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Abstract: This paper presents a numerical study on optimal voltages and optimal placement of 

piezoelectric actuators for shape control of beam structures. A finite element model, based 

on Timoshenko beam theory, is developed to characterize the behavior of the structure and 

the actuators. This model accounted for the electromechanical coupling in the entire beam 

structure, due to the fact that the piezoelectric layers are treated as constituent parts of the 

entire structural system. A hybrid scheme is presented based on great deluge and genetic 

algorithm. The hybrid algorithm is implemented to calculate the optimal locations and 

optimal values of voltages, applied to the piezoelectric actuators glued in the structure, which 

minimize the error between the achieved and the desired shape. Results from numerical 

simulations demonstrate the capabilities and efficiency of the developed optimization 

algorithm in both clamped−free and clamped−clamped beam problems are presented. 

Keywords: design optimization; placement optimization; genetic algorithm; great  

deluge algorithm 
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1. Introduction 

Smart or adaptive structures with integrated self−monitoring and control capabilities are of great 

technological interest due to the increasing requirements on structural performance. The self−monitoring 

capability of smart structures has numerous applications in shape and vibration control of structures, 

noise reduction, damage identification, and structural “health” monitoring. Notable references among 

others are [1,2]. 

Piezoelectrics are the most popular smart materials, which can be used both as sensors and actuators. 

The coupled electromechanical properties of piezoelectric materials, along with their possibility to be 

integrated in various structures, make them suitable for use in advanced smart structures. 

The recent advances in smart structures have prompted interest in modification and correction of the 

shape of mechanical structures, e.g., for the correction of the shape and curvature of mirrors/antennas 

for high pointing accuracy or for maintaining desired shapes of aerospace flexible structures, etc. The 

review article by Irschik [3] describes relevant applications of static and dynamic shape control of 

structures by piezoelectric actuation. 

One main objective of piezoelectric shape control is to optimize some control parameters (e.g., the 

number, location and size of the piezoelectric patches, the amount of electric potential to be applied, etc.) 

so that the desired shapes are achieved or best matched. Optimization of such parameters and 

configurations of piezoelectric actuators for acquiring efficient and precise shape control has been an 

interesting subject of research in recent years. Tong et al. [4] used classical mathematical 

programming methods for determining the optimal layout of actuators. Agrawal et al. [5] employed the 

simplex search algorithm to find the optimal actuator locations and voltages, and found that separately 

optimizing actuator locations and voltages could produce reliable results. Chee et al. [6] presented a 

heuristic and intuitive algorithm for determining the orientation of piezoelectric actuator patches in 

shape control of smart structures. Onoda et al. [7] used a modified genetic algorithm (GA) and the 

improved simulated annealing algorithm for optimal location of actuators in shape control of space 

trusses. A systematic and general methodology, using a finite element code and genetic algorithms, for 

the shape control and/or correction of static deformations of adaptive structures, was proposed and 

verified experimentally by Silva et al. [8]. Hadjigeorgiou et al. [9] investigated the shape control and 

damage identification of a cantilever composite beam using a genetic optimization procedure. A 

comprehensive review until 2003, of the design methodologies and application of formal optimization 

methods to the design of smart structures and actuators can also be found in [10]. 

In this work, the use of piezoelectric actuators for shape control and correction of static 

deformations is considered. The models widely used for this kind of problems are based on the Euler 

beam theory and the Kirchhoff−Love theory of plates with or without electromechanical coupling  

(e.g., [11,12]). These are considered to be classical models, suitable for thin elastic structures. An 

extension based on Timoshenko theory and on induced strain actuation theory has been presented by 

Hadjigeorgiou et al. [9], which is suitable for relatively thick structures. In this work, a mathematical 

model, based on the shear deformation theory, which incorporates the electro-mechanical coupling 

effects, has been developed to characterize the behavior of the structure and the actuators. The 

mathematical model represents an improvement over the model presented in [9]. More precisely, this 

model accounted for the electromechanical coupling in the entire beam structure, due to the fact that 



Actuators 2013, 2 113 

 

 

the piezoelectric layers are treated as constituent parts of the entire structural system. In addition, the 

mathematical formulation models laminated composite beam structures, in which the piezoelectric 

material may be located anywhere within the structure. This formulation is then implemented into a 

finite element program. 

Besides establishing an accurate mathematical model for shape control applications, a critical factor 

for the success and performance of the smart structure is the determination of the optimal location of 

the piezoelectric actuators together with the optimal actuation voltages. Next, the finite element model 

developed is used in static shape control. Shape control (SC) is defined here as the determination of the 

applied voltages of actuators and their layout, such that the structure that is activated using these 

parameters will conform as closely as possible to the desired shape. The problem is formulated as 

mixed discrete−continuous programming with a quadratic cost function as objective. A genetic 

algorithm is used as the optimization technique.  

