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Abstract: The transportation of emergency supplies is characterized by real-time, urgent, and non-
contact, which constitute the basic guarantee for emergency rescue and disposal. To improve the
yaw stability of the four-wheel-drive unmanned emergency supplies transportation vehicle (ESTV)
during operation, a two-layer model predictive controller (MPC) method based on a Kalman filter
is proposed in this paper. Firstly, the dynamics model of the ESTV is established. Secondly, the
improved Sage–Husa adaptive extended Kalman filter (SHAEKF) is used to decrease the impact of
noise on the ESTV system. Thirdly, a two-layer MPC is designed for the yaw stability control of the
ESTV. The upper-layer controller solves the yaw moment and the front wheel steering angle of the
ESTV. The lower-layer controller optimizes the torque distribution of the four tires of the ESTV to
ensure the self-stabilization of the ESTV operation. Finally, analysis and verification are carried out.
The simulation results have verified that the improved SHAEKF can decrease the state estimation
error by more than 78% and achieve the noise reduction of the ESTV state. Under extreme conditions
of high velocity and low adhesion, the average relative error is within 6.77%. The proposed control
method can effectively prevent the instability of the ESTV and maintain good yaw stability.

Keywords: emergency supplies transportation vehicle; yaw stability; two-layer model predictive
control; improved Sage–Husa adaptive extended Kalman filter; dynamics model

1. Introduction

Emergency supplies transportation plays an important role in production disaster re-
lief, medical assistance, and dangerous situation disposal, and it has important application
value for protecting social property and people’s safety [1]. The unmanned emergency
supplies transportation vehicle (ESTV) has a high energy utilization rate, which can as-
sist or replace human work and reduce labor input. Therefore, the attention gradually
increased [2]. In the context of artificial intelligence, ESTV has been widely used in all
aspects of society. With the continuous improvement and development of the performance
of the ESTV, stability control under the regular operating conditions of good roads is easy to
achieve, but due to uncertain factors such as the ground adhesion coefficient, especially the
stability under complex road conditions such as low adhesion after snow and ice, still faces
great challenges [3]. Therefore, ensuring the safety and stability of ESTV under various
complex road conditions is an important research direction for vehicle dynamics control [4].

Yaw stability control is of important significance for ensuring vehicle safety [5]. To pro-
mote the rapid development of four-wheel-drive vehicles, many scholars have carried out
related research on improving their yaw stability, such as PID control [6,7], sliding mode
control [8,9], adaptive control [10,11], neural network control [12,13], model predictive
control (MPC) [14,15], and other methods. Among them, the MPC can make local opti-
mization adjustments at each time step and obtain optimal control input. It is an effective
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method to deal with multivariable and constrained problems and can compensate for the
uncertainties caused by model error, disturbances, and other factors in real time, with good
dynamic control performance [16].

The yaw stability control system can be divided into integral stability controllers and
hierarchical stability controllers according to the system structure. The integral structure
control strategy combines the yaw stability controller design with the drive torque distribution,
solves the dynamic coupling between the vehicle and the actuator, and directly optimizes the
control input of the system with good control performance [17]. Qu et al. [18] used an extended
state observer to estimate the disturbance after linearization, and the LMPC controller was
used for yaw stability control to provide the front wheel steering angle and drive torque
for four wheels. Wang et al. [19] proposed a coordination control strategy with a two-layer
controller. The upper controller used adaptive backstepping technology to obtain the expected
additional yaw moment, and the lower controller used the quadratic programming method
to calculate the torque distribution between the four wheels so that the tire adhesion could be
fully utilized. Chowdhri et al. [20] calculates the control action of four wheels considering
reaction time and vehicle limitations with a g–g diagram and Kamm’s circle constraints. Since
the integrated control of a vehicle is a highly nonlinear control problem, the computational
burden of stability control based on a nonlinear predictive controller is large, and meeting
the real-time requirements of a fast dynamic system of a vehicle becomes a control challenge.
The hierarchical stability controller treats the upper-layer yaw stability control separately
from the lower-layer optimal distribution of the drive torque. Liu et al. [21] constructed a
coordinated yaw and roll motion controller based on data-driven multi-MPC in the upper-
layer controller, and the lower-layer controller combined the tire slip rate and the vertical
load transfer amount and used the quadratic programming algorithm to transform the fusion
expected yaw moment into the optimal drive torque of each wheel. Zhang et al. [15] designed
the upper supervisor controller to calculate the compensation torque required when the
vehicle turns and used Gaussian process regression to reduce the error. The lower-layer
controller distributes the torque to the wheels in the form of braking torque. This hierarchical
structure reduces the system dimensionality of the centralized optimization strategy and
computational burden [9].

