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Abstract: In order to achieve multi-objective chassis coordination control for 4WID-4WIS (four-
wheel independent drive–four-wheel independent steering) electric vehicles, this paper proposes a
coordinated control strategy based on the extension dynamic stability domain. The strategy aims
to improve trajectory tracking performance, handling stability, and economy. Firstly, expert PID
and model predictive control (MPC) are used to achieve longitudinal speed tracking and lateral
path tracking, respectively. Then, a sliding mode controller is designed to calculate the expected
yaw moment based on the desired vehicle states. The extension theory is applied to construct the
extension dynamic stability domain, taking into account the linear response characteristics of the
vehicle. Different coordinated allocation strategies are devised within various extension domains,
providing control targets for direct yaw moment control (DYC) and active rear steering (ARS).
Additionally, a compound torque distribution strategy is formulated to optimize driving efficiency
and tire adhesion rate, considering the vehicle’s economy and stability requirements. The optimal
wheel torque is calculated based on this strategy. Simulation tests using the CarSim/Simulink co-
simulation platform are conducted under slalom test and double-lane change to validate the control
strategy. The test results demonstrate that the proposed control strategy not only achieves good
trajectory tracking performance but also enhances handling stability and economy during driving.

Keywords: 4WID-4WIS EVs; direct yaw moment control (DYC); active rear steering (ARS); multi-
objective coordinated control; extension dynamic stability domain

1. Introduction

4WID-4WIS electric vehicles, which incorporate four-wheel steering technology, are
built on the foundation of four-wheel distributed drive [1]. This design simplifies the spatial
structure by reducing mechanical components like differentials and half-shafts, providing
the vehicle with multiple controllable degrees of freedom. It offers unique advantages in ve-
hicle dynamic control [2–4], which can enable the realization of multi-objective coordinated
control of the chassis [5,6]. In [7], Haonan Peng et al. adopted a torque coordinated control
strategy that comprehensively considered stability and economy. They employed MPC
to solve generalized forces, aiming to minimize control distribution errors, tire utilization
rates, and drive system energy consumption. Feixiang Xu et al. [8] investigated steering
mode switching strategies for a four-wheel independent steering rescue vehicle, using a
multi-objective genetic algorithm to optimize two objectives: the maximum change rate
of lateral acceleration and tire dissipation energy. Bohan Zhang et al. [9] proposed an
actuator fault-tolerant control strategy based on cooperative game theory. While meeting
the stability requirements, they utilized a two-dimensional game controller to minimize tire
energy dissipation for economic efficiency. Junnian Wang et al. [10] introduced an energy
management strategy based on multi-objective online optimization of torque distribution.
Considering drive system efficiency, tire slip energy consumption, wheel torque fluctuation,
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and yaw rate tracking error, they dynamically adjusted weights using fuzzy control. To
sum up, stability and economy are crucial performance indicators for the multi-objective
control of steer-by-wire chassis.

The development of electrification and intelligence has led to the maturing of au-
tonomous driving technology, which has become a key focus of the automobile indus-
try [11]. Combined with autonomous driving technology [12,13], the coordination of chassis
control in 4WID-4WIS EVs with a focus on trajectory tracking performance has garnered
significant interest and research among academics [14]. There are two main categories
for chassis coordinated control methods: centralized and hierarchical structures. Cen-
tralized control methods involve the design of a central controller that directly addresses
control objectives for individual subsystems based on desired trajectory information, thus
achieving multi-objective coordination of the chassis. For instance, in [15], a tube-based
model predictive control (MPC) algorithm is proposed to design an integrated controller,
considering control vector constraints, lateral stability constraints, anti-rollover constraints,
and path tracking error constraints. Similarly, in [16], an integrated controller is devel-
oped using LTV-MPC to achieve speed and path tracking while ensuring vehicle handling
stability. On the other hand, hierarchical control methods utilize multiple controllers to
establish a multi-layered control structure. The top layer calculates the vehicle’s target
inputs based on trajectory tracking objectives, while the lower layer computes control
objectives for subsystems. In [17], the top layer employs MPC to track the desired trajectory,
while the lower layer utilizes a sliding mode controller to compute the target yaw moment,
thereby achieving multi-objective coordination control. Additionally, in [18], the top layer
establishes an HFDB path tracking controller considering lateral offset constraints, while
the lower layer employs an adaptive robust LQR controller to achieve coordinated control
of the drive and steering subsystems, ensuring handling stability. Centralized control
methods are straightforward but suffer from high computational complexity, intricate
problem solving, limited real-time performance, and challenges in accurately describing
the coupling issues of the chassis system. Conversely, hierarchical control methods are
comparatively complex but offer simpler problem solving, the effective decoupling of
multi-objective coordination issues, and utilize modular theoretical approaches, thereby
facilitating the resolution of coupling problems among subsystems. However, the current
focus of chassis coordinated control is primarily on trajectory tracking and stability control,
lacking attention to multi-objective coordinated control, including economy. This research
aims to bridge this gap and lay the groundwork for further investigation.

In addition to considering the trade-off issues among multiple control objectives, it
is also crucial to consider the distribution of control weights among multiple subsystems
of the chassis during execution. The active rear steering system (ARS) directly controls
the vehicle’s lateral dynamics by adjusting the rear wheel angle, thereby changing the rear
lateral forces. On the other hand, the direct yaw moment control system (DYC) adjusts
the distribution of longitudinal forces among the four wheels, indirectly achieving lateral
dynamics control [19]. Both systems have some redundancy in controlling the vehicle’s
lateral dynamics, especially under extreme conditions where ARS and DYC may be highly
coupled. The function domains and control weights of subsystems have a close relationship
with the vehicle stability boundaries [20]. One of the most classic and effective methods for
nonlinear stability analysis is based on the phase plane [21]. In [22], Liang et al. designed
an integrated controller for a 4WID-4WIS EV that combines the active front steering system
(AFS) and DYC. A penalty function was used to allocate interventions of AFS and DYC
and a transient layer was introduced in the phase plane, further improving the controller’s
performance. In [23], Tian et al. designed a control strategy for AFS and DYC based on the
phase plane, which controlled subsystems separately in different regions to achieve good
handling stability.