Genetic algorithms (GAs) is a well known optimization method [13] that belongs to the general 

class of evolutionary computation [14], which relies on the premise that in a controlled population the 

individuals having better traits will finally stand out. Given that in the actuator placement problem a 

chromosome encoding capable of capturing a solution is relatively straightforward to construct, GAs 

seems to be a natural way to confront the problem. However, GA based optimization approaches have 

some issues such as speed of execution, proof of optimality and others that have to be addressed in 

order to be successfully applied. In our approach, a number of simulations have been performed in 

order to validate the efficiency of the developed GA based optimization algorithm in both 

clamped−free and clamped−clamped beam problems. 

2. Formulation of the Problem 

Consider a laminate formed from two or more layers bonded together to act as a single layer material 

and sandwiched between two piezoelectric layers. The bond between two layers is assumed to be perfect, 

so that the displacements remain continuous across the bond. The classical formulation of laminated 

materials is followed [15] and complemented with electromechanical coupling terms. The whole 

continuum has length L, thickness h and width b. The longitudinal and thickness axes are along x− and 

z−directions, respectively and the xy−plane is the midplane of the beam. The piezoelectric layers have 

poling direction along z−axis and the electric field is applied through the thickness direction. Elastic layers 

are assumed to be insulated and are obtained by annulling the piezoelectric constants. 

2.1. Strains and Electrical Fields 

For a laminated beam with midplane symmetry, the displacement field, using the first−order 

deformation theory, is expressed as functions of two independent nodal degree of freedom of the middle 

axis, w and y , as:  

         , , , , , , 0, , , ,x y y zu x y z z x t u x y z u x y z w x t    (1)  

where w is the transverse displacement of the beam middle axis and y  is the rotation of the beam 

cross section about the positive y−axis. Assuming small deformation, the strain−displacement relation 

can be expressed as:  
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A constant transverse electrical field is assumed for the piezoelectric layers and the remaining  

in−plane components are supposed to vanish. Consequently, the electric field inside the pk−th 

piezoelectric layer is given by 

  kp

k
E B   

 
 (3)  
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and ,k kp p
h   are the thickness and the electric voltage of the pk−th piezoelectric layer. It should be noted 

that such formulation gives one electric degree of freedom per layer per element of the electric field. 

2.2. Constitutive Equations 

The linear constitutive equations coupling the elastic and the electric fields in a piezoelectric medium 

are expressed by the direct and the converse piezoelectric equations, which are given as follows: 

           ,
T

k k k kk k k k
D e E C e E             

         (4)  

where    is the stress tensor,    is the strain tensor,  D  is the electric displacement,  E is the 

electric field, C 
   is the elastic stiffness matrix, e 

   is the piezoelectric constant matrix, and  
   is 

the permittivity matrix. For non−piezoelectric layers, e 
  and  

   are reduced to zero matrices. The 

constitutive relations, given in Equation (4), are with reference to the global coordinate system (x, y, z). 

For a one−dimensional beam where the width in the y−direction is stress free and by using the plane 

stress assumption, the general 3D constitutive Equation (4) can be reduced to: 
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 (5)  

where 11 55,Q Q  are the transformed plane stress−reduced stiffness coefficients, 31 32,e e  are the 

transformed piezoelectric moduli given in [15] and 33  is the electric permittivity. 

2.3. Finite Element Formulation 

To derive the equations of motion for the laminated composite beam with surface bonded sensor 

and actuator layers, Hamilton’s principle is used: 

 
0

0
T

dtT U W      (6)  

The kinetic energy, the potential energy and the total work done due to virtual displacements are 

given as follows: 
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where  cF  is the concentrated force vector,  Sf  is the surface force vector,  bF  is the body force 

vector,  q  is the surface charge vector, S1 is the surface area where external force is acting, and S2 is 

the surface area of piezoelectric layer where applied electric charge is acting.  

A two−node finite element is considered with two mechanical degrees of freedom, w and y , per node 

and one additional degree of freedom,  , per piezoelectric layer. Using standard discretization techniques,  

             ,
TT

y we e ee e e
u w N X N N X        (9)  

where    1 1 2 2, , ,
T

y ye
X w w  ,  wN  is a cubic shape function and  N  is a quadratic shape 

function. These shape functions lead to a shear−locking free element and their explicit expressions are 

given in Ref. [9]. The strain field is given by: 

       ,
T

x xz ee
B X     (10)  

where  
e

B  is the derivative operator between the corresponding strain and the generalized nodal 

displacements. The electric voltage vector of the e
th

 element can be expressed as: 

   1 2, ,..., npl
T

p

e
     (11)  

where npl is the number of the piezoelectric layers of the e
th

 element. 

Using the variational principle, given by Equation (6), governing equations of an element can be  

written as: 

           

     

uu u me ee e eee

u Qe ee e e
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 (12)  

where the mass matrix  
e

M , the elastic stiffness matrix  uu e
K , the electromechanical coupling matrix 

u e
K 
   , the permittivity matrix 

e
K
   , the surface electric charge density  Q e

F  and the mechanical 

load vector  m e
F  are given in the Appendix. 