The ESTV is inevitably affected by environmental factors in actual work. To obtain the
required signal, suppress noise, and improve the accuracy of measurement information, it
is particularly important to use filtering methods to remove noise [22]. Kalman filtering
(KF) is a filtering algorithm that filters out various mixed noise disturbances from signal
observation and estimates the required signal, which is widely used in intelligent vehicle
fields, such as positioning [23], parameter identification [24,25], target tracking [26,27],
etc. Both the KF [28,29] and the extended Kalman filter (EKF) [30,31] are based on the
premise that the statistical characteristics of the process noise and measurement noise of
the system are known. However, vehicles are subject to sensor measurement errors, and it
can be difficult to obtain statistical information about the measurement noise in real opera-
tion, which is sometimes time-variable and uncertain. To overcome these shortcomings,
an adaptive Kalman filter (AKF) is widely used. Hajiyev et al. [32] proposed a robust AKF
algorithm with multiple adaptive factors. This algorithm combines the adaptive principle
and adaptively adjusts for sensor/actuator failures, which can give accurate estimation
in the case of sensor or actuator faults. Bahraini [33] proposed an algorithm to increase
the estimation accuracy of UKF-SLAM by adjusting the scale parameter and designed an
unscented KF with adaptive selection of the scaling parameter to improve the estimation
accuracy of SLAM. If UKF is used on a model with a large state vector, numerical stabil-
ity problems may occur. Mosconi et al. [34] considered the influence factors such as tire
condition and road characteristics and composed an EKF state estimator with 14 states to
provide the estimation of road slope and banking angle, which can accurately identify the
physical characteristics of tire/road interaction in real time. This method relies on accurate
vehicle models and detailed parameters. Wang et al. [35] proposed an improved Sage–Husa
adaptive Kalman filter (SHAKF) scheme combined with fuzzy clustering method, which
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can change the Kalman filter structure through the adaptive mechanism, and the system is
well estimated. The construction of AKF is of great significance for increasing the accuracy
and stability of filtering.

Based on this, this paper combines the improved SHAEKF method and the two-layer
MPC method to design the yaw stability control strategy, which can solve the safety and
stability problem of the four-wheel-drive ESTV during operation. It has the following
three advantages:

1. A two-layer control structure is adopted to decouple the dynamics between the yaw
control system and the driving system. Compared with the integral control structure of
yaw stability and torque distribution, the system dimension of the overall optimization
strategy is reduced, the computational burden is reduced, and the computational
efficiency of multi-objective optimization control with constraints is improved, which
is easier to implement.

2. To improve the accuracy and stability of filtering, an improved SHAEKF method
that can dynamically adjust the statistical characteristics of noise in a timely manner
is used to optimize the state variables, which improves the accuracy of the state
variables.

3. The upper-layer yaw stability controller uses MPC to solve the expected additional
yaw moment and the front wheel steering angle. The lower-layer torque distribution
controller uses the rolling time domain optimization method to track the additional
yaw moment required for the upper-layer yaw stability.

The rest of this paper is organized as follows. In Section 2, the dynamics model and tire
model of the ESTV are established. In Section 3, the improved SHAEKF algorithm is used
to optimize the state of the ESTV. A two-layer MPC yaw stability controller is designed in
Section 4. The effectiveness of the improved SHAEKF and the yaw stability control effect
are simulated and analyzed in Section 5. Section 6 gives the conclusion.

2. Vehicle Dynamics Model

In this section, the two vehicle dynamics models are established to ensure the yaw
stability of the ESTV. A two-degrees-of-freedom (2DOF) reference model is established to
obtain the reference yaw rate γ∗ and the reference sideslip angle β∗ of the vehicle. The 7DOF
dynamics model, which can comprehensively respond to the vehicle characteristics, is
established considering the relationship between the actual dynamic parameters of the
vehicle and its yaw stability, and then the tire model is introduced.

