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Abstract: A multi-channel phase-compensated active disturbance rejection control (MPADRC) incor-
porating an improved backstepping strategy is proposed in this paper to handle the phase lag in the
extended state observer (ESO) and the residual uncertainty in the system. Firstly, a multi-channel
phase-compensated ESO (MPESO) is constructed by adding phase-advanced networks to all output
channels of the ESO, which allows disturbances and system states to be compensated and feedback in
a more timely manner, respectively. Then, to estimate and offset the residual uncertainty in the system,
an improved backstepping control method is employed and a Lyapunov function is designed to verify
the convergence of the error between the estimated and actual values of the residual uncertainty.
After that, the improved backstepping control is combined with MPADRC, and comparisons with the
conventional linear active disturbance rejection control (LADRC) are conducted for a range of cases.
Finally, on an inertial stabilization platform in the electro-optical tracking system (ETS), simulation
and experimental results verified the effectiveness of the proposed method.

Keywords: active disturbance rejection control; extended state observer; electro-optical tracking
system; phase advanced network; backstepping control

1. Introduction

An electro-optical tracking system (ETS) is a type of precision equipment integrating
optical, mechanical, and electronic technology to keep the optic axis of a detector stable via
electromechanical control, which is widely employed in the fields of target observation,
laser communication, and quantum communication [1–4]. With the continuous develop-
ment of ETSs and the iterative updating of application scenarios, motion platforms, such
as ships, unmanned aerial vehicles, and satellites, have increasingly been equipped with
ETSs [5–7]. This generates strong requirements for the stability of ETSs. However, ETSs
installed on moving platforms are often affected by disturbances created by the complex
external environment [8], which are usually concentrated in the low and medium frequen-
cies, resulting in jittering of the optic axis in ETSs. This reduces the imaging quality of the
equipment, and ultimately decreases the tracking accuracy of the system, or even loses the
target that needs to be observed or tracked. Therefore, the design of controllers to suppress
perturbations in ETS has become one of the most fascinating research topics [9–11].

Several methods have been proposed in the literature to suppress disturbances in
ETSs. One such method is the disturbance observer (DOB), which is capable of achieving
disturbance suppression. However, this controller relies heavily on model information and
requires an accurate mathematical model to be established [12,13]. Another approach is the
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improvement of acceleration feedback control by constructing a multi-loop system, which
enhances the stability of the photoelectric tracking system. Nevertheless, this method
necessitates the use of multiple sensors in a closed loop, leading to increased costs [14].
Sliding mode control (SMC) is another technique that can effectively suppress perturbations
in most photoelectric systems due to its strong robustness. However, it is noted that the
chattering phenomenon is inevitable in traditional SMC methods [15]. Despite these control
methods being capable of achieving some level of disturbance prevention, their application
in ETSs and in industry is limited due to the aforementioned reasons.

Active disturbance ejection control (ADRC) has been increasingly widely used in
industry [16–20] due to its features, such as the ability to observe system states and distur-
bances, which can enable positive disturbance suppression. ADRC was first proposed by
Han [21]. Its core idea is the concept of total disturbance, treating the part of the actual
controlled plant that is different from the integrator series type as of the same order as a
total disturbance, and estimating the total disturbance by using an extended state observer
(ESO) [22], which reduces the degree of dependence of ADRC on the system model. The
system states estimated by the ESO are used in ADRC for state feedback, avoiding the
cost increase associated with the use of sensors assuming the feedback control law. Gao
simplified the ADRC approach, proposing linear active disturbance control (LADRC) [23],
which makes the structure of ADRC simpler and clearer. It has been applied to the field of
ETS, achieving satisfactory performance. In ref. [24], fractional-order non-singular terminal
sliding modes were combined with an ESO for trajectory tracking control in optoelectronic
systems. In ref. [25], LuGre observers were combined with ADRC to suppress nonlinear
frictions and external perturbations in ETS to great effect.