The global equations can be obtained by assembling the elemental Equation (12). Equation (12) can 

be used in smart structures applications such as vibration control, static or dynamic shape control, etc. 

In shape control applications, which is the case in the present study, the piezoelectric layers are used as 

actuators. Thus, all the electrical degrees are considered as known quantities and the coupled Equation (12) 

reduce to pure mechanical ones: 

      uu m elK X F F   (13)  
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where   N N

uuK R  is the global stiffness matrix,   1NX R  is the nodal displacement vector, 

  1N

mF R  is the mechanical force vector and    el uF K       is the electrical force vector due to 

the actuation. 

A computer code is developed, based on the aforementioned finite element model. A special 

numbering scheme is used to denote the elements with piezoelectric layers. Elements with 

piezoelectric layers are denoted by 1, while the remaining layers are denoted by 0 for the identification 

during the assembly process. 

3. Optimal Shape Control 

The most general problem of SC of smart structures considers as design variables the applied 

voltages of actuators, their layout and their number. The aim is to find the optimal design values so 

that the difference between achieved and desired shape is minimized. In essence, SC is an inverse 

problem where the output, which is the desired shape, is known and the input actuation parameters are 

to be determined. Therefore, iterative heuristic methods are quite suitable to this task. In this work, this 

problem is solved by a hybrid genetic algorithm. 

3.1. The Fitness Function 

Considering beam element, the shape of a structure is primarily described by the shape of its middle 

axis, which itself is described by the transverse displacement of the finite element mesh nodes. 

Therefore, a reasonable cost function is f1, as given by Equation (14), which is the sum of all the 

squared difference of the transverse displacements between the desired (pre−defined) and the achieved 

(calculated) shape at all nodes. 

 
2

1

1

r
d

i i

i

f w w


   (14)  

In the above equation, 
d

iw  is the desired nodal transverse displacement value and r is the number of 

concerned displacements.  

However, the static shape control criteria in [9] is based on the generalized displacements; that is, 

on both transverse displacements w and rotations y . Therefore, a fitness function based on the 

following cost function is used in the aforementioned paper: 

 
2
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r
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i

f X X


   (15)  

It should be noted that the simultaneous usage of displacements and rotations in the cost function f2 is 

very restricted for bending problems such as the ones studied here. Nevertheless, in this work, the two 

above fitness functions will be used for comparison reasons. Results obtained by using f1 as the fitness 

function will show improvements over f2. In following, a general symbol f is used to denote any  

fitness function. 
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3.2. Design Optimization Problems 

In general the displacement field is a function of the electric potential, the layout, the geometry of 

actuators and the number of actuators. In this framework, two kinds of shape control (SC) problems of 

a beam with various boundary conditions are studied. The Voltage Problem and the Location and 

Voltage Problem. 

The first SC problem (the Voltage Problem) consists in finding a set of actuation voltages i  for a 

given number and position of actuators, which minimizes the cost function f under the constraint: 

min maxi     (16)  

where i is the actuation voltage of the i
th
 actuator and min  and max the lower and upper saturation 

voltages. In this work, this problem is solved by genetic algorithms. The MatLab software package 

was used for the development of an algorithm to optimize actuator placement and voltage for a given 

cost function and for given number of actuators and beam dimensions and properties. The computer 

code developed makes no assumption of linearity between the displacements and the electric voltages, 

thus, it can be used for non−linear models as well. 

The second SC problem (the Location and Voltage Problem) is more general. It consists in finding 

the optimal position and electric potential simultaneously for a given number of actuators, which 

minimize the cost function f. In this problem, it is assumed that every actuator covers exactly the 

length of one element. The actuator position is modeled using a Boolean type discrete variable for each 

element and the electric potential of the actuator using a bounded continuous variable. The Mixed 

Integer Problem that arises is highly nonlinear and is solved using a modified genetic algorithm 

procedure in order to accommodate two different types of information: the location of each 

piezoelectric element and the voltage needed to apply to each of them.  

3.3. Genetic Algorithm and Great Deluge 

Genetic Algorithms (GAs) are a category of heuristic optimization algorithms that mimics the way 

traits pass from parents to offspring resulting in the development of characteristics that give an 

evolutionary advantage to certain members of the population. GAs are an established method of non 

exact optimization, meaning that a GA is usually able to find very good solutions to hard combinatorial 

optimization problems when it is difficult or even impossible for an exact optimization method like 

Linear or Integer Programming to address the same problem within reasonable solving time. A detailed 

treatment of GAs can be consulted in [13] while successful applications of GAs can be found in almost 

every field [16]. As GAs is a kind of simulation a great number of function evaluations are required. 

For this reason, several ways have been proposed so as to speed up the process yet maintain quality of 

the acquired solutions. With this approach the GA is combined with the Great Deluge method, which 

creates a part of the initial population consisting of good, yet diverse solutions that are then fed to the 

GA. The rest of the initial population gets generated using random values. The choice of introducing 

individuals of relative high fitness early in the optimization process seems to help the GA on finding 

even higher quality solutions faster. 