The prediction model needs to be simplified as much as possible on the basis of accurately
reflecting the dynamic process of the ESTV to reduce the computing burden of the control
algorithm. Therefore, the following idealized assumptions are made for the ESTV:

1. Assume that the vehicle is operating on a flat road, and ignore the vehicle’s vertical
movement.

2. Assume that the suspension system and the vehicle are rigid.
3. Assume that only pure lateral deflection tire characteristics are considered.
4. Assume that the lateral load transfer of the wheel is not considered.
5. Assume that the effect of lateral and longitudinal aerodynamics on the yaw character-

istics of the vehicle is ignored.

2.1. Dynamics Model

The ideal reference model is required to accurately reflect the expected steering process
of the vehicle, both to make the system have the same steering flexibility as a traditional
vehicle and to ensure that the vehicle has a good posture. The 2DOF model, including the
lateral and yaw motion of the ESTV, is shown in Figure 1.
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Figure 1. 2DOF reference model.

In the vehicle control system, β and γ represent the 2DOF of the simplified ESTV
dynamics model, and δf is assumed to be small, that is cos δf ≈ 1, sin δf ≈ δf. The 2DOF
dynamics equation is:  β̇∗ =

Fyf+Fyr
mvx

− γ

γ̇∗ =
lfFyf−lrFyr+Mx

Iz

. (1)

Figure 2 shows the 7DOF dynamics model used to verify the effectiveness of the
controller design, including the longitudinal motion, lateral motion, yaw motion, and
four-wheel rotation of the vehicle [36], which can truly express the dynamic characteristics
of the ESTV.
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Figure 2. 7DOF reference model.

2.2. Tire Model

Given the structural characteristics of the tire, the dynamic performance is nonlinear.
Selecting a tire model that is realistic and easy to use is the key to establishing a vehicle
dynamics model. The tire longitudinal and lateral force model in this paper is a semi-
empirical tire model based on the magic formula. The magic formula tire model is a
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relatively mature vehicle stability control model that considers the interactions between
longitudinal and lateral force. In general, the magic formula is expressed as [37]:

Fcij = D sin{C arctan[Bαij − E(Bαij − arctan(Bαij))]}, (2)

where αij is the slip angle of the tire.
However, the magic model is too cumbersome to apply to controller design. Therefore,

the model is considered to be simplified, and the cubic polynomial is obtained by Taylor
expansion, such as in Equation (3): Fyfj = −2Cf

(
1 − Kaα2

fj

)
αfj

Fyrj = −2Cr

(
1 − Kbα2

rj

)
αrj

, (3)

where Ka and Kb are the fitting coefficients obtained from the tire magic formula. The dy-
namics relationship between β and αij, αij is calculated as follows: αfj = β + lfγ

vx
− δf

αrj = β − lrγ
vx

. (4)

The longitudinal force of the tire is:{
Fxfj = −2Clfjsfj
Fxrj = −2Clrjsrj

. (5)

Tire slip rate is:

sij =
ωijRω − vx

vx
. (6)

Under the driving conditions, the tire force analysis is shown in Figure 3.

T

z
F

z
F

x
F

v

R

Figure 3. Tire force analysis.
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The rotation dynamic equation of a single tire is:

Iωω̇ij = Tij − FxijRω (i = f, r, j = l, r). (7)

The dynamics equation for the tire slip rate is [9]:

ṡij = (− R2
ω

Iωvx
− 4

sij + 1
mvx

)Clijsij +
Rω

Iωvx
Tij. (8)

Ignoring the tire nonlinear characteristics, the 2DOF reference model is obtained as follows:
β̇∗ =

2Cf(δf−β∗− lfγ∗
vx )+2Cr(−β∗+ lrγ∗

vx )

mvx
− γ∗

γ̇∗ =
2lfCf(δf

∗−β∗− lfγ∗
vx )−2lrCr(−β∗+ lrγ∗

vx )+Mx
Iz

. (9)

Since β and γ are closely related to the yaw stability of the vehicle, they are selected
as the state variables x =

[
β γ

]T, while δf and Mx are selected as the control inputs

u =
[
δf Mx

]T, and Equation (9) is written into the standard state space form as follows:{
ẋ = Ax + Bu
y = Cx

, (10)

where

A =

− 2Cf+2Cr
mvx

2lrCr−2lfCf
mv2

x
− 1

2lrCr−2lfCf
Iz

−
2l2

f Cf+2l2
r Cr

Izvx

, B =

[ 2Cf
mvx

0
2lfCf

Iz
1
Iz

]
, C =

[
1 0
0 1

]
.