However, the traditional logic threshold method for establishing stability domain
boundaries categorizes lateral states as either stable or unstable without taking into account
the critical states in between. This approach leads to overly conservative stability bound-
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aries. Moreover, frequent switching between subsystems during the coordinated control
process can cause oscillation interference in the controller. To address this issue, researchers
have conducted studies on extension theory. Extension theory has the ability to overcome
the limitations of traditional control methods and is not restricted to any specific control
approach. It has the potential to expand the original control area and partition the global
control area. Different control strategies can be applied in different ranges based on specific
control functions, enabling the achievement of control effects that are not possible with
any particular conventional control method. In [24], Chen et al. proposed an extension
controller which divided the classical domain, extension domain, and non-domain based
on the phase plane, and designed different control strategies in different areas to improve
the vehicle’s handling stability. In [25], Zheng et al. proposed an extension coordination
control for distributed drive electric vehicles based on evolutionary game theory. They
played a game on the control weights of AFS and DYC and verified the effectiveness of the
strategy via vehicle tests. One of the crucial steps in the application of extension theory
involves dividing the boundaries between the classical domain, extension domain, and
non-domain. However, current research on boundary values has certain limitations. Firstly,
the boundaries of the extension domain are primarily determined based on simulation data
and engineering experience, lacking a relevant theoretical basis. As a result, accurately
obtaining the boundary values becomes challenging, and it cannot guarantee the optimal
solution. Secondly, the division of boundary values cannot be adaptively adjusted accord-
ing to the status of vehicles and roads, which hampers the adaptability of the extension
domain boundary and subsequently affects the effectiveness of control in extension theory.

In summary, there are two major challenges in the chassis coordinated control that
need to be addressed. The first challenge is the coupling problem of multiple control
objectives, which include trajectory tracking performance, handling stability, and economy.
The second challenge is the coupling problem between the steering and drive subsystems,
which involves the division of stability domains, dynamic adjustment of stability domain
boundaries, and adaptive tuning of control weights. To tackle these challenges, this paper
proposes a hierarchical control architecture. The top layer focuses on trajectory tracking, the
middle layer handles stability control, and the bottom layer considers both economy and
stability for torque allocation. Additionally, the extension theory is employed to construct
dynamic stability domains and dynamically adjust boundary values, which effectively
resolves the coupling problem between the steering and drive subsystems. This strategy
is simple, efficient, and demonstrates good real-time performance. It showcases strong
adaptability to various driving conditions, thereby providing a solid theoretical foundation
for multi-objective coordination control of the chassis.

The main contributions of this paper are as follows:

• A hierarchical chassis coordinated control architecture is proposed, consisting of a
trajectory tracking layer, coordinated control layer, and optimal distribution layer,
taking into account trajectory tracking performance, handling stability, and economy.

• The extension theory is employed to extend the traditional phase plane, constructing
an extension dynamic stability domain based on the vehicle’s linear response character-
istics. The boundary values of the extension domain are adaptively adjusted according
to vehicle speed and road adhesion coefficient, determining the control weights for
ARS and DYC. This method is simple and efficient, overcoming the limitations of
traditional stability domain boundaries that cannot be adjusted and are difficult to
accurately obtain.

• A compound torque distribution strategy is developed that combines economic dis-
tribution with stability distribution, taking into account driving efficiency and tire
adhesion rate as indicators. The real-time optimal distribution of wheel torque is
achieved using the mutant particle swarm algorithm (MPSO) and the quadratic pro-
gramming algorithm, respectively. It demonstrates good real-time performance and
enables multi-objective optimization of stability and economy.
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The paper is organized as follows: Section 2 proposes a hierarchical chassis coordinated
control strategy. Section 3 performs simulation validation. Section 4 compares and discusses
the simulation results. Section 5 reaches the conclusions.

2. Chassis Coordinated Control
2.1. Vehicle Model

To investigate the chassis coordinated control strategy of 4WID-4WIS EVs, the dynamic
modeling of the vehicle, tires, and motor is performed based on the nonlinearity of the tire
and the efficiency characteristics of the motor.

2.1.1. Vehicle Dynamic Model

Various scholars have proposed different linear and nonlinear vehicle models of
varying complexity to investigate vehicle dynamics control problems [26]. This research
primarily focuses on the control of lateral and longitudinal coupling for trajectory track-
ing. A 7-DOF vehicle dynamic model is utilized, which includes longitudinal motion,
lateral motion, yaw motion, and the rotation of the four wheels based on the distributed
drive system.

The vehicle under study has a small mass, compact dimensions, and a low center of
gravity. Therefore, when establishing the vehicle dynamic model, it is assumed that the
vehicle is symmetric about the center plane and is traveling on a flat horizontal road. The
vertical motion of the body is neglected. Additionally, the suspension system is regarded
as a rigid structure, ignoring the pitch and roll movements. After these simplifications, the
dynamic model is shown in Figure 1.
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The longitudinal motion equation is

m
( .
vx − vyωr

)
= Fx f l + Fx f r + Fxrl + Fxrr (1)

The lateral motion equation is

m
( .
vy + vxωr

)
= Fy f l + Fy f r + Fyrl + Fyrr (2)
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The equation of yaw motion is

Iz
.

ωr =
(

Fx f r + Fxrr − Fx f l − Fxrl

)d
2
+

(
Fy f l + Fy f r

)
l f −

(
Fyrl + Fyrr

)
lr (3)

where
Fxij = Ftxij cos δij − Ftyij sin δij (4)

Fyij = Ftxij sin δij + Ftyij cos δij (5)

i ∈ { f , r}, j ∈ {l, r} (6)

The equation of wheel motion is

Iw
.

ωij = Tdij − FtxijRe f f − Tbij (7)

where vx and vy are the longitudinal velocity and lateral velocity; ωr is the yaw rate; Fxij
and Fyij are the longitudinal force and lateral force of each wheel, respectively; Ftxij and
Ftyij are the longitudinal and lateral forces of each wheel in the tire coordinate system; δij is
the wheel angle; Iw is the wheel moment of inertia; ωij is the wheel speed; Tdij is the wheel
driving torque; and Tbij is the wheel braking torque.

To validate the effectiveness of the constructed 7-DOF model, a comparison is made
with the vehicle model in the CarSim 2019. The simulation parameters are set as follows:
the vehicle speed is set to 60 km/h, the road adhesion coefficient is set to 0.8, and the
steering wheel input is set to a sinusoidal steering angle signal.