Great Deluge Algorithm (GDA) is a local search optimization method, which was initially proposed 

by Dueck [17]. It belongs to the general class of trajectory (single point) search methods for the reason 
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that a single solution is continuously modified so as to progressively achieve better results. Other 

meta−heuristics that belong to the same class are Simulated Annealing, Taboo Search, Late 

Acceptance Hill Climbing, and Greedy Randomized Adaptive Search, to name a few. In GDA better 

solutions are always accepted while worse solutions are also accepted, provided that the computed cost 

is no worse than the cost of the current solution plus an artificial limit that gradually diminishes. The 

name Great Deluge was chosen in order to draw an analogy between the method and a situation where 

a person situated in a landscape filled with plateaus, peaks, and dips tries to keep his feet dry while a 

heavy rain occurs causing the water level to rise. GDA is similar to Simulated Annealing with the 

added benefit that it requires tuning of a single parameter only. This parameter known as Decay Rate 

(DR) is the amount that the tolerance of accepting non−improving solutions is reduced in each 

iteration of the method. GDA has been applied to a number of optimization problems with promising 

results. Although GDA was originally applied to the Traveler Salesman Problem, most of the research 

papers that use this method are in the area of scheduling problems and especially course and 

examination timetabling [18,19]. GDA has also been applied to other optimization problems like 

channel assignment in cellular communications [20], preventive maintenance optimization for 

multi−state systems [21], constrained mechanical optimization [22] and others. GDA is less common 

than other trajectory search meta−heuristics but its simplicity and single parameter tuning makes it a 

good candidate for several optimization problems that occur in practice.  

The pseudo−code for generating part of the initial population of the GA using GDA is shown in  

Algorithm 1. Each solution S is initially generated randomly, optimized to a certain degree using GDA, and 

then appended to the population. The Decay Rate parameter DR is computed for each individual of the 

population by dividing the initial fitness value of the individual F(S) by the number of iterations ITER that 

GDA is allowed to perform. A new solution S’ is generated from S using neighborhood functions similar to 

those described in [22]. Thus, for a variable referring to the voltage applied to a certain position i the new 

value Vi* is computed based on the existing value Vi and the following equation: 

 * 2 ()i i kV V rand step      (17)  

Function rand() returns a uniform random value between 0 and 1 and step is a parameter with 

initially value drawn randomly between 500 and 1,000, which gradually diminishes. Step is calculated 

with Equation (18), where function frac() returns the fractional part of a real number, φ is a parameter 

that assumes value 0.001 and k is the iteration counter. 

1

1

k
frac

k

k k kstep step e step
 
 

 
       (18)  

As voltage assumes values between a lower and an upper limit, e.g., between 0 Volts and 400 Volts, 

when Vi* gets a value out of that range, an adjustment occurs so as the value to become valid again. In 

particular, when the value violates either the lower or the upper limit it is modified so as to be spaced 

at the same distance from the limit that is violated but in the feasible range of values. 
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Algorithm 1.: Great Deluge Algorithm for initial population generation. 

GA_POPULATION =  

N = desired GDA generated population members 

for j:=1 to N 

 create a random initial solution S 

 DR = F(S) / ITER 

 L = F(S) 

 for k:=1 to ITER 

  generate a new solution S’ based on S using a neighborhood function 

  if F(S’) ≤ max(F(S), L) then  

   S = S’ 

  end_if 

  L = L − DR 

 end_for 

 append S to GA_POPULATION 

end_for 

3.3.1. Chromosome Encoding 

A decision directly related to the success of a GA in a specific application is the chromosome 

encoding, which is the encoded form of each individual belonging to the population. Chromosomes are 

combined in order to breed new individuals or mutated so as to incorporate direct changes. In any kind 

of problem examined in this work, the beam is divided in 30 equally spaced positions where the 

actuators can be positioned. 

In the first kind of the problem (the Voltage Problem) every six consecutive positions become a 

group and the same voltage applies to all actuators of the same group. So, the chromosome encoding is 

just a sequence of decimal numbers equal to the number of groups. Each value of the chromosome is 

associated with the voltage that will be applied to all actuators of the group in the same place. Given 

that four different settings are tested with two, three, four, or five groups of actuators active 

respectively the chromosome length becomes two, three, four, or five. 

Figure 1. Chromosome encoding for the location and voltage problem. 

 

In the second case of the problem (the Location and Voltage Problem) the chromosome consists of 

two parts (Figure 1). The left one is a sequence of 30 binary values carrying the information of 

presence (1) or absence (0) of an actuator at the predefined positions. The right part is the voltages that 

will be applied to each actuator that is present. The sum of ones in the left part should equal to the 

number of decimal values in the right part. As, for each run of the program, the number of actuators 

that will be active is known in advance, the chromosomes have a constant−length per run. In this 

version of the problem more degrees of freedom are given since different voltages can be applied to 
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actuators that in the Voltage Problem belong to the same group. So, better results are expected and 

indeed the GA manages to find them as is shown in Section 4. 