3. Improved SHAEKF

In the actual transportation of supplies, the operating conditions of the ESTV are
complex and will be easily influenced by environmental factors. For example, factors
including uphill and downhill, uneven road surface, and so on, lead to the continuous jitter
of the vehicle during operation, and the detection accuracy of the sensor will be affected.
In order to obtain more accurate and credible vehicle state information, it is necessary to
filter and estimate the sensor data to reduce the influence of noise on state variables and
improve the accuracy of measurement information.

In practice, the statistical characteristics of noise are unobtainable, so SHAEKF with
simple principles and good real-time performance is used to solve this problem. The
SHAKF is suitable for the state estimation problem with time-varying statistical character-
istics of noise. It can predict and rectify the system process noise and measurement noise in
a timely manner while using measurement data for recursive filtering when the statistical
characteristics of the noise are unknown, so as to achieve the purpose of suppressing filter
divergence and improving filtering accuracy. The SHAEKF algorithm can use the estimated
parameters to estimate the state parameters of the EKF and obtain the state estimation
value of the system [38], which improves the robustness of AKF to measurement noise.

Since the SHAKF algorithm cannot estimate both the system noise covariance matrix
and the measurement noise covariance matrix [39], the measurement noise with large
uncertainty is adaptively adjusted. The improved SHAEKF algorithm is used to correct
the noise characteristics of the ESTV in real time to obtain better estimation accuracy.
The state equation and the measurement equation of the system with noise are established
by combining the ESTV dynamics model as:{

x(k + 1) = A(k)x(k) + B(k)u(k) + w(k)
y(k + 1) = H(k + 1)x(k + 1) + v(k + 1)

, (11)

where w(k) is process noise, and v(k) is measurement noise.
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The prediction state vector x̂k+1,k and the prediction error covariance matrix Pk+1,k are:

x̂k+1,k = Ak x̂k + Bkuk (12)

Pk+1,k = AkPk,k AT
k + Q̂k, (13)

where x̂k is the state estimation vector, Ak is the Jacobian matrix after the partial derivative
of the state equation for x, and Qk is the process noise covariance matrix.

The Kalman measurement update includes the gain Equation (14), filter Equation (15),
and error covariance update Equation (16):

Kk+1 = Pk+1,k HT
k+1(Hk+1Pk+1,k HT

k+1 + R̂k+1)
−1 (14)

x̂k+1 = x̂k+1,k + Kk+1εk+1 (15)

Pk+1 = (I − Kk+1Hk+1)Pk+1,k, (16)

where Kk+1 is the Kalman gain, Hk+1 is the Jacobian matrix after the partial derivative of
the measurement equation to x, Rk+1 is the measurement noise covariance matrix, and εk+1
is the residual. The residual εk+1 is:

εk+1 = yk+1 − Hk+1 x̂k+1,k − r̂k+1, (17)

where yk+1 is the observation variable, and r̂k+1 is the measurement noise variance.
Finally, the estimation of the noise and the equation for estimating the mean and

covariance matrix of the noise are:

r̂k+1 = (1 − dk)r̂k + dk(yk+1 − Hk+1 x̂k+1,k) (18)

R̂k+1 =(1 − dk)R̂k + dk(εk+1εT
k+1 − Hk+1Pk+1,k HT

k+1), (19)

where dk is the weighting coefficient. The weighting coefficient dk is:

dk =
1 − b
1 − bk , (20)

where b is the forgetting factor with a value range of [0.95, 0.995].
When there is a convergence trend in the filtering process, the error covariance Pk+1

will decrease, and Hk+1 is a fixed value; then, Hk+1Pk+1,k HT
k+1 will gradually decrease

until it tends to 0. Therefore, the effect of Hk+1Pk+1,k HT
k+1 on the measurement noise

covariance estimation can be ignored [40]. Therefore, R̂k+1 of Equation (19) is replaced by:

R̂k+1 = (1 − dk)R̂k + dkεk+1εT
k+1. (21)

The flowchart of the improved SHAEKF is shown in Figure 4.
Therefore, the two state variables of the system can be estimated to decrease the

interference of noise and ensure the high accuracy of the calculation of δf and Mx of
the vehicle.
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Figure 4. Improved SHAEKF algorithm flowchart.