The model validation results are shown in Figure 2. The yaw rate and sideslip angle
results obtained from the 7-DOF model are basically the same as those from the CarSim
vehicle model, meeting the model accuracy requirements. This confirms the effectiveness
of the 7-DOF vehicle model.
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2.1.2. Tire Model

The tire model describes the relationship between the tire’s motion parameters and tire
forces. It can be broadly classified into three types: theoretical models, empirical models,
and semi-empirical models [27]. Considering the tire’s side slip characteristics, this research
selects the widely used UniTire semi-empirical tire model. The UniTire tire model takes into
account various factors such as longitudinal slip, lateral slip, camber, turning angle, and
hysteresis effects on tire force generation. It is characterized by high simulation accuracy,
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strong predictive capability, and well-defined theoretical boundaries. The longitudinal slip
ratio and lateral slip ratio are defined as follows:{

Sx = νsx
ωr

Sy =
νsy
ωr = (1 + Sx) tan α

(8)

where α is the tire slip angle.
The dimensionless relative longitudinal slip ratio, lateral slip ratio, and total slip ratio

are defined as follows: 
ϕx = KxSx

µx Fz

ϕy =
Ky tan α

µy Fz

ϕn =
√
(kuϕx)

2 +ϕ2
y

(9)

where Kx and Ky are the longitudinal and lateral stiffness of the tire, respectively; µx and
µy are the longitudinal and lateral friction coefficients between the tire and the ground,
respectively; and ku is the correction factor that accounts for the difference in longitudinal
and lateral stiffness of the tire.

In combined longitudinal and lateral slip conditions, the UniTire tire model accurately
describes the dimensionless total shear force using the exponential form

Fn = 1 − exp(−ϕn − E·ϕ2
n − (E2 +

1
12

)·ϕ3
n) (10)

The dimensionless total shear force is distributed into dimensionless longitudinal
force and dimensionless lateral force based on the proportion of dimensionless relative
longitudinal and lateral slip ratios in the dimensionless total slip ratio. Fx = Fn

kuϕx
ϕn

Fy = Fn
ϕy
ϕn

(11)

The longitudinal and lateral forces on the tire are{
Fx = FxµxFz

Fy = FyµyFz
(12)

2.1.3. Motor Model

The 4WID-4WIS EV chassis system consists of in-wheel motors and steering motors.
Based on the vehicle’s economy and handling stability performance requirements, and
combined with the efficiency and dynamic characteristics of the motor, separate models are
established for in-wheel motors and steering motors.

1. In-wheel motor model:

In order to investigate the energy efficiency of the chassis, this study develops a motor
energy efficiency model that takes into account the efficiency characteristics of the in-
wheel motor. To simplify the computation, this research focuses solely on the steady-state
characteristics of the motor, disregarding the transient characteristics and simplifying the
charging and discharging efficiency. Therefore, the efficiency model can be represented as
Equation (13).

ηem = η(nem, Tem) (13)

where nem is the motor speed, and Tem is the motor torque.
The efficiency characteristics of the in-wheel motor’s driving efficiency are depicted

using external characteristic curves and efficiency maps, as illustrated in Figure 3. The
external characteristic curve sets the upper limit of the motor’s maximum output power.
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Additionally, the motor’s discharge efficiency can be assessed in real time by referring to a
two-dimensional lookup table of the motor efficiency map. This allows for a comprehensive
study of the economy of the drive system.
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2. Steering motor model

In order to meet the dynamic response requirements during vehicle driving, the
steering motor model is simplified into a corner tracking model, the delay caused by the
steering mechanism is considered, and a model shown in Equation (14) is established:

δij_out = δij_req·
1

1 + τs
(14)

where δij_out is the actual output angle, δij_req is the required output angle, and τ is the
response time constant.

2.2. Chassis Control Architecture

Intelligent driving vehicles receive trajectory information from the planning layer
and use rational control strategies to achieve trajectory tracking control, fulfilling the
functional goals of autonomous driving. Vehicles with four-wheel independent drive and
four-wheel independent steering (4WID-4WIS EVs) have multiple degrees of freedom,
which significantly expands the control margin of chassis dynamics and increases the upper
limit of the chassis stability domain. This potential allows for the improvement in vehicle
performance and serves as a basis for the multi-objective coordinated control of the chassis.
Therefore, this research aims to leverage the control advantages of the fully wired chassis
to enhance handling stability and economy during the trajectory tracking process.

The designed chassis coordinated control architecture Is shown in Figure 4, employing
a layered strategy structure that includes a trajectory tracking layer, coordinated control
layer, and optimal distribution layer.

Based on a decentralized control structure, the trajectory tracking layer separates the
longitudinal and lateral control targets, converting the desired trajectory information into
vehicle input information. The expert PID control method is employed to track the desired
vehicle speed and generate the expected longitudinal acceleration. The MPC controller is
responsible for tracking the desired path and producing the expected front wheel angle.

The coordinated control layer calculates the expected actions of the subsystems based
on the anticipated vehicle state. Sliding mode control is used to compute the generalized
yaw moment and incorporates an adaptive adjustment strategy for the control weights
of ARS and DYC. This strategy is designed considering the extension dynamic stability
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domain and allocates the desired yaw moment, determining the control objectives for the
ARS and DYC.
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The optimal distribution layer designs torque distribution and corner distribution
strategies, converting the expected subsystem actions into control commands for actua-
tors. The optimal torque distribution control strategy based on economy and stability is
adopted, using driving efficiency and tire adhesion rate as control indicators for economy
and stability, respectively. It computes the optimal driving torque for each wheel via a
combination of MPSO and DP. The corner distribution strategy employs the tire inverse
model to calculate the tire slip angle. Combined with the Ackermann steering theory, the
steering angle for each wheel is output to achieve the vehicle’s closed-loop control.

2.3. Trajectory Tracking Layer

The trajectory tracking layer’s main objective is to replace the driver in following the
desired trajectory by providing the desired longitudinal acceleration and front wheel angle.
This layer takes into account the desired path and vehicle speed, which are the combined
desired longitudinal and lateral motion states of the vehicle. As a result, the trajectory
tracking problem is divided into two separate problems: longitudinal velocity tracking and
lateral path tracking. By calculating the expected longitudinal acceleration and front wheel
angle independently, this layer is able to provide the necessary inputs for the coordinated
control of the chassis.