3.3.2. GA Implementation Issues 

There are numerous GA implementations available in the form of callable libraries, frameworks or 

integrated environments. In this paper, MatLab’s Global Optimization Toolbox R2012a, which includes 

the Genetic Algorithm Toolbox was used. MatLab’s Global Optimization Toolbox starting from version 

R2011b has the capability of defining integer constraints out of the box. This was very convenient in our 

case given that the Location and Voltage Problem is a Mixed Integer optimization problem. 

4. Numerical Results 

This section presents numerical results from several representative problems. First, a benchmark 

problem is considered in order to validate the present optimization algorithm. Next, several illustrative 

optimization problems are investigated using the developed algorithm. All application examples focus 

on beams with surface bonded piezoelectric patches as actuators. The host beam is made of T300/976 

graphite/epoxy and the piezoelectric layers are PZT G1195N. The length of the beam is equal to  

300 mm, the depth is equal to 9.6 mm and width is equal to 40 mm. The thickness of the actuators is 

equal to 0.2 mm. The elastic constants of T300/976 graphite/epoxy are: E1 = 150 GPa, v12 = 0.3, G13 = 7.1 

GPa. The piezoelectric material has the following properties: E1 = 63 GPa, v12=0.3, G13 = 24.2 GPa,  

e31 = 17.584 C/m
2
 and other entries in the piezoelectric stress matrix are zero. For comparison reason, 

in all the following examples the fitness value is scaled as [9]: 

 1lnf
f

 . (19) 

It is noted that the greater the value of f , the greater the shape controllability is. 

Figure 2. The smart beam structure. 

 

4.1. The Voltage Problem 

The problem studied by Hadjigeorgiou et al. [9] is considered here in order to validate the 

optimization code presented in Section 3. The beam is divided evenly into 30 finite elements and five 

groups along the x direction as shown in Figure 2. Each group consists of six elements; on the upper 

surface of the elements actuators may be attached. The beam is clamped at the left hand side and is 
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subjected to a concentrated load equal to 4 N at the free right end. The upper limit of the voltage is set 

to be 500 V. The pre−defined displacement field (desired shape) is given by   0dX x   and the aim is 

to calculate the actuator voltages required to induce this desired shape. The Voltage Problem is studied 

in two cases. In the first case, it is assumed that all the elements have a piezoelectric material layer 

bonded on its upper surface and the specified group is activated by the user. This is the same situation 

of [9]. In the second case, each element is considered as having no patch or being fully covered with 

piezoelectric material. A special assembly procedure was used to account for the piezoelectric actuator 

patches instead of complete layers of piezoelectric material throughout the structures. It is noted that in 

the former case, the stiffness characteristics of the beam remain constant throughout the shape control 

procedure, while, in the latter, they change depending on the number of actuators used. More precisely, 

the actuator patches contribute less to the beam stiffness than the continuous actuator layers in the first 

case. In addition, it is pointed out that for five actuator groups, the two cases of the problem (case 1 

and case 2) are identical to that of [9]. 

The optimization problem for both problem cases is solved using the present developed genetic 

algorithm. The genetic algorithms were run for 100 generations and 40 individuals. Of several test 

cases run, the one exhibiting the best fitness is presented. The optimal values of voltages for the most 

efficient combinations of actuator groups to shape control of the beam are shown in Table 1. In the 

first row of Table 1 the values of optimal voltage predicted by Hadjigeorgiou et al. [9] are included. It 

can be noted that the values of fitness obtained by the developed algorithm are equal (case 1) or 

smaller (case 2) than those of [9] except for the last case of five groups of actuators, where the fitness 

value is bigger. Taking into account that the fitness values are calculated by Equation (19), we may 

conclude that: (i) the present algorithm is able to produce better results for the case of problems 

involving five actuator groups, (ii) the smaller values of fitness obtained in the second case are due to 

the smaller stiffness characteristics of the beam, leading to bigger displacement for the same load 

condition. In addition, this example highlights the inverse nature of the shape control, where 

uniqueness of solution is not guaranteed in general. This effect is also attributed to the inherited 

randomness of the GA. Most interestingly, all three models predict quite different voltage 

configurations but yet they all manage to match the desired shape quite well. 

4.2. The Location and Voltage Problem 

A beam with similar material and geometric properties as described in Section 4.1, is considered to 

calculate the optimal location and applied voltage of actuators in order to modify its shape. The 

simulation comprises structures with different boundary conditions: a clamped−free beam and a 

clamped−clamped beam. All the thirty elements are candidates for actuator locations. In addition, the 

piezoelectric patches are symmetrically located on the upper as well as on the lower side of the beam. 

Five GA runs were performed, each with different initial values of the design variables, and the best 

results obtained are presented in the following paragraphs.  

In order to assess the behavior of the algorithmic approach, several runs were performed. For 

example, for the case of the Clamped Free problem, where the number of actuators is 18, 55 runs were 

performed using initial values generated with different random seed for each run. Results showed that 

for this particular case the maximum value of fitness function 2f  was 31.45, the minimum value was 
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27.35, the average value was 29.35, the standard deviation was 0.97, and the range of values was 4.1. 