4. Control Strategy

The β and γ of the vehicle are two important variables to describe the posture of
the vehicle, which are closely related to vehicle stability. When the ESTV is steering,
the operation stability of the vehicle is reflected by the β, and the γ reflects the steady-state
steering characteristics and the vehicle manipulation stability. The control structure of the
ESTV yaw stabilization system is shown in Figure 5.

As shown in the control structure diagram, the required β∗ and γ∗ are determined by
the vehicle reference 2DOF model. The upper-layer yaw stability controller calculates δf
and Mx and takes the yaw moment generated by the tire longitudinal force as the control
target of the lower-layer torque distribution controller.
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The upper-layer MPC controller calculates the optimal control inputs so that β and γ
of the ESTV achieve the expected value as much as possible in the current operating state
of the ESTV. The prediction model of yaw stability control is:{

x(k + 1|t ) = Akx(k|t ) + Bku(k|t )
y(k|t ) = Ckx(k|t ) . (22)

The controller is solved for the optimal input in each finite time domain using the
quadratic programming method [41]. In MPC, Np is the predictive time domain and
Np ≥ 1, while Nc is the control time domain and 1 ≤ Nc ≤ Np. The predicted control
output sequence is [17]:

Y p(k + 1|k) =


y(k + 1|k)
y(k + 2|k)

...
y(k + Np|k)


Np×1

. (23)

According to the 2DOF reference model of the ESTV, the control output reference se-
quence is:

R(k + 1|k) =


r(k + 1|k)
r(k + 2|k)

...
r(k + Np|k)


Np×1

. (24)

The control input increment sequence in Np at time k is as follows:

∆U(k) =


∆u(k)

∆u(k + 1)
...

∆u(k + Nc − 1)


Nc×1

. (25)
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The upper-layer yaw stability controller obtains δf and Mx by tracking and calculating
the reference state of the vehicle. The lower-layer control strategy adopts the torque
optimization controller based on MPC to realize the stable operation of the vehicle by
reasonably distributing the drive torque of four tires.

The yaw moment generated by the longitudinal force of the four tires is:

Mx =
d
2
· (−Fxfl + Fxfr − Fxrl + Fxrr). (26)

The vertical load of the vehicle’s four tires is:

Fzfl = lr
2(lf+lr)

mg − maxh
2(lf+lr)

− mayhlr
d(lf+lr)

Fzfr =
lr

2(lf+lr)
mg − maxh

2(lf+lr)
+

mayhlr
d(lf+lr)

Fzrl =
lf

2(lf+lr)
mg + maxh

2(lf+lr)
− mayhlf

d(lf+lr)

Fzrr =
lf

2(lf+lr)
mg + maxh

2(lf+lr)
+

mayhlf
d(lf+lr)

. (27)

When the vehicle operates in conditions with a low adhesion coefficient and fluctuating
roads, the vertical load transfer of each wheel plays an important role in the lateral stability
of the vehicle. In the controller design, the tire vertical load transfer variable factor needs
to be added to coordinate the drive torque distribution of each wheel. The vertical load
transfer weight coefficients of the four wheels are [21]:

ξfl = Fzfl
Fzfl+Fzfr+Fzrl+Fzrr

ξfr =
Fzfr

Fzfl+Fzfr+Fzrl+Fzrr

ξrl =
Fzrl

Fzfl+Fzfr+Fzrl+Fzrr

ξrr =
Fzrr

Fzfl+Fzfr+Fzrl+Fzrr

. (28)

The lower-layer controller state variable is the tire slip ratio xL = [sfl sfr srl srr]
T,

the control input is the drive torque of four tires uL = [Tfl Tfr Trl Trr]
T, and the output

is yL = Mx. Convert Equation (8) into the state space equation as: ẋL = (− R2
ω

Iωvx
− (ξfl+ξfr+ξrl+ξrr)(x+1)

ξijmvx
)ClijxL + Rω

Iωvx
uL

yL = d
2
[
−ξflClfl ξfrClfr −ξrlClrl ξrrClrr

]
xL

. (29)

The state Equation (29) is discretized:{
xL(k + 1) = ϕxL(k) + DuL(k)
yL(k) = Cl xL(k)