2.3.1. Longitudinal Velocity Tracking

Proportional integral derivative (PID) control is widely applied in longitudinal vehicle
speed tracking due to its simplicity, practicality, and independence from precise system
models. Given the uncertainty of system parameters, external disturbances, and nonlinear
couplings between subsystems, many researchers have explored PID control based on
intelligent algorithms [28,29]. In this study, based on expert system theory, the expert PID
is employed for longitudinal velocity tracking. The specific algorithm flow can be found
in [30]. The calculation formula for longitudinal acceleration is as follows:

axd = u(k) =



axmax

u(k − 1) + k1
{

kie(k) + kp∆e(k) + kd∆e(k)
}

u(k − 1)

u(k − 1) + k2kie(k)

u(k − 1) + kie(k) + kp∆e(k)

(|e(k)| > Mmax)

(e(k)× ∆e(k) > 0 or ∆e(k) = 0)

(e(k)∆e(k) < 0, ∆e(k)∆e(k − 1) > 0, e(k) = 0)

(e(k)∆e(k) < 0, ∆e(k)∆e(k − 1) < 0)

(|e(k)| < Mmin)

(15)

where e(k) = v(k)− vd(k) is the velocity error, and e(k) = v(k)− vd(k) is the velocity error
increment. The maximum deviation value is set as Mmax, the middle deviation value is set
as Mmid, and the minimum deviation value is set as Mmin.
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Ignoring the road gradient resistance and considering rolling resistance, aerodynamic
resistance, and acceleration resistance, a feedforward controller is designed according to
the longitudinal vehicle dynamics equation as follows:

Fxd = Ff + Fair + Fj = mg f +
CD Aν2

x
21.15

+ maxd (16)

where Fxd is the generalized longitudinal force, Ff is the rolling resistance, Fair is the air
resistance, Fj is the acceleration resistance, f is the rolling resistance coefficient, CD is the
air resistance coefficient, and A is the windward area.

2.3.2. Lateral Path Tracking

In order to navigate complex and ever-changing driving environments, autonomous
vehicles need to take into account road constraints, safety constraints, and actuator con-
straints while tracking their trajectory. Model predictive control (MPC) is a widely used
feedback control algorithm that predicts future system outputs based on the current model
and state and solves a finite-time open-loop optimization problem on a rolling basis to
achieve control objectives. MPC has proven to be highly effective in handling multi-
constraint optimization problems. As a result, scholars have conducted extensive research
on the application of MPC-based lateral path tracking control in recent years [29]. This
study utilizes MPC to achieve lateral path tracking.

The accuracy of the prediction model directly impacts the control effectiveness of
MPC. To balance the requirements of accuracy and complexity, a nonlinear 3-DOF vehicle
model is chosen as the prediction model to forecast the system’s output. The state variable

is X =
[
vx, vy, φ,

.
φ, x, y

]T , the control variable is u =
[
δ f

]T
, and the output variable is

Y = [φ, y]T . Assuming constant longitudinal velocity during path tracking and to meet the
real-time requirements of high-speed control, this paper linearizes the nonlinear system
using Taylor’s formula. Simultaneously, a discretization process is applied to obtain the
control system model:

X(k + 1) = Adyn(k)X(k) + Bdyn(k)u(k)

Y(k) = CX(k)
(17)

where

Adyn(k) =



Cα f +Cαr

m
.
x

− .
φ − (Cα f +Cαr)

.
y−(lrCαr−l f Cα f )

.
φ

m
.
x2 0 − .

x +
l f Cα f −lrCαr

m
.
x

0 0
.
φ +

Cα f δ f

m
.
x

−Cα f δ f (
.
y+l f

.
φ)

m
.
x2 0

.
y +

l f Cα f δ f

m
.
x

0 0

0 0 0 0 0 0

l f Cα f −lrCαr

Iz
.
x

−
(l f Cα f −lrCαr)

.
y+

(
l2

f Cα f +l2
r Cαr

) .
φ

Iz
.
x2 0

l2
f Cα f +l2

r Cαr

Iz
.
x

0 0

cos φ sin φ
.
x cos φ − .

y sin φ 0 0 0

− sin φ cos φ − .
x sin φ − .

y cos φ 0 0 0


(18)

Bdyn(k) =

−Cα f

m

Cα f

[( .
y + l f

.
φ
)
− 2δ f

.
x
]

m
.
x

0 −
l f Cα f

Iz
0 0

T

(19)

C =

[
0 0 1 0 0 0
0 0 0 0 1 0

]
(20)

where φ is the heading angle, Cα f and Cαr are the equivalent cornering stiffnesses of the
front axle and the rear axle, respectively, and x and y are the longitudinal and lateral
coordinates of the centroid in the geodetic coordinate system, respectively.
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The control objectives are defined based on the tracking accuracy of the reference
path and the smooth variation in control inputs. The tracking accuracy is assessed using
lateral offset and heading angle error as evaluation metrics. Therefore, the design of the
performance evaluation function is as follows:

J =
[
Yp(k)− Yre f

]T
QQ

[
Yp(k)− Yre f

]
+ ∆U(k)T RR∆U(k) (21)

where QQ = Ip ⊗ Q, RR = Ic ⊗ R, Q is the weight coefficient matrix of the output of the
control system, R is the weight coefficient matrix of the control increment, and ⊗ represents
the Kronecker product.

During the solving process, three aspects need to be considered: control increment
constraints, control quantity constraints, and stability constraints.

To ensure a smoother control process and enhance stability and comfort while tracking
the desired path, constraints are applied to the control increment, as shown in Equation (22):

∆Umin(k) ≤ ∆U(k) ≤ ∆Umax(k) (22)

Due to limitations in the actuators, there are constraints on the control quantity for the
front wheel angle, represented as

umin(k) ≤ u(k) ≤ umax(k) (23)

To ensure that the vehicle has good stability, constraints are imposed on the lateral
yaw rate and tire slip angle. The constraint on the lateral yaw rate due to road conditions is
as follows:

−µg
vx

≤ ωr ≤
µg
vx

(24)

When the vehicle becomes unstable, the consequences of rear axle sideslip are more
severe. So, the rear wheel slip angle needs to be restrained; that is

αr,min ≤ αr ≤ αr,max (25)

By solving the QP problem, the optimal control increment sequence ∆U∗(k) is obtained.
The first element ∆u∗(k) is applied to the controlled system and converted into the control
quantity at the present moment, which provides the desired front wheel angle.

δ f = u(k) = u(k − 1) + ∆u∗(k) (26)

2.4. Coordinated Control Layer

The coordinated control layer calculates the expected vehicle state by using the output
of the trajectory tracking layer, which provides the expected vehicle action. To track the
desired state, a sliding mode controller is designed to generate the expected vehicle effect.
Furthermore, this research explores a coordinated control strategy based on the theory
of extension dynamic phase plane. This strategy aims to improve the vehicle’s handling
stability and coordinate the coupling between the steering and drive subsystems. It achieves
this by allocating the expected yaw moment and calculating the desired control objectives
for the steering and drive systems.

2.4.1. Reference States

The handling stability of a vehicle’s lateral motion is determined by two important
parameters: yaw rate and sideslip angle. The yaw rate affects the quality of the vehicle’s
dynamic response. If the yaw rate is too large, it may cause oversteer, while if it is too small,
it may result in understeer. On the other hand, the sideslip angle reflects how much the
vehicle deviates from its intended path during driving. A larger sideslip angle indicates a
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greater deviation in path tracking. Therefore, to ensure handling stability, it is essential to
set appropriate values for the yaw rate and sideslip angle.

Based on the 2-DOF model of a front wheel steering vehicle, the expected yaw rate
can be obtained by calculating the steady-state response of the yaw rate:

ωd =
δ f Vx

L +
mV2

x (l f Cα f −lrCαr)

LCα f Cαr

(27)

Considering the road adhesion constraints, the expected yaw rate can be represented
as

ωd = min
{
|ωd|,

∣∣∣∣0.85
µg
vx

∣∣∣∣}sgn(δ f ) (28)

The expected side slip angle can also be calculated via the steady-state response of the
2-DOF vehicle model. However, to simplify the calculation, the expected side slip angle is
set to be 0 rad.

2.4.2. Additional Yaw Moment

For both the 4WID system and the 4WIS system, the control objectives for handling
stability include tracking the expected yaw rate and the expected side slip angle. Therefore,
this paper adopts sliding mode control to track these two reference states. It calculates
the additional yaw moment required to meet the tracking task, transforming the desired
vehicle state into the desired vehicle action, thus achieving the objectives of improving
chassis maneuverability and stability.

The sliding surface of the tracking error is set as follows:

s = ω − ωd + ρ(β − βd) (29)

where ρ represents the weight coefficient of the sideslip angle.
The yaw rate and side slip angle are control objectives that characterize vehicle stability.

However, in many cases, it is challenging to simultaneously achieve both objectives. The
yaw rate indicates whether the vehicle is understeering or oversteering, which directly
impacts its handling performance. On the other hand, the side slip angle measures the
deviation of the vehicle’s trajectory during steering, thereby affecting its lateral stability.
Consequently, the coupling between the yaw rate and side slip angle becomes a crucial
aspect when calculating the desired vehicle action. Currently, the phase plane method is
considered one of the effective approaches to address this coupling problem. The phase
plane index is defined as follows:

Xregion =
∣∣∣B1

.
β + B2β

∣∣∣ (30)

where B1 and B2 are the boundary model coefficients.
Within the stable region of the phase plane, the phase trajectory of the side slip angle

can automatically converge to zero, which imparts trajectory-following characteristics and
lateral stability to the car. As a result, the primary control objective is to achieve the desired
yaw rate. However, outside the stable region, the phase trajectory of the side slip angle
diverges, leading to vehicle instability. In such cases, both the desired yaw rate and side slip
angle become the main control objectives. Furthermore, as the phase plane index increases,
the weight of the side slip angle gradually increases. So, the weight coefficient is defined as

ρ =


0 Xregion ⩽ 0.8

(Xregion − 0.8)× 5k 0.8 ⩽ Xregion ⩽ 1

k Xregion ⩾ 1

(31)
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where k is a positive number.
The vehicle 2-DOF model is used as the control model:

.
ω =

l f Cα f
Iz

(
β +

l f ω

Vx
− δ f

)
− lrCαr

Iz

(
β − lrω

Vx

)
+ M

Iz
.
β = −ω +

Cα f
mVx

(β +
l f ω

Vx
− δ f ) +

Cαr
mVx

(β − lrω
Vx

)
(32)

During the control process, the presence of inertia and hysteresis can lead to chattering,
which has a significant impact on the system’s performance. To attenuate chattering
and enhance system stability, this research employs an exponential reaching law with a
saturation function, as shown in the following equation:

.
s = −ε·sat(s/ϕ)− ks (33)

where, ε > 0, k > 0, ϕ > 0, and

sat
(

s
ϕ

)
=


1, s > ϕ
s
ϕ , |s| ≤ ϕ

−1, s < −ϕ

(34)

According to Equations (30), (32) and (33), the additional yaw moment can be calcu-
lated as follows:

Mzd = Iz{(−ε·sat(s/ϕ)− ks) + l f Cα f

(
δ f − β − l f ω

Vx

)
− lrCαr

(
−β + lrω

Vx

)
+ Iz

.
ωrd

−Izρ{(−ω +
Cα f
mVx

(β +
l f ω

Vx
− δ f ) +

Cαr
mVx

(β − lrω
Vx

)−
.
βd}

(35)

2.4.3. Coordinated Strategy

To address the limitations of the traditional phase plane, this research introduces the
extension theory to expand the stability domain of the original phase portrait. Additionally,
the dynamic boundaries for the extension domain are designed by considering the linear
response characteristics of the vehicle. These boundary values can be dynamically adjusted
based on factors such as vehicle speed and road adhesion coefficient, which helps overcome
the issues associated with fixed domain boundaries and poor adaptability observed in
existing research. By utilizing the extension dynamic phase portraits, the lateral states of
the vehicle are categorized into three regions: classical domain, extension domain, and
non-domain. Different allocation strategies are applied to each region to distribute the
expected additional yaw moments. Furthermore, the control weights of DYC and ARS
are adaptively adjusted, and the target yaw moments for DYC and ARS are calculated
and outputted.

The control strategy based on the extension dynamic stability domain is mainly
divided into several parts, including characteristic state extraction, domain division, correc-
tion calculation, and measurement pattern recognition.

1. Characteristic State Extraction:

According to the definition expansion of the extension primitive theory, the charac-
teristic quantity can represent the state characteristic variables that describe the system
control objectives. The phase plane of the side slip angle and its angular velocity can reflect
the vehicle’s lateral stability, and it is widely used. Therefore, S(β, dβ) is selected as the
characteristic state. A two-dimensional extension set is established to describe the stable
driving state.

2. Domain Division

In this research, a dual-line method is used to divide the original phase portrait into
three regions: classical domain, extension domain, and non-domain, as shown in Figure 5.
The classical domain represents the stable state, the extension domain represents the



Actuators 2024, 13, 77 13 of 33

critical stable state, and the non-domain represents the unstable state. Therefore, accurately
determining the boundary values for the extension domain and non-domain is crucial for
constructing the extension phase portrait.
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1. Non-domain Boundary

The non-domain describes the unstable state during driving, which corresponds to
the instability domain of the traditional phase plane. Therefore, the unstable boundary of
the phase plane is chosen as the non-domain boundary:∣∣∣B1

.
β + B2β

∣∣∣ ≥ 1 (36)

The stable domain of the phase plane is determined by the vehicle speed, road adhe-
sion coefficient, and front wheel angle. When the front wheel angle increases, the stable
boundary of the phase plane is shifted to one side. However, within a range of 10 degrees
of front wheel angle, the stable domain boundary is relatively close to the boundary when
the front wheel angle is 0 degrees. Therefore, the impact of the front wheel angle on the
phase portrait boundary values can be disregarded. On the other hand, as the vehicle
speed increases or the road adhesion coefficient decreases, the stable domain gradually
decreases, and the unstable boundary expands outward. Therefore, the values of B1 and
B2 are adaptively adjusted according to the vehicle speed and road adhesion coefficient.
Simulation data establish the mapping relationship under different driving speeds and
road adhesion coefficients as follows:{

B1 = B1(Vx, µ)

B2 = B2(Vx, µ)
(37)

B1 and B2 are dynamically adjusted according to the vehicle speed and road adhesion
coefficient to achieve dynamic adjustment of the non-domain boundary.

β2 = β2(B1, B2) = β2(Vx, µ) (38)

2. Extension Domain Boundary

Currently, several scholars have examined the extension domain boundary of a vehi-
cle’s stable state. In a previous study [24], the extension domain boundary was determined
via the fixed-proportion scaling of the traditional phase portrait boundary using extensive
simulation calculations. However, this method lacks real-time adjustability according to
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external conditions and vehicle states. Additionally, the scaling ratio has limited adaptabil-
ity to operating conditions and lacks a theoretical basis. Another study [25] determined
the critical front wheel angle via the simulation analysis of tire lateral characteristics under
specific conditions and calculated the extension domain boundary values using a dynamics
model. While this method has some theoretical basis, it cannot dynamically adjust the limit
value of the front wheel angle, which depends on the predetermined simulation condi-
tions, making it challenging to meet the vehicle’s requirements under different conditions.
Moreover, accurately obtaining the limit value of the front wheel angle is also a challenge.
To address these issues, this paper proposes a dynamic boundary method based on the
vehicle’s linear response characteristics. This method adaptively adjusts the critical front
wheel angle based on the vehicle’s speed and road adhesion coefficient.

The goal of the vehicle dynamics stability control is to maintain the linear response
characteristics of the vehicle, specifically the linear relationship between the yaw rate and
the front wheel angle. When the vehicle operates within its linear region, where the tire
slip characteristics are also linear, it exhibits a large stability margin and remains stable.
However, when the vehicle enters the nonlinear region, where the tire slip characteristics
become nonlinear, the lateral force is easily constrained by the adhesion ellipse, leading to
vehicle instability. To address this, this paper proposes considering the boundary between
the linear and nonlinear regions as the extension domain boundary. This ensures that the
tire slip characteristics in the classical domain always remain in the linear region, thereby
maintaining vehicle stability.

To determine the dynamic boundary of the vehicle’s linear region, the calibration
method used in this research is as follows: First, a sinusoidal steering wheel angle signal
is applied to the vehicle. Then, the relationship between yaw rate and front wheel angle
is calculated, as shown in Figure 6. If the change in yaw rate corresponding to a unit
front wheel angle is lower or higher than a certain threshold relative to near zero angle,
it indicates that the vehicle has entered the nonlinear region. The front wheel angle at
this critical point is recorded, which is referred to as the critical angle δf0. This calibration
method is suitable not only for simulation analysis but also for vehicle testing, as it allows
for the easier determination of the critical angle of the linear region. Simulation tests were
conducted in this research using the built vehicle model to determine the critical angle.
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The tire’s slip characteristics, as illustrated in Figure 7, demonstrate that when the slip
angle of the tire surpasses the linear region, the lateral force becomes nonlinear and less
responsive to the slip angle. As the tire slip angle increases, the lateral force experiences a
slight increase, gradually transitioning from a nonlinear state to a saturation state. Con-
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sequently, given a specific road adhesion coefficient, the relationship between the critical
angle, vehicle speed, and road adhesion can be described as follows [31]:

V2
x ·δf0 = Cµ (39)

where Cµ is a constant, indicating that the product of the square of the vehicle speed and
the critical angle is a constant under the corresponding adhesion coefficient. Based on this
conclusion, further calibration of Cµ under different adhesion coefficients is performed.
Furthermore, the mapping relationship of the critical angle under different vehicle speeds
and adhesion coefficients is established, as shown in Figure 8.
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Figure 8. The critical angle under different speeds and adhesion coefficients.

The critical angle δf0 is dynamically adjusted according to vehicle speed and adhesion
coefficient. The steady-state sideslip angle β1 under this steering angle is solved via the
2-DOF model. The straight line passing through (±β1, 0) and parallel to the non-domain
boundary is regarded as the boundary of the extension domain.

β1 =
lr −

l f mV2
x

2Cαr L

L +
mV2

x (lrCαr−l f Cα f )
2Cα f Cαr L

δf0 (40)
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3. Correction Calculation

To simplify the calculation process, the characteristic quantity ψ(S) is introduced to
reduce the dimensionality of the two-dimensional domain and transform it into a one-
dimensional domain as follows:

ψ(S) = β + E
.
β (41)

where E is mainly determined based on B1 and B2 in the equation. The characteristic
quantity is determined by the characteristic state and represents the driving stability of the
vehicle.

In extension theory, the extension distance refers to the distance between a point and
an interval, which can be used to describe the relationship between points and regions in
the phase plane. Therefore, the extension distance from any characteristic quantity to the
classical domain X =

[
−β1, β1

]
can be expressed as follows:

ρ(ψ, X) = |ψ| − β1 (42)

The extension distance from any characteristic quantity to the non-domain X0 =[
−β2, β2

]
is expressed as follows:

ρ(ψ, X0) = |ψ| − β2 (43)

The correlation function can be determined as

K(ψ) =
ρ(ψ, X0)

ρ(ψ, X0)− ρ(ψ, X)
(44)

The correlation function K(ψ) describes the correlation degree of the characteristic
quantity with respect to the extension set of the system state. it determines the lateral stable
state of the current vehicle state, thereby determining the control weight of the drive and
steering subsystems.

4. Measurement Pattern Recognition

The yaw moment generated by tire lateral forces is generally greater than that pro-
duced by longitudinal forces of the same size due to the wheelbase of a car being typically
greater than its track width. By actively adjusting the rear wheel slip angle, the vehicle’s
linear handling range can be expanded when the rear wheels actively participate in steering,
effectively preventing the vehicle from entering the unstable area prematurely. Further-
more, it can be observed from the tire adhesion ellipse that the limit of tire longitudinal
force is greater than that of tire lateral force. Even when the tire lateral force reaches its
extreme boundary, there is still some space for tire longitudinal force. Therefore, a system
that controls the vehicle’s handling stability by adjusting tire longitudinal force can play a
more significant role when the tire lateral force is saturated.

Based on the correlation function calculated above, the recognition of measurement
patterns is performed, and the control weight allocation strategy is devised in the corre-
sponding patterns:

M1: When K(ψ) ≥ 1, the measurement pattern is M1, and the corresponding character-
istic state belongs to the classic domain. The current vehicle state is in an easily controllable
state, indicating that the tires have linear slip characteristics and are within the linear
response range. In order to maximize the benefits of rapid response in tire lateral forces
for the vehicle’s yaw motion, the primary control method used is ARS. ARS effectively
manages the steering motion by controlling the rear wheel angle. It can be expressed
as follows: {

γARS = 1
γDYC = 0

(45)

M2: When 0 < K(ψ) < 1, the measurement pattern is M2, and the corresponding
characteristic state belongs to the extension domain. In this case, the characteristic state
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is in a controllable state, indicating that the current vehicle state is within the nonlinear
response range. The tires do not exhibit linear slip characteristics and have limited control
capability over lateral force. As a result, the DYC system starts to intervene to compensate
for the limitations of the ARS system. Furthermore, as K(ψ) decreases, the corresponding
characteristic state gradually moves away from the classical domain and tends toward un-
controllability. The vehicle state is gradually approaching an unstable state. Consequently,
the control weight of the ARS system gradually decreases while the control weight of the
DYC system gradually increases. It can be expressed as{

γARS = K(ψ)
γDYC = 1 − K(ψ)

(46)

M3: When K(ψ) ≤ 0, the measurement pattern is M3, and the corresponding character-
istic state belongs to the non-domain. The current vehicle state is in an unstable condition,
as indicated by the challenging-to-control state. The tire lateral forces are approaching their
limits, resulting in the withdrawal of ARS and prioritizing DYC. This enables the tires to
fully utilize their longitudinal adhesion. It can be expressed as{

γARS = 0
γDYC = 1

(47)

By calculating the control weights of the drive and steering subsystems, the control
objectives for ARS and DYC can be determined as follows:{

MARS = γARS Mzd
MDYC = γDYC Mzd

(48)

2.5. Optimal Distribution Layer

The optimal distribution layer receives the longitudinal force and the target yaw
moment from the upper layer. It then distributes these inputs and calculates the output
torque and corner for each wheel. These values are subsequently sent to the in-wheel
motors and steering motors. The optimal distribution layer is composed of two main parts:
torque distribution and corner distribution. Depending on the execution subsystem, these
two parts are responsible for distributing torque and corner values, respectively.

2.5.1. Torque Distribution

The torque distribution control system receives the longitudinal force and the target
yaw moment for DYC from the upper layer. It then calculates the driving torque for
each wheel. To ensure both stability and economy [32], this study evaluates the driving
efficiency and tire adhesion ratio as criteria. The optimal torque control law is determined
using a combination of Mutation Particle Swarm Optimization (MPSO) and Quadratic
Programming (QP), enabling real-time torque optimization. Figure 9 illustrates the process
of torque distribution control, where different torque distribution strategies are designed
based on the extension dynamic phase portrait.

1. Classical Domain

In the classical domain, the vehicle remains in a stable state, with the Dynamic Yaw
Control (DYC) system inactive. As a result, the torque distribution strategy focuses on
achieving economy by optimally distributing the total longitudinal force. Considering
the driving efficiency characteristics of the in-wheel motors and aiming to improve the
computational efficiency of the algorithm for real-time torque distribution, this paper
utilizes the MPSO algorithm to offline optimize the distribution coefficients for the front
and rear axle torques. This establishes a mapping relationship for the optimal distribution
law, allowing the motors to operate in the most efficient region as much as possible.
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Figure 9. The process of torque distribution control.

Building upon the literature [30], the MPSO algorithm combines the traditional PSO
algorithm [33] with the mutation concept from genetic algorithms. This incorporation of
mutation during the update of population positions enables the algorithm to escape locally
optimal solutions, increasing the chances of finding a global optimum and reducing the
likelihood of premature convergence.

To simplify the optimization problem, this paper introduces the front axle torque
distribution coefficient, which is the ratio of the front axle torque to the total required
torque, as follows:

λ =
Tf

Txd
=

Tf

FxdRe f f
(49)

where Tf is the front axle output torque, and Txd is the total longitudinal demand torque of
the vehicle.

In order to optimize the efficiency of the drive system, the overall efficiency of the
motor is used as the economic indicator:

J =
Tf n f + Trnr
Tf n f

η f
+ Trnr

ηr

(50)

where Tr is the output torque of the rear axle; n f and nr are the output speeds of the front
and rear axle motors, respectively; and η f and ηr are the output efficiencies of the front and
rear axle motors, respectively.

The driving efficiency can be expressed as

J =
Tf n f + Trnr
Tf n f

η f
+ Trnr

ηr

=
λn f + (1 − λ)nr

λn f
η f

+ (1−λ)nr
ηr

=
1

λ
η f

+ 1−λ
ηr

(51)

Therefore, the optimization problem can be expressed as

minJ =
λ

η f
+

1 − λ

ηr
(52)

Considering that the vehicle under study has a center of gravity closer to the front
axle, with the front axle bearing a greater vertical load than the rear axle, the limit of the
longitudinal force on the front axle is larger. Therefore, the constraint for the front axle
distribution coefficient is as follows:

0.5 ≤ λ ≤ 1 (53)
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The efficiency of the in-wheel motor is mainly determined by the speed and torque.
The front axle torque distribution coefficient is influenced by factors such as vehicle speed
and demand torque. In this study, vehicle speed is represented by wheel speed. The front
axle torque distribution coefficient is optimized using the MPSO algorithm in MATLAB.
Figure 10 illustrates the optimal relationship between the front axle distribution coefficient,
wheel speed, and demand torque.

Actuators 2024, 13, x FOR PEER REVIEW 20 of 34 
 

 

and demand torque. In this study, vehicle speed is represented by wheel speed. The front 
axle torque distribution coefficient is optimized using the MPSO algorithm in MATLAB. 
Figure 10 illustrates the optimal relationship between the front axle distribution coeffi-
cient, wheel speed, and demand torque. 

 
Figure 10. Optimal front axle distribution coefficient. 

Based on the optimal distribution coefficient of the front axle, the torque of the left 
and right wheels is evenly distributed to obtain the driving torque of each wheel: 

( )
/ 2

1 / 2

= =


= = −

fl fr opt xd

rl rr opt xd

T T λ T

T T λ T
 (54)

2. Extension Domain 
In the extension domain, the vehicle is in a critical stable state, and DYC is active. 

However, the vehicle has not become unstable. Therefore, the torque distribution strategy 
continues to prioritize the economy. It optimally allocates the total longitudinal force and 
additional yaw moment. Different from the classical domain method, the target additional 
yaw moment distribution of DYC needs to be considered. A distribution strategy is pro-
posed that combines the rule-based method with economy-optimal distribution. 

Based on the rule of average distribution, the target demanded torques on the left 
and right sides are calculated as follows: 

2

2

= −

= +

xd zd
dl eff eff

xd zd
dr eff eff

F MT R R
d

F MT R R
d

 (55)

where dlT   and drT   are the left and right demand torques, respectively, which are ob-
tained by considering the generalized longitudinal force and generalized yaw moment. 

Since the four in-wheel motors are the same, the torque offline optimization problems 
on the left and right sides are essentially the same. Therefore, the same economy distribu-
tion strategy used in the classical domain can be applied. It involves separately solving 
for the optimal front axle distribution coefficients for the left and right sides, resulting in 
the driving torques for each wheel: 

Figure 10. Optimal front axle distribution coefficient.

Based on the optimal distribution coefficient of the front axle, the torque of the left and
right wheels is evenly distributed to obtain the driving torque of each wheel:{

Tf l = Tf r = λoptTxd/2

Trl = Trr =
(
1 − λopt

)
Txd/2

(54)

2. Extension Domain

In the extension domain, the vehicle is in a critical stable state, and DYC is active.
However, the vehicle has not become unstable. Therefore, the torque distribution strategy
continues to prioritize the economy. It optimally allocates the total longitudinal force and
additional yaw moment. Different from the classical domain method, the target additional
yaw moment distribution of DYC needs to be considered. A distribution strategy is
proposed that combines the rule-based method with economy-optimal distribution.

Based on the rule of average distribution, the target demanded torques on the left and
right sides are calculated as follows:

Tdl =
Fxd
2 Re f f − Mzd

d Re f f

Tdr =
Fxd
2 Re f f +

Mzd
d Re f f

(55)

where Tdl and Tdr are the left and right demand torques, respectively, which are obtained
by considering the generalized longitudinal force and generalized yaw moment.

Since the four in-wheel motors are the same, the torque offline optimization problems
on the left and right sides are essentially the same. Therefore, the same economy distribution
strategy used in the classical domain can be applied. It involves separately solving for
the optimal front axle distribution coefficients for the left and right sides, resulting in the
driving torques for each wheel:
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

Tf l = λopt,lTdl

Trl =
(

1 − λopt,l

)
Tdl

Tf r = λopt,rTdr

Trr =
(
1 − λopt,r

)
Tdr

(56)

where λopt,l and λopt,r are the optimal front axle distribution coefficients of the left and
right sides, respectively.

3. Non-domain

In the non-domain, the vehicle is in an unstable state. To meet safety requirements, the
torque distribution strategy prioritizes stability as the primary objective, with the economy
being secondary. Therefore, a compound distribution control strategy is employed, which
combines the optimal distribution of stability and economy. The utilization of tire adhesion
coefficients is considered as the optimal control target for stability. Simultaneously, the opti-
mal front-rear axle distribution results of economy serve as constraints for the longitudinal
driving force, ensuring a vehicle stability margin and maximizing the improvement in the
vehicle’s handling stability.

The optimization performance index in this paper is the optimal tire adhesion ratio
of four wheels. The objective function for the torque optimization distribution problem is
defined as follows:

J =
4
∑

i=1

F2
yij+F2

xij

µ2F2
zij

(57)

where µ is the road adhesion coefficient, and Fxij, Fyij, and Fzij are the longitudinal force,
lateral force, and vertical force of each wheel.

The control variable of the optimization problem is the longitudinal force of each wheel
u =

[
Fx f l , Fx f r, Fxrl , Fxrr

]
. The equality constraints for the optimization problem include

front and rear axle driving force constraints and additional yaw moment constraints.
The inequality constraints consist of tire friction ellipse constraints and motor actuator
constraints.

The total demand driving force of the front and rear axles needs to be the upper-layer
longitudinal force requirement. Based on the calculated optimal front axle driving force
distribution coefficient, it is expressed as follows:{

Tf l + Tf r = λoptTxd

Trl + Trr =
(
1 − λopt

)
Txd

(58)

At the same time, the driving torque distribution of four wheels needs to meet the
calculated demand yaw moment as follows:{

Tf l + Tf r = λoptTxd

Trl + Trr =
(
1 − λopt

)
Txd

(59)

To prevent tire forces from reaching saturation and causing slippage, each wheel must
satisfy the tire friction ellipse constraint. Therefore, the driving force of each wheel needs
to satisfy the following inequality constraint:

Fx f l ≤
√

µ2·F2
z f l − F2

y f l

Fx f r ≤
√

µ2·F2
z f r − F2

y, f r

Fxrl ≤
√

µ2·F2
zrl − F2

y,rl

Fxrr ≤
√

µ2·F2
zrr − F2

y,rr

(60)
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The torque distribution problem is transformed into a constrained quadratic pro-
gramming problem. In situations where the optimization problem cannot be solved, it
becomes necessary to relax the constraints. Since the yaw moment has a significant effect
on vehicle stability, when there is no solution, the torque constraints are converted into
performance functions, giving priority to meeting yaw