Similar results were obtained for other instances of the problem demonstrating that the approach is 

fairly robust giving consistently good results. 

Inclusion of the Great Deluge phase before the Genetic Algorithm added value to the approach. 

This is demonstrated by the following experiment scenario: For the case of the Clamped Free problem, 

100 runs were performed using the Genetic Algorithm including the injection of solutions generated by 

the Great Deluge and another 100 runs were performed by deactivating the Great Deluge phase and 

letting the Genetic Algorithm form the initial population randomly. All runs where executed on a 

Windows7/64 bit machine equipped with Intel i7 860 processor and 16 GB of RAM. Each run took 

about eight minutes to complete. Results showed that the best 24 generated fitness values during the 

experiment were all achieved using the configuration of the solver that included the Great Deluge 

stage. Thus, a small number of good solutions (10% or less of the population size) injected to the 

initial population seem to drive the Genetic Algorithm to better solutions. 

Table 1. Optimal values of voltages (clamped−free beam) for X
d
(x) = 0. 

Number of 

used 

Actuator 

Groups 

Method Voltage of the Actuator Groups (V) Fitness 
2

f  

  1 2 3 4 5  

(1,3) 

[9]  

Present (case 1) 

Present (case 2) 

432.61 

432.60 

438.87 

0.00 

 

389.20 

389.21 

400.55 

0.00 

 

0.00 

 

17.86 

17.86 

17.76 

(1,2,3) 

[9] 

Present (case 1) 

Present (case 2) 

324.83 

324.91 

325.35 

217.58 

217.41 

216.01  

272.11 

272.20 

277.59 

0.00 

 

0.00 

 

18.99 

18.99 

18.89 

(1,2,3,4) 

[9]  

Present (case 1) 

Present (case 2) 

320.15 

320.20 

320.33 

243.17 

243.30 

243.39 

169.88 

169.51 

169.21 

122.44 

122.57 

123.79 

0.00 

 

22.14 

22.14 

22.03 

(1,2,3,4,5) 

[9]  

Present (case 1) 

Present (case 2) 

320.54 

321.06 

320.18 

240.47 

241.18 

243.09 

178.09 

173.58 

171.98 

98.57 

107.45 

107.91 

41.94 

30.37 

31.20 

23.41 

23.61 

23.56 

4.2.1. Clamped−Free Beam 

First the case of a beam, which is clamped at the left−hand side and is subjected to a concentrated 

load equal to 4 N at the free right end, is considered. In this case, the lower limit of the voltage is set to 

be 0 V and the upper limit is set to be 240 V (limit imposed due to depoling of actuators). The desired 

shape is given by X
d
(x) = 0. Table 2 shows the optimal solutions for placement of the actuators and the 

corresponding optimal voltages for various numbers of actuators. The genetic algorithms were run 

using the following parameters: Generations = 2,000, Population = 100, EliteCount = 2. Marginally 

better results can be obtained in some cases by further fine−tuning of GA parameters like EliteCount 

and mutation rate. It should be noted that for a small number of actuators (8, 12), the GA was 

terminated before 2000 generations. We observe that for a small number of actuators (8, 12) the 
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optimal actuation voltages are close to the upper saturation limit and the optimal positions are closed to 

the clamped end. A graphical presentation of these results is given in Figure 3. 

Table 2. Optimal Location and voltages of actuators within the 30 finite element mesh for 

Clamped−Free Beam. 

 
Number of Actuators in Use 

8 12 18 24 30 

Νumber of 

Elements 1f  2f  1f  2f  1f  2f  1f  2f  1f  2f  

1 240.00 240.00 72.88 170.6295 211.79 178.82 150.63 172.21 196.49 171.86 
2 0 240.00 205.33 166.2474 137.64 240.00 181.99 164.26 135.51 165.25 

3 240.00 240.00 57.59 239.5262 224.25 0 233.47 160.70 200.80 159.43 
4 240.00 0 227.76 0 0 237.75 142.78 152.82 106.08 154.16 
5 240.00 0 240.00 235.2183 236.74 150.84 62.97 148.71 172.72 147.67 
6 240.00 240.00 240.00 240.00 157.88 141.92 153.98 141.55 134.09 142.17 
7 240.00 240.00 240.00 0 144.00 136.04 133.83 137.12 175.95 136.62 
8 240.00 0 0 240.00 101.20 131.17 202.06 129.91 77.37 130.25 
9 240.00 0 240.00 0 111.33 124.13 82.88 125.06 133.95 125.01 
10 0 240.00 0 240.00 154.75 179.14 155.75 118.98 147.23 118.82 