. (30)

The upper-layer controller ensures that the ESTV has good stability during operation
so that β̂ and γ̂ estimated by the SHAEKF can quickly track β∗ and γ∗. To ensure that the
ESTV accurately tracks the reference trajectory, Y p should closely track R to maintain the
tracking accuracy of the system. The fluctuation of the system control variables affects
the smoothness of the vehicle’s operation. Therefore, we need to consider the stability of
control input variables. The lower-layer controller is required not only to track Mx but also
to minimize energy consumption while ensuring the stability of the ESTV. The objective
function is:
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J1 =
Np

∑
i=1

[
Γy1

(
β̂(k + i | k)− β∗(k)

)2
+ Γy2(γ̂(k + i | k)− γ∗(k))2

]
+

Nc−1

∑
i=0

[Γ∆1(∆δ2
f (k + i | k)) + (Γ∆2(∆T2

fl(k + i | k) + ∆T2
fr(k + i | k)

+ ∆T2
rl(k + i | k) + ∆T2

rr(k + i | k))]

+ Γy∥Y(k + 1 | k)− Mx(k + 1)∥2 + Γu∥UL(k)∥2,

(31)

where UL(k) is the control variables sequence, and Y(k + 1 | k) is the Np-step prediction
output at moment k, and Γy, Γ∆, and Γu are the weight coefficient matrices of the system
output, the controlled input variables, and the inputs, respectively. To achieve the expected
control performance during the actual operation of the vehicle, the capacity range constraint
of the actuator should be considered in the design of the MPC [20]. Due to the saturation
characteristics of the actuator, δf and the drive torque of the system are constrained by
physical conditions. To ensure the yaw stability while avoiding the operational stability of
the vehicle caused by tire slip, the following boundary constraints are imposed:

− δfmax ≤ δf(k + i | k) ≤ δfmax,

− Tmax ≤ Tij(k + i | k) ≤ Tmax

−smax ≤ sij(k + i | k) ≤ smax(i = f, r, j = l, r).

(32)

At the same time, the sum of each drive torque should be equal to the total torque required:

ΣTij = Tt, (33)

where i = 1, 2, · · · ,Np. Therefore, the objective function expression of the controller’s k-th
control period is:

min Jk =
Np

∑
i=1

YT
e (k)ΓyYe(k) +

Nc−1
∑

i=0

[
∆UT(k)Γ∆∆U(k) + UT

L(k)ΓuUL(k)
]

s.t.

−δfmax ≤ δf(k + i|k ) ≤ δfmax
−smax ≤ sij(k + i|k ) ≤ smax
−Tmax ≤ Tij(k + i|k ) ≤ Tmax

ΣTij = Tt

.

(34)

5. Analysis and Validation

In this paper, a MATLAB/Simulink 2018a simulation model is built to simulate and
verify the estimation effect of the improved SHAEKF and the two-layer MPC controller.
To verify the performance of the designed yaw stability controller, the stability is simulated
and tested under multiple operating conditions. The ESTV model used in this experiment
is a 7DOF dynamics model, and the controller prediction model adopts a 2DOF model.
The parameters of the ESTV defined by simulation are shown in Table 1, and the controller
parameters are shown in Table 2, where the δf constraint is 0.1 rad, the maximum driving
torque of a single wheel is 100 Nm, and the boundary value of the safe range of tire slip
rate is 0.08.
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Table 1. ESTV parameters.

Definition Value

Vehicle mass m 930 kg
Moment of inertia Iz 1372 kg · m2

Distance from the center of gravity to front axle lf 0.986 m
Distance from the center of gravity to rear axle lr 1.253 m

Wheel tread d 1.14 m
Tire rolling radius Rω 0.26 m

Table 2. Controller parameters.

Definition Controller Value

Predictive time domain Np 15
Control time domain Nc 5

Sampling time T 0.05 s
Weight coefficient matrix Γy diag(100, 200)
Weight coefficient matrix Γ∆ 60
Weight coefficient matrix Γu 100

5.1. Simulation of Improved SHAEKF

To verify the effectiveness of SHAEKF, Gaussian white noise is added. The trajectories
of the vehicle before and after the improved SHAEKF are shown in Figure 6. Figure 7 shows
the state error before and after the KF, AKF, and the improved SHAEKF. The comparison
between the measured values and the estimated values of the state variables are shown in
Table 3. The γe and βe of the original data represent the difference between the measured
value and the reference value, and the γe and βe after filtering represent the difference
between the estimated value and the reference value.