A number of studies have sought to achieve improvement in the ESO. For example,
[26–28] proposed variants of the ADRC design approach which alleviated the dependence of
ADRC on the control gain in the controlled object and improved the robustness of the ESO
to changes in the object parameters. This advantage was extended to MIMO systems in [29].
The above improvements show that the extended state observer (ESO) excels in managing
external disturbances [30,31] but grapples with a crucial challenge—phase lag during state
estimation. This lag impairs the accuracy of ESO-compensated states, hindering effective
feedback. Alleviating this issue is pivotal for enhancing active disturbance rejection control
(ADRC) performance. Existing strategies focus on total disturbance phase compensation,
including a single-channel phase-leading ESO for timely compensation [32] and partial phase
compensation active disturbance rejection control for improved precision [33]. An enhanced
ESO model, isolating disturbance estimation from state reconstruction, offers increased distur-
bance estimation gain without noise influence [34]. A reduced-order ADRC is proposed to
reduce the phase lag due to the ESO by decreasing the order of the disturbance observation
transfer function through a reduced-order ESO in [35,36]. However, these approaches predom-
inantly address the total disturbance phase lag. Notably, the ESO also exhibits phase lag in
estimating other states of the system. This lag detrimentally impacts the state feedback control
mechanism, thereby exerting a deleterious influence on the overall control performance of
ADRC. Overcoming this broader phase lag challenge remains a crucial area for advancing
control system efficacy.

In addition, although an ESO can observe the total disturbance, there is always an
error between the observed and actual values of the total disturbance, leaving the system
with a residual error even when reduced to the integrator series type. In current ADRC
designs, advanced control law design methods are often combined with an ESO, such as
backstepping control [37], sliding mode control [38], and adaptive control [39,40]. This
residual error has not been specifically investigated.

Motivated by the above and the lack of current ESO research, the main problems
addressed in this paper are the phase lag of all estimated states of the ESO [32,33] and the
residual uncertainty due to mismatch between the actual value of the total disturbance and
the observed value of the ESO [41]. There are challenges in addressing these issues, one of
which is demonstration of the stability of the brand new ESO structure. Another is how to
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deal with the problem of residual disturbance due to incomplete compensation of the total
disturbance, which is seldom considered in current work. To handle this, we demonstrate
the stability of the system from the frequency domain and the backstepping method is
employed. Finally, some sufficient conditions are presented to ensure the stability property.
The main contributions of this paper are summarized as follows:

1. In the existing literature, such as [32,33], the study of the ESO does not consider the
existence of lags in all observed states of the ESO, which reduces the observation
accuracy of the ESO. Therefore, in this paper, a novel ESO (MPESO) is proposed,
which for the first time considers and compensates for the lags of all the states of the
system observed by the ESO, so that its estimation efficiency is further improved.

2. The residual uncertainty in ESO compensation of the total disturbance is a challenge,
and the treatment of this uncertainty has not been adequately considered in the
existing literature [41]. In this paper, this residual uncertainty is introduced into the
design of the Lyapunov function for backstepping control, which is estimated and
compensated to achieve cancellation of this uncertainty.

3. To demonstrate the stability of the proposed system, an equivalent control block
diagram of the MPESO is presented, exploiting the small gain theorem’s original
advantages, which is simple but powerful. While for special cases, equivalence may
be established between small-gain conditions and Lyapunov-type conditions [42],
small gain frequency domain testing is favored due to its numerical accuracy and
computational efficiency.

The rest of this article is organized as follows: Section 2 states the problem formulation,
explains the design procedure of the LADRC, and analyzes the phase lag of the ESO.
Section 3 presents the algorithm for the MPESO and improved backstepping control law,
showing that the system proposed in this paper is stable and converged. In Section 4,
simulations and experimental platform experiments which verify that the proposed method
is effective are described. Finally, the conclusions of the article are given in Section 5.