11 0 240.00 0 240.00 124.40 0 20.06 113.21 89.92 112.97 
12 0 0 240.00 0 138.96 220.14 142.41 107.06 88.79 107.72 
13 0 240.00 240.00 0 0 0 215.45 101.73 163.93 101.21 
14 0 0 0 240.00 232.81 149.81 0 95.90 54.65 95.94 
15 0 0 0 0 0 89.29 0 89.52 66.10 89.88 
16 0 0 240.00 0 0 84.59 223.23 84.19 137.71 84.19 
17 0 0 0 240.00 180.02 116.37 54.80 78.72 16.61 78.05 
18 0 0 0 0 126.31 0 50.74 71.97 126.12 72.91 
19 0 0 0 240.00 0 167.23 135.11 99.19 72.24 66.33 

20 0 0 0 0 118.10 0 0 0 17.67 61.24 
21 0 0 0 0 0 0 0 87.00 79.27 54.98 
22 0 0 240.00 0 0 132.40 133.63 72.41 27.59 49.26 
23 0 0 0 0 194.29 0 28.23 0 60.20 43.54 
24 0 0 0 0 0 124.34 36.36 77.41 55.35 37.67 
25 0 0 0 0 0 0 0.12 0 21.19 31.62 
26 0 0 0 0 0 0 79.99 68.89 3.47 26.56 
27 0 0 0 0 0 0 0 0 31.47 20.06 

28 0 0 0 0 0 0 0 0 27.63 14.41 
29 0 0 0 0 122.02 0 17.03 0 0.53 8.90 
30 0 0 0 186.51 1.87 46.15 2.03 22.71 0.38 2.59 

Fitness 22.00 16.11 25.60 19.09 30.65 20.88 31.29 23.12 33.66 26.77 

As can be shown in Figure 3, in the last three cases a very good agreement was found between the 

desired shapes and the numerical results, showing that more actuators can control the deformation 

more efficiently. Compared to results in Figure 3, we can see that the maximum nodal displacement 

for the optimal solution obtained using fitness 1f  is smaller than the one obtained using 2f (e.g., 

7.536e−6m compared to 1.093e−5m for 8 actuators). Hence, it can be concluded that the deflection 

controlled by fitness 1f  is closer to the desired shape than the one controlled by 2f . 
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Figure 3. The centerline of the cantilever smart beam under the action of various numbers 

of actuators for X
d
(x) = 0 with the optimal location of the actuators and the optimal values 

of actuation voltages. 

 

4.2.2. Clamped−Clamped Beam 

Second, the case where the beam clamps on both sides and is subjected to a concentrated load equal 

to 40 N at the center is considered. The lower limit of the voltage is set to be −240 V and the upper 

limit is set to be 240 V. The pre−defined displacement field (desired shape) is given by X
d
(x) = 0. The 

optimal values of voltages for the most efficient combinations of number of actuators to shape control 

of the beam are presented in Table 3. The GA runs using the following parameters:  

Generations = 3,000, Population = 150, EliteCount = 0. It should be noted that, for a small number of 

actuators (8, 12), the GA was terminated before 1,500 generations. We observe that for a small number 

of actuators (8, 12) the optimal positions of the actuators are close to the clamped ends where the 

optimal actuation voltages are close to the upper saturation limit and at the middle of the beam where 

the optimal actuation voltages are close to the lower saturation limit. A graphical presentation of these 

results is given in Figure 4. By comparing the curves in Figure 4, it can be seen that the deflection 

0 0.05 0.1 0.15 0.2 0.25 0.3
-12

-10

-8

-6

-4

-2

0

x 10
-5

x-axis (mm)

tr
a
n
v
e
rs

e
 d

is
p
la

c
e
m

e
n
t 

(m
m

)

number of actuators=0

 

 

desired shape

no-control

0 0.05 0.1 0.15 0.2 0.25 0.3

-10

-5

0

5
x 10

-6

x-axis (mm)

tr
a
n
v
e
rs

e
 d

is
p
la

c
e
m

e
n
t 

(m
m

)

number of actuators=8

0 0.05 0.1 0.15 0.2 0.25 0.3
-12

-10

-8

-6

-4

-2

0

x 10
-6

x-axis (mm)

tr
a
n
v
e
rs

e
 d

is
p
la

c
e
m

e
n
t 

(m
m

)

number of actuators=12

0 0.05 0.1 0.15 0.2 0.25 0.3
-12

-10

-8

-6

-4

-2

0

x 10
-6

x-axis (mm)

tr
a
n
v
e
rs

e
 d

is
p
la

c
e
m

e
n
t 

(m
m

)

number of actuators=18

0 0.05 0.1 0.15 0.2 0.25 0.3
-12

-10

-8

-6

-4

-2

0

x 10
-6

x-axis (mm)

tr
a
n
v
e
rs

e
 d

is
p
la

c
e
m

e
n
t 

(m
m

)

number of actuators=24

0 0.05 0.1 0.15 0.2 0.25 0.3
-12

-10

-8

-6

-4

-2

0

x 10
-6

x-axis (mm)

tr
a
n
v
e
rs

e
 d

is
p
la

c
e
m

e
n
t 

(m
m

)

number of actuators=30

 

 

desired shape

no-control

fitness1

fitness2



Actuators 2013, 2 125 

 

 

controlled by fitness 1f  is closer to the desired shape than the one controlled by 2f  (the maximum 

displacement from 3.67e−6m is reduced to 1.72e−6m for 12 actuators). Again, the results indicate that 

increasing the number of actuators has a beneficial effect on controlling the shape of the beam. 

