Volt

Single-microbeam 236 Volt

An insight into Figure 6 reveals an interesting behavior. While, in all of the previous configurations
for all points, increasing the voltage makes the upper microbeam approach the pull-in voltage faster, it
can be seen that for the last point in configuration of d1 < d2 there is no such tendency. This strange
behavior may be because the lower microbeam in this case is very close to the fixed electrode, and
so the distance between the two microbeams will be higher. This makes the force between the two
microbeams lower, and hence the upper microbeam will be far from the pull-in instability allowing it
to still vibrate safely.

5. Natural Frequencies and Mode Shapes

In order to get the natural frequencies of the above considered MEMS based actuators, the inertia
terms (w,tt, w1,tt and w2,tt) will be included in the right hand side of both Equations (6) and (8),
respectively. The subscript, tt stands for the second time derivative with respect to the time variable t.
Thus, Equations (6) and (8) will be respectively adjusted to include these inertia effects as follows:

Single Microbeam→ ∂4w
∂x4 +

∂2w
∂t2 = α1Γ

∂2w
∂x2 +

α2VDC
2

(1− w)2 (14)
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 Lower Microbeam→ ∂4w1
∂x4 + ∂2w1

∂t2 = α3Γ1
∂2w1
∂x2 + α4VDC

2

(1−w1)
2 − α4VDC

2

(d2/d1+w1−w2)
2

Upper Microbeam→ ∂4w2
∂x4 + ∂2w2

∂t2 = α3Γ2
∂2w2
∂x2 + α4VDC

2

(d2/d1+w1−w2)
2

(15)

Subsequently, the deflections for single-microbeam based actuator as well as the lower and upper
microbeams for the case of double-microbeams based actuator will be again discretized using the
Galerkin expansion technique as follows:

w(x, t) = ∑N
i=1 (ki + β(t))φi(x) (16){

w1(x, t) = ∑N
i=1 ( fi + µi(t))φi(x)

w2(x, t) = ∑N
i=1 (gi + νi(t))φi(x)

(17)

where: ki, fi and gi are the time-independents unknown constants that were calculated in the static
analysis part and β(t), µi(t) and νi(t) are time-dependent unknown functions. Details about the
derivation of the single-microbeam based actuator can found in [25]. We will focus next on the
derivation of the equations governing the eigenvalue problem of the double-microbeams based
actuator. Subsequently, and since we are in the process of developing the linear eigenvalue problem,
the nonlinear electrostatic force terms in the derived ROM equations are to be linearized using the
so-called Taylor series expansion. Therefore, neglecting all of the higher order terms to obtain:

M ( fi, gi)
−.
η = J( fi, gi)

−
η (18)

where, J( fi, gi) is known as the Jacobian matrix of the linearized eigenvalue problem. The natural
frequencies of the beam for a given voltage can be obtained by taking the square roots of the eigenvalues
of M−1 J and the corresponding eigenvectors will be the respective mode shapes.

The selected parameters are the same we assumed in the static analysis for the double-microbeams
arrangement, which is shown in Table 1 with the case of d1 = d2. The natural frequencies were obtained
by using three symmetric modes and were displayed versus the applied voltage as shown in Figure 8.
The obtained results indicate that all of the higher-order natural frequencies are insensitive with
the applied voltage, with the exception of the fundamental one (lower frequency). The fundamental
natural frequency starts at its maximum position (when no electrical load is applied) and then decreases
gradually with an increase in the applied voltage until it gets close to the pull-in voltage, at which
point it drops sharply to zero. In addition, it can be noted that each odd natural frequency, when
paired with the consecutive one are the same, except for the fundamental frequency, especially at
higher applied DC voltages.
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double-microbeams based actuator and for d1 = d2.
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A comparison between the fundamental natural frequencies among the three cases considered in
the static section is shown in Figure 9. The results here seem to follow the static analysis outcomes,
since in the case with the lowest pull-in voltage the fundamental frequency reaches zero first (when:
d1 > d2). Moreover, the other two cases reach the pull-in voltage at about the same value (23 Volt) and
accordingly their fundamental natural frequency drops to zero or close to it.
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the double-microbeams based actuator and for three different cases of the microbeams initial air gaps.

The first and second coupled mode shapes for the case of d1 = d2 at VDC = 2 Volt are presented in
Figures 10 and 11, respectively. The results show that for the first mode shape φ1 the coupled modes
(φ11 and φ12) are opposite to each other, sharing an out-of-phase motion. Conversely, for the second
mode shape (φ2) the two coupled modes (φ21 and φ22) have almost the same magnitude as the first in
an absolute value and both of them share an in-phase-motion.
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6. Conclusions

In conclusion, the use of double-microbeams configuration was shown to be useful for applications
necessitating low actuation and pull-in voltage, and large deflections (larger stroke). The effects of
changing the air gap depths on the double-microbeam configuration revealed interesting structural
bending profiles for both the upper and lower electrically coupled microbeams. For example, both
microbeams could be directed down to the fixed electrode or the upper microbeam could be directed
down while the lower is up. In addition, the pull-in voltage was shown to be different for the different
assumed and different air gaps cases. This can be achieved either from the lower microbeam as it
reaches the fixed electrode, the lower microbeam as it sticks with the upper microbeam or the upper
microbeam as it pulls toward the lower microbeam.
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