2. Problem Formulation
2.1. ETS Model Analysis

The ETS based on the inertial stabilization platform (ISP) has the characteristics of fast
response speed and wide areas of application. It can be used for high-precision electro-
optical tracking control. As shown in Figure 1, the ISP is driven by a voice coil motor and,
thus, reflects the laser light emitted from the light source so it can be used to stabilize the
optical path. The PSD provides the position errors between the target of the laser light
and the pointing target to control the ISP. In Figure 2, the dynamic model of an ISP can be
described as [15]: {

Ua = Ra Ia + Kb θ̇
Cm Ia = JL θ̈ + fm θ̇ + Kmθ

(1)

where Ua,Ia,Ra,Cm, fm, Km, and JL are the voltage, current, resistance, back EMF coefficient,
torque coefficient, viscous friction, spring stiffness of motor, and the moment of inertia,
respectively. System (1) can be rewritten as

ẋ1 = x2
ẋ2 = a0x1 + a1x2 + bu
θ = x1

(2)

where a0 = Km/JL and a1 = (Ra fm + KbCm)/JLRa, b = Cm/JLRa. u = Ua is the control
input; θ is the deflection angle of the motor.
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Figure 1. Diagram of the inertial stabilized platform control system.

Figure 2. Physical model structure of the controlled plant.

Remark 1. For inertially stabilized platforms, uncertainties within the system, such as sensor
lag and unmodeled dynamics, as well as being subjected to external disturbance, severely degrade
the tracking accuracy of ETSs and even cause the systems to lose the tracked target. Therefore,
this paper further improves on LADRC so as to suppress the system disturbance and solve the
residual uncertainty problem in a more timely way and more accurately, thus improving the tracking
performance of ETSs.

2.2. Linear Active Disturbance Rejection Control

LADRC consists of a feedback control law and an extended state observer. Figure 3
presents the structure of a second-order LADRC system. Here, u0 and u are the outputs of
the state feedback control law and the input signal of the plant, respectively; z1, z2, z3 are
outputs of the LESO, k1, k2, which are the parameters of the control law.

Figure 3. Structure of the LADRC of the second−order system.

Consider a second-order plant described as{
θ̈ = bu + f1(θ, w, t)
f1(θ, w, t) = a1θ̇ + a0θ + f (w, t)

(3)
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where a1, a0, and b are system parameters, the external disturbance is w, and f1 is the total
disturbance.

Assumption 1. For the above system, if the total disturbance f1 is bounded, there exists a constant
D∗ which is satisfied by:

D∗ > sup|a1θ̇ + a0θ + f (w, t)| (4)

Assumption 1 is reasonable due to the inherent physical constraints on variations in the motor
states in practical control scenarios; even for phenomena occurring over very short intervals, the
characteristics of the motor can be regarded as a ramp. In summary, the total disturbances can be
considered to satisfy the bounded conditions in the physical realization.

Let X = [x1, x2, x3]
T , x1 = y, x2 = ẏ, x3 = f1; then, system (3) can be written as a state

space form as follows: {
Ẋ = AX + Bu + Eh
y = CX + Du,

(5)

where

A =

0 1 0
0 0 1
0 0 0

, B =

0
b
0

, E =

0
0
1

, C =
[
1 0 0

]
, D = 0. (6)

An LESO is used to estimate the state in the form of{
Ż = AZ + Bu + L(x1 − ŷ)
ŷ = CZ,

(7)

where Z = [z1, z2, z3]
T and L = [β1, β2, β3] are the observed state vector and the gain of the LESO,

respectively. The bandwidth parameterization method [23] is employed to select the gain L, which
gives β1 = 3ωo, β2 = 3ω2

o , andβ3 = ω3
o .

2.3. Phase Lag Analysis of the Conventional LESO

By taking the Laplace transform of the state-space realization (7), we have
sz1 = z2 + β1(y − z1)
sz2 = b0u + z3 + β2(y − z1)
sz3 = β3(y − z1)

(8)

According to (8), we obtain the phase-frequency characteristic curves between the actual
and observed values of each state observed by the ESO, as shown in Figures 4–6.

Figure 4. Phase−frequency characteristic of z3
f1

.

Remark 2. It can be seen that there is a phase lag caused by the observer itself when the ESO
observes all the states of the system in the mid-frequency band from Figure 4 to Figure 6. It can also
be found through (8) that this error exists on each output channel of the ESO.
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Figure 5. Phase−frequency characteristic of z1
y .

Figure 6. Phase−frequency characteristic of z2
ẏ .

When there is a lag in the ESO, it reduces the disturbance rejection capability of the
controller since the total disturbance cannot be compensated in time. The tracking accuracy
of the system is also further degraded due to the lag in the system states involved in the
system state feedback.