Table 3. Measured values and estimated values.

State Variables Original Data KF AKF SHAEKF

γe maximum value 0.1659 m 0.1249 m 0.0968 m 0.0847 m
βe maximum value 0.2666 m 0.1618 m 0.1016 m 0.0882 m
|γe| average value 0.0038 m 0.0027 m 0.0017 m 0.0013 m
|βe| average value 0.0049 m 0.0034 m 0.0022 m 0.0011 m

γe variance 1.7210 × 10−4 m2 9.0315 × 10−5 m2 4.6964 × 10−5 m2 2.6667 × 10−5 m2

βe variance 2.2990 × 10−4 m2 8.7293 × 10−5 m2 3.7698 × 10−5 m2 2.6103 × 10−5 m2

Figure 6. Trajectory.



Actuators 2024, 13, 103 13 of 21

Figure 7. State variables error.

According to Figures 6 and 7, it can be seen that the improved SHAEKF is closer to
the reference trajectory without the prior knowledge of the measurement noise, and the
average value of the absolute value of the state variables estimation error is reduced by
more than 78% compared with the measured value. It can be seen that the improved
SHAEKF reduces the influence of noise on the ESTV.

5.2. Double Shift Trajectory Simulation
5.2.1. Comparison of Different Control Methods

To verify the effectiveness of the two-layer MPC control strategy in improving the
operation stability of ESTV, a comparative simulation is conducted to verify the two-layer
MPC control strategy, no control, and traditional MPC control. The velocity is set to 15 m/s,
and the road adhesion coefficient is set to 0.4. The simulation results are shown in Figures 8–10.
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Figure 8. Trajectory.
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Figure 9. Yaw rate and sideslip angle.
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Figure 10. Front wheel steering angle.

Figures 8–10 show the trajectory tracking ability of the ESTV under three control
methods. From Figure 8, we can see that the uncontrolled vehicle has a large sideslip,
the error between the operation trajectory and the reference trajectory is too large, and the
vehicle is out of control. The vehicle based on traditional MPC can basically ensure safe
operation, but there is also a large overshoot at the corner. Based on the two-layer MPC
control strategy, the accuracy of the ESTV tracking is significantly improved, it has a strong
ability to correct the turning attitude, and there is basically no excessive sideslip and tail
flick. Figure 9 is the comparison of the ESTV’s γ and β under three control methods.
Compared with the traditional MPC, the γ and β of the ESTV based on the two-layer
MPC control strategy are smoother, which can ensure the stable operation of the ESTV
and significantly improve the vehicle stability. The uncontrolled vehicle has completely
exceeded the stable range under this experimental condition, and there is a risk of instability.
From Figure 10, we can see that, compared with the traditional MPC, δf based on the two-
layer MPC control strategy is smaller and smoother, which avoids excessive steering and
ensures the stability of transporting supplies.
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5.2.2. Robustness of the Control System to Road Adhesion Conditions

When the ESTV operates on roads with different adhesion conditions (such as dry
roads or wet and slippery roads), the dynamic parameters of the vehicle itself, such as tire
cornering stiffness, will change, and the lateral force provided by the ground will also be
insufficient. The adhesion coefficient of the vehicle is µ = 0.7∼1 on the dry driving road and
about µ = 0.4 on the slippery road. Therefore, two road conditions with µ of 0.4 and 0.8 are
adopted for experiments. The vehicle operating velocity is set to 15 m/s. The simulation
results are shown in Figures 11–14.
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Figure 12. Yaw rate and sideslip angle.
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Figure 14. Drive torque.