5. Conclusions 

A mathematical model of a laminated composite beam with bonded piezoelectric patches used as 

actuators is considered in this study. The model is built using finite element method and is applied as a 

platform for the investigation of shape control of the beam. Shape control was applied to a beam 

structure with different boundary conditions. The optimal values for the locations of the  

piezo−actuators and optimal voltages for shape control are determined for clamped−free and  

clamped−clamped beams by using a genetic optimization procedure. A two−step process including Great 

Deluge and then a Genetic Algorithm has been performed in order to improve search efficiency. The 

results presented above demonstrate the capability of the proposed hybrid GA approach in determining 

optimal voltages and locations of control actuators within a large number of possible positions. 

Numerical results on a benchmark problem validate both the finite element code being used as well as 

the optimization algorithm. Examples that demonstrate the capabilities and efficiency of the developed 

optimization algorithm in both clamped−free and clamped−clamped beam problems were presented. 

In the near future, our research team plans to apply the proposed hybrid GA to more realistic 

engineering problems such as plate structures. 

Table 3. Optimal Location and voltages of actuators within the 30 finite element mesh for 

Clamped−Clamped Beam. 

Number of 

Elements 

Number of Actuators in Use 

8 12 18 24 30 

 
1f  2f  1f  2f  1f  2f  1f  2f  1f  2f  

1 240.00 240.00 239.98 240.00 240.00 240.00 240.00 235.43 239.95 211.92 
2 240.00 240.00 0 0 240.00 240.00 240.00 205.09 196.47 180.26 
3 0 0 239.97 0 240.00 213.31 240.00 174.19 141.02 149.30 

4 0 0 0 0 240.00 157.75 99.60 143.31 33.89 118.34 
5 0 0 0 240.00 0 169.21 70.087 112.43 72.03 87.38 
6 0 0 0 0 0 0 3.87 108.23 72.32 56.42 
7 0 0 0 0 157.35 91.23 93.21 0 −51.29 25.46 
8 0 0 0 −168.77 65.58 0 46.64 46.47 48.25 −5.51 
9 0 0 0 0 −172.58 0 −59.20 −11.14 −162.20 −36.47 
10 0 −240.00 0 0 0 0 −240.00 −42.00 1.25 −67.42 
11 −240.00 0 0 0 −240.00 131.61 0 −72.92 −151.25 −98.38 
12 0 0 −239.96 −240.00 0 121.53 0 −103.80 −144.01 −129.35 

13 0 0 239.97 −240.00 −240.00 156.44 −240.00 −134.69 −230.12 −160.31 
14 −240.00 0 239.98 0 −240.00 191.35 −240.00 −165.58 −239.98 −191.27 
15 0 0 239.99 −240.00 0 197.23 −240.00 −167.45 −239.93 −193.21 
16 −240.00 −240.00 239.98 −240.00 −240.00 174.10 −240.00 −140.27 −222.46 −166.13 
17 0 −240.00 0 0 −240.00 150.97 −191.31 −158.49 −186.16 −139.05 
18 0 0 0 0 −192.47 230.14 0 0 −106.64 −111.97 
19 0 0 239.93 0 −199.99 0 −143.09 −125.64 −115.69 −84.89 
20 0 −240.00 0 −240.00 0 0 −96.15 0 −54.88 −57.80 

21 0 0 0 0 0 −184.05 13.02 0 −67.16 −30.72 
22 0 0 0 0 0 0 −46.17 0 −66.87 −3.64 
23 0 0 0 0 129.42 0 14.11 97.55 61.63 23.44 
24 0 0 0 0 0 0 0 0 5.15 50.52 
25 0 0 0 240.00 0 98.34 139.55 144.69 45.88 77.61 
26 0 0 0 0 0 0 0 131.25 95.75 104.68 
27 0 240.00 239.93 240.00 0 0 240.00 158.41 100.36 131.77 
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Table 3. Cont. 

28 240.00 240.00 239.97 240.00 240.00 240.00 0 185.55 102.98 158.85 

29 240.00 0 239.96 0 240.00 0 240.00 214.49 206.31 185.93 
30 240.00 0 239.98 240.00 185.24 211.60 240.00 240.00 239.91 213.64 

Fitness 22.24 16.92 24.31 18.17 28.46 20.79 30.26 22.37 31.90 24.97 

Figure 4. The centerline of the clamped−clamped smart beam under the action of various 

numbers of actuators for X
d
(x) = 0 with the optimal values of actuation voltages. 
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Appendix 

Detailed expressions of the mass and stiffness matrices as well as loading vectors that appear in  

the paper.  
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