3. Design of the MPESO and Control Law

This section first provides the design algorithm of the MPESO. Next, an improved
backstepping control law is adopted to implement the state feedback control law of the
system. Then, it is proved that the system applying the control method proposed in this
paper is convergent and stable.

3.1. MPESO

In order to compensate for the phase lag that occurs when the ESO estimates the
individual states of the system, the phase advance network is combined with the ESO. In
the framework of the MPESO, the observed states of the ESO are treated as the object to be
advanced, and the output of the phase advance network (z1p, z2p, z3p)is the input of the
feedback control law and the disturbance compensation.

The output transfer function of the MPESO is
z1p = z1

1+Ts
1+aTs

z2p = z2
1+Ts
1+aTs

z3p = z3
1+Ts
1+aTs

(9)

and the transfer function of the phase advance network is

Gc(s) =
1 + aTs
1 + Ts

, (10)

where a(> 1) is the adjustable parameter and T is the time constant.
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Remark 3. According to the logarithmic frequency characteristics of this transfer function, the
advance network has a significant differentiation effect for input signals with frequencies between
1/(aT) and 1/T. Within this frequency range, the phase of the output signal of the advanced
network is ahead of the phase of the input signal, achieving the function of compensating for the
signal phase lag.

In order to conduct a convergence analysis on the MPESO estimation error, since the
MPESO is a combination of the ESO and the phase advance network, we regard the MPESO
as an overall state equation and substitute (10) into (8)

sz1p
1+aTs
1+Ts = z2p

1+aTs
1+Ts + β1(y − z1p

1+aTs
1+Ts )

sz2p
1+aTs
1+Ts = b0u + z3p

1+aTs
1+Ts + β2(y − z1p

1+aTs
1+Ts )

sz3p
1+aTs
1+Ts = β3(y − z1p

1+aTs
1+Ts )

(11)

Simplifying (11) 
sz1p = z2p + β1(y 1+Ts

1+aTs − z1p)

sz2p = b0u 1+Ts
1+aTs + z3p + β2(y 1+Ts

1+aTs − z1p)

sz3p = β3(y 1+Ts
1+aTs − z1p)

(12)

We can assume that ȳ = y( 1+Ts
1+aTs ), ū = u( 1+Ts

1+aTs ); then, (12) can be written as
sz1p = z2p + β1(ȳ − z1p)
sz2p = b0ū + z3p + β2(ȳ − z1p)
sz3p = β3(ȳ − z1p)

. (13)

Taking the inverse Laplace transform of (13), it can be written asż1p
ż2p
ż1p

 =

−β1 1 0
−β2 0 0
−β3 0 0

z1p
z2p
z3p

+

 0 β1
b0 −β2
0 −β3

[ ǔ
y̌,

]
(14)

where ǔ, y̌ are the forms after the inverse Laplace transform of ū, ȳ, respectively.
The characteristic polynomial of (12) is

λ(s) = s3 + β1s2 + β2s + β3 (15)

Pole-placement of the characteristic polynomial of the MPESO using the observer bandwidth

s3 + β1s2 + β2s + β3 = (s + ωo)
3 (16)

The corresponding parameters are expressed as
β1 = 3ωo
β2 = 3ω2

o
β3 = ω3

o

(17)

Remark 4. Equations (7) and (14) illustrate that the characteristic equation of the modified system,
resulting from the incorporation of the phase advance network into the ESO, remains unaltered.
Utilizing the bandwidth method as outlined in reference [23], the poles of the three parameters,
denoted by the observer bandwidth, are configured. Adjusting the observer bandwidth becomes
crucial to guarantee a negative pole in the characteristic equation of (12), thereby facilitating the
convergence of the observation error for the MPESO.

As shown in Figure 7, the equivalent control block diagram of the MPESO in the
form of the transfer function is given, where Gp(s) is the actual controlled plant, Gn(s)
is the nominal model of the controlled plant, Q(s) is the phase advance network, and
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Q(s) is the equivalent low-pass filter form extracted from the extended state observer,
Q(s) = β3

s3+β1s2+β2s+β3
.

Figure 7. Equivalent control block diagram of the MPESO.

Theorem 1. The introduction of the phase advance network on the output channels of the ESO can
effectively improve the disturbance rejection capability of the ESO system.

Proof. For the MPESO, its disturbance transfer function can be expressed as

Gd,y(s) =
y(s)
d(s)

=
b(1 − Q(s)Gc(s))Gp(s)Gn(s)

bGn(s) + Q(s)Gc(s)(Gp(s)− bGn(s))
=

Gp(s)

1 + Gp(s)Q(s)Gc(s)
b(1−Gc(s)Q(s))Gn(s)

(18)

in the low-frequency band. It can be approximately considered that Gp(s) = Gn(s); then,
(18) can be rewritten as

Gd,y(s) =
Gp(s)

1 + 1
b (

1
1−Q(s)Gc(s)

− 1)
. (19)

In the same way, the disturbance transfer function of the LESO is

´Gd,y(s) =
Gp(s)

1 + 1
b (

1
1−Q(s) − 1)

(20)

Since Gc(s) = 1+Ts
1+aTs and 0 < a < 1, we obtain Gc(s) > 1. Therefore, it is not difficult

to derive that |Gd,y(s)| < | ´Gd,y(s)|, which means that when the plant is approximately
restored to the nominal model, the amplitude of the closed-loop transfer function from
the disturbance to the desired output becomes smaller, and the disturbance rejection
performance of the MPESO system is enhanced.

3.2. Improved Backstepping Control Method Design

In order to deal with the phenomenon of residual error in the series type of integrator,
an improved backstepping control law based on the Lyapunov stability is designed, which
treats the residual error as uncertainty and offsets it. Combining it with the MPESO, the
characteristics of the integrator series type can be effectively utilized, thus reducing its
dependence on model information.

The control block diagram of the improved backstepping and MPADRC method is
given in Figure 8.



Actuators 2024, 13, 117 9 of 20

Figure 8. Block diagram of the improved backstepping and MPADRC.

where r, y, and u are the input, output, and control signals of the system.
The integrator series for the second-order system is

ẋ1 = x2
ẋ2 = x3
x1 = y
x2 = ẏ

(21)

Although the MPESO can achieve the suppression of disturbances as well as non-
linearities, in practical applications, due to the limitation of actual application scenarios
and hardware equipment, there will always be a deviation between the total disturbances
observed by the MPESO and the real total disturbances, which results in the total distur-
bances not being completely eliminated. There is a residual uncertainty when the system is
reduced to the integrator series type (20), which results in the degradation of the system’s
tracking accuracy.

Consider the residual error in the integrator series type as δT = z3p − f1(θ, w, t). The
system after total disturbance compensation can be written as

ÿ = u0 + δT. (22)

In order to deal with this residual uncertainty so that the tracking accuracy of the system
can be further improved, we regard the residual uncertainty in the integrator series-type
system as the nonlinearity of the system and suppress it using an improved backstepping
control method.

In the MPESO structure, the system state variables can be rewritten as{
x1 = z1p
x2 = z2p

(23)

Theorem 2. For the second-order system, considering the residual uncertainty present in the
nominal system after ESO reduction, the state feedback control law can be designed as

u0 = −k1e2
1 + ẋ2d − e1 − k2e2 + δT̂. (24)

Proof. Define the signal that the control system expects to track as x1d; then, the tracking
error is e1 = x1 − x1d.

Choose the Lyapunov function as

V1 =
1
2

e2
1 (25)

Differentiate (25)
V̇1 = e1 ė1 = e1(ẋ1 − ẋ1d) (26)
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According to the second method of Lyapunov, for the error e1 to converge and the
system to reach stability, V̇1 should be negative definite. That is

ė1 = ẋ1 − ẋ1d → −k1e1 (27)

We can have
ẋ1 = x2 → (ẋ1d − k1e1). (28)

If x2 can converge to ẋ1d − k1e1, then the system will be stable. So, it is worthwhile to
set the approximation of x2 to be x2d = ẋ1d − k1e1 and the error of both to be e2 = x2 − x2d.
For the whole system, the Lyapunov function is again designed to make e1, e2 converge at
the same time so that the system reaches stability

V2 =
1
2
(e2

1 + e2
2) (29)

Differentiate (29)
V̇2 = e1 ė1 + e2 ė2 (30)

Combining the above equations, we obtain

V̇2 = −k1e2
1 + e2(u0 + δT − ẋ2d + e1). (31)

Let the estimate of δT be δT̂ with error δTe = δT̂ − δT. To ensure that the error
converges, the control law can be designed as

u0 = −k1e2
1 + ẋ2d − e1 − k2e2 + δT̂. (32)

In order for δTe to converge, design δ ˙̂T as δ ˙̂T = γe2.

Remark 5. For δT̂, we can adjust the relevant parameters to approximate the true value δT. Even
if we are unable to accurately model δT, we can still use this law to achieve an adaptive effect for δT.
The form of this estimate will be given later.

Remark 6. Combining the improved backstepping control law with the MPESO solves the problem
of the residual error that occurs when the original system cannot be reduced by a perfect reduction of
the integrator series and also makes full use of the features of the ESO to reduce the dependence of
the backstepping control law on the model.

3.3. Stability Analysis

In accordance with the separation theorem, the development of the state feedback
control law and the design of the observer can be conducted autonomously in the context
of an output feedback system utilizing a state observer. The stability analysis for the
closed-loop system can be bifurcated into two distinct components. Firstly, the stability of
the state observer, denoted as the MPESO, must be ensured. Secondly, the stability of the
backstepping control law, formulated based on the Lyapunov stability principle, needs to
be established.

3.3.1. Analysis for the MPESO

Lemma 1. For the system in this paper, when the phase advanced network Gc(s) and filter Q(s)
satisfy the following constraints:∥∥∥∥ Q(s)Gc(s)∆(s)

b(1 + Q(s)Gc(s)) + Q(s)Gc(s)

∥∥∥∥
∞
< 1, (33)

the MPESO is stable.
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Proof. With Figure 7, the transfer function between u0 and y can be written as

Gu0,y(s) =
y(s)
u0(s)

=
Gn(s)Gp(s)

bGn(s) + Q(s)Gc(s)(Gp(s)− bGn(s))
(34)

Suppose the multiplicative uncertainty of the plant is expressed as

Gp(s) = Gn(s)(1 + ∆(s)). (35)

In the low-frequency band, since GP(s) = Gn(s), the complementary sensitivity
function of the MPESO is

T =
Q(s)Gc(s)

b(1 + Q(s)Gc(s)) + Q(s)Gc(s)
(36)

According to the robust stability condition, the system is stable when the following condi-
tions are satisfied: ∥∥∥∥ Q(s)Gc(s)∆(s)

b(1 + Q(s)Gc(s)) + Q(s)Gc(s)

∥∥∥∥
∞
< 1 (37)

3.3.2. Analysis for the Control Law

Lemma 2. Consider the residual uncertainty δ ˙̂T in the nominal model of the system; when the
following conditions are satisfied:

δ ˙̂T = γe2 (38)

the backstepping control law (32) is stable.

Proof. The Lyapunov function is chosen as

V3 =
1
2

e2
1 +

1
2

e2
2 +

1
2γ

e2
3 (39)

Differentiate (39)
V̇3 = −k1e2

1 − k2e2
2 + δT̄(e2 − γ−1δ ˙̂T) (40)

If
δ ˙̂T = γe2 (41)

we have
V̇3 = −k1e2

1 − k2e2
2 (42)

The parameters are set to the following ranges:
k1 > 0
k2 > 0
γ > 0

(43)

Then,
V̇3 = −k1e2

1 − k2e2
2 < 0. (44)

According to the second method of Lyapunov (39) is positive definite, and (42) is nega-
tive definite, then the control law is asymptotically stable. It has been proved before that
the MPESO is convergent and robustly stable, so combined with the separation principle of
the observer, it can be guaranteed that the whole closed-loop system is stable.

3.4. Parameter Selection Rules

First, the parameters T and a in the transfer function (10) of the phase advance network
need to be adapted to the stable condition (33). Then, the estimation’s precision, the system



Actuators 2024, 13, 117 12 of 20

stability, and the response dynamics should be taken into account. The parameter tuning
rules are summarized as follows:

1. In the context of the ESO, the parameter ωo is considered, and there is a need to
maximize its value to enhance the convergence speed of the ESO observation error.
However, an excessively large ωo may amplify high-frequency noise in the system,
leading to instability. Therefore, the selection of ωo requires a careful balance between
disturbance suppression and noise amplification;

2. Then, k1, k2, and gamma are tuned to achieve a balance between overshoot and rapid
response while ensuring stability.

3. For the parameters a and T, a nuanced adjustment is essential based on the sys-
tem’s frequency response characteristics to simultaneously enhance the phase margin
and meet the requirements for dynamic performance. Evaluating the closed-loop
system response is required to ensure the avoidance of instability or other adverse
characteristics.

Finally, the parameters of the tests described in Section 4 are configured as given in
Table 1 according to the above rules.

Table 1. Parameters of the controllers.

Controllers b ωc ω0 a T k1 k2 γ

LADRC 830 40 Hz 100 Hz - - - - -
MPLADRC 830 40 Hz 100 Hz 0.8 0.1 - - -
Proposed 830 40 Hz 100 Hz 0.8 0.1 40 40 20

4. Simulation and Experimental Verification

Specific simulations and experimental verification were carried out in the inertial
stabilization platform (ISP) of the ETS. Figure 9 presents the experimental platform, which
is mainly a motion platform driven by a voice coil motor. The laser emitted by the light
source on the ISP is reflected by a mirror and enters the position sensitive detector (PSD),
which is a device capable of detecting the photoelectric position. The control objective of
the ISP is to stabilize the laser at the center of the PSD imaging panel. The PSD outputs the
distance between the laser point position and the center of the imaging panel as the error
signal of the position closed loop.

A dynamic signal analyzer was used to generate a sinusoidal signal of constant
amplitude and varying frequency in the range of 0.1 Hz–100 Hz to drive the voice coil
motor. The PSD output signal was captured in an open loop. Numerical fitting was
performed based on the sweep frequency results. Figure 10 shows the numerical fitting
results of (45).

G(s) =
Y(s)
U(s)

=
829.9

s2 + 17.83s + 1371.7
. (45)

Figure 9. Experimental setup.
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Figure 10. Numerical fitting result.

4.1. Simulation Verification

The parameter settings [23,32] of LADRC, MPADRC, and the proposed system were
used in the simulation. The values of the specific controller parameters are given in Table 1.

Firstly, simulation verifications were carried out to illustrate the enhancement brought
by the proposed method in this paper to the tracking performance of the ETS. Specifically,
(45) is taken as the controlled plant of the system. In order to simulate the immunity
performance of the system when it is subjected to different types of disturbances, distur-
bance signals in step, ramp, and sinusoidal form are applied to the controlled plant. The
multi-channel phase-compensated ADRC method (MPADRC) and the MPADRC method
incorporating a backstepping control strategy (proposed) are also compared with LADRC.

We can observe from Figures 11–13 that the MPADRC method and the proposed
method that combines MPADRC with improved backstepping control show better dis-
turbance rejection performance than the conventional LADRC under disturbance. The
convergence speed of the individual states of the system observed by the ESO is improved
after being compensated by the phase advanced network.

Figure 11. Simulation results for the step responses under step disturbance.
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Figure 12. Simulation results for the step responses under ramp disturbance.

Figure 13. Simulation results for the step responses under sine disturbance.

In addition, to further demonstrate the observational effectiveness of the MPESO, the
observed values of the MPESO and ESO methods for the total disturbance are compared
with the true values of the total disturbance. From Figures 11d–13d, it can be seen that the
observed values of the MPESO for the total disturbance are much closer to the true value,
which further proves the validity of the method proposed in this paper.

To quantitatively describe the performance of the proposed method, the tracking
performance evaluation metrics ITAE and ITSE (46) were used.{

ITAE =
∫

t|r(t)− y(t)|dt
ITSE =

∫
t(r(t)− y(t))2dt

. (46)
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It is shown in Tables 2 and 3 that compared to LADRC, the MPLADRC method exhibits
better performance, i.e., the corresponding ITAE and ITSE are smaller, which suggests
that the output signal of the system is closer to the input signal. In addition, the data in
the table show that the proposed method provides a further improvement in the control
performance of the system.

Table 2. ITAE for different controllers under step response.

Controllers Step Disturbance Sine Disturbance Ramp Disturbance

LADRC 32.94 351.10 175.63
MPLADRC 27.26 292.17 144.32
Proposed 21.30 227.26 110.81

Table 3. ITSE for different controllers under step response.

Controllers Step Disturbance Sine Disturbance Ramp Disturbance

LADRC 43.47 234.54 55.07
MPLADRC 34.06 163.04 38.35
Proposed 24.17 99.70 24.16

4.2. Experimental Verification

For the time domain experiments, comparisons of the step responses results under step
disturbance and sinusoidal disturbances are shown in Figure 14, respectively. Figure 15
shows the drive input signals of the controlled object. The amplitudes of the step response
and the step disturbances are 50 and 100, respectively, and the frequencies of the sinusoidal
disturbances are 0.5 Hz, 1 Hz, and 2 Hz, respectively. The experimental results show that
the proposed method, which combines MPADRC with improved backstepping control, has
a much smaller peak and can converge the system to the specified position more quickly.

Figure 14. Step responses.

The frequency domain results are shown in Figure 16. Compared with LADRC, both
MPADRC and the proposed method can suppress more perturbations in the middle- and
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low-frequency bands. It can also be seen that the combination of the improved backstepping
method further improves the perturbation suppression performance of MPADRC.

Figure 17 shows the tracking performance of the system for sinusoidal signals when
subjected to different disturbance signals. The disturbance input signals are a step signal
with an amplitude of 500 and a sinusoidal signal with an amplitude of 500 and a frequency
of 1 Hz, respectively.

Tables 4 and 5 quantitatively describe the control performance corresponding to the
different control methods in the experiments using the ITAE. In them, the calculated results
are scaled equally for ease of description. The results further confirm the validity of the
method proposed in this paper.

Table 4. ITAE for different controllers under step response with sine disturbance.

Controllers 0.5 Hz Sine 1 Hz Sine 2 Hz Sine

LADRC 3.3710 7.1378 2.0891
MPLADRC 1.7823 4.1364 1.4034
Proposed 0.7678 1.8514 0.7856

Table 5. ITAE for different controllers under the other input and disturbance signal types.

Controllers Step Response Sine Response Sine Response
(Step Disturbance) (Step Disturbance) (Sine Disturbance)

LADRC 3.3710 7.1378 2.0891
MPLADRC 1.7823 4.1364 1.4034
Proposed 0.7678 1.8514 0.7856

Figures 18–20 substantiate the efficacy of the controller in tracking sinusoidal signals,
both in the temporal and frequency domains, respectively. The outcomes demonstrate
that the methodology proposed in this study exhibits superior performance with reduced
tracking errors and an expanded tracking bandwidth.

Figure 15. Input of step responses.
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Figure 16. Measure Bode diagrams.

Figure 17. Sinusoidal responses (with disturbance).

Figure 18. Sinusoidal responses (without disturbance).
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Figure 19. Input of sinusoidal responses.

Figure 20. Measure Bode diagrams.

5. Summary and Conclusions

In this paper, a multi-channel phase-compensated ADRC design scheme incorporating
an improved backstepping method is proposed to compensate for the phase lag that exists
when the ESO estimates all the states of the system and enhances the disturbance rejection
capability. Meanwhile, a state feedback control law is designed based on the Lyapunov
stability principle, which eliminates the participation uncertainty and, thus, improves the
stable tracking capability of the system. Simulation and experimental results obtained show
that both the MPADRC method and the MPADRC method incorporating the improved
backstepping control strategy can further enhance the disturbance rejection capability of
the controller compared with the LADRC, regardless of whether a disturbance is applied to
the system in the form of a step or a sinusoidal signal.

Efforts to enhance compensation for the phase lag in response to extended state
observer (ESO) bandwidth variations warrant further investigation. Future research could
explore advanced phase correction methods, including fractional-order phase override
networks, for more precise mitigation of observation lag in the ESO. This has the potential
to advance compensation strategies in control systems.
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