Figure 11 shows the trajectory of the ESTV, and it reflects that the controller can
operate along the reference trajectory on the road with different adhesion conditions,
but the tracking error of ESTV is smaller when the adhesion condition is good. The ground
cannot provide sufficient lateral force, and the yaw angle will have a large deviation when
the vehicle is turning under the condition of poor road adhesion; however, the controller
can correct the deviation in a timely manner, and finally the error tends to 0. Figure 12
is the yaw rate and sideslip angle of the vehicle. It reflects that the γ and β will increase
when the ESTV operates on a road with adhesion conditions that are poor but still within
a certain range, reflecting that the controller can maintain the stability of the ESTV under
low adhesion conditions. Figure 13 shows the front wheel steering angle of ESTV, and it
can be seen that, when the road adhesion condition is poor, δf of the ESTV is still within
the constraint range, which ensures the normal operation of the actuator. Figure 14 is the
drive torque of the vehicle, and it can be seen that there is no drive torque when there
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is no steering signal input. The MPC torque distribution control strategy can effectively
maintain the yaw moment of the upper-layer yaw stability, and each motor torque is within
the constraint, ensuring that the ESTV can operate smoothly and safely while reducing
energy loss.

5.2.3. Robustness of the Control System to Operating Velocity

The control algorithm needs to determine different control parameters for different
operating velocities, while the MPC has strong robustness to the change in operating
velocity. In this section, different operating velocities are used to achieve stable control
of the ESTV under the same conditions, and the robustness of the controller to different
operating velocities is analyzed.

The simulation experiments are conducted at the velocities of 10 m/s, 15 m/s, and
20 m/s, respectively, and the road adhesion coefficient is 0.8. The simulation results are
shown in Figures 15–19.
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Figure 15 is the trajectory of the vehicle at three different operating velocities. The sim-
ulation results verify that the vehicle, operating at different velocities, has good trajectory
tracking performance, reflecting the robustness to velocity. Figure 16 shows the ESTV’s
yaw rate and sideslip angle. It reflects that the ESTV, operating at different velocities, has
good yaw stability under the same control parameters, reflecting that the two-layer MPC
controller has strong robustness to velocity. Figure 17 is the front-wheel steering angle, and
it can be seen that the increment of the control variable is different at different velocities,
but always within the constraint range. Figure 18 is the drive torque of the two front
wheels of the ESTV, and Figure 19 is the drive torque of the two rear wheels of the ESTV. It
reflects that the higher the ESTV velocity, the greater the drive force obtained by the wheels.
The vehicle can flexibly obtain the optimal value of the drive torque during operation,
which improves the mobility and yaw stability of the vehicle. The designed controller can
maintain good stability at different operating velocities.

6. Conclusions

Aiming at the problem of yaw stability control of an ESTV, the improved SHAEKF
algorithm and two-layer MPC method are adopted to realize the yaw stability control of a
four-wheel-drive ESTV. The improved SHAEKF is used to obtain the estimated state of the
system under external disturbances and measurement noise, which improves the accuracy
of the state variables. The two-layer MPC is used to realize the yaw stability control of
the ESTV. The upper-layer yaw stability controller solves the additional yaw moment and
the front wheel steering angle of ESTV, and the lower-layer torque distribution controller
optimizes the torque distribution of the four tires of the vehicle. It improves the control
accuracy, ensures the stability of the ESTV, and reduces the computational burden of the
controller. The simulation experiments verify that the improved SHAEKF can effectively
estimate the state variables, and the yaw stability controller based on the two-layer MPC
can prevent instability and maintain the stability of the vehicle.

The control method proposed in this paper has a positive effect on improving the
stability of the emergency supplies transportation vehicle, but it still needs to be improved.
This paper does not consider its inherent complex nonlinear characteristics and only
considers the different road adhesion conditions and different velocities for the operation
of the ESTV. Further, it does not consider the influence of road inclination and curvature on
the yaw stability control. Therefore, in the future work, we will continue to improve the
controller design to further expand its application range.
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Abbreviations

The following abbreviations are used in this paper:
m Vehicle mass
h Height of center of gravity
d Wheel tread
lf Distance from the center of gravity to front axle
lr Distance from the center of gravity to rear axle
δf Front wheel steering angle
γ Yaw rate
β Sideslip angle
vx/vy Longitudinal and lateral velocity
v̇x/v̇y Longitudinal and lateral acceleration
Mx Total yaw moment
Iz Moment of inertia of vehicle
Iω Moment of inertia of wheel
ω̇ij Wheel angular acceleration
Rω Tire rolling radius
Cf/Cr Front and rear wheel cornering stiffness
Clf/Clr Front and rear wheel longitudinal stiffness
Fxfl/Fxfr/Fxrl/Fxrr Longitudinal force of the four tires
Fyfl/Fyfr/Fyrl/Fyrr Lateral force of the four tires
Tij Drive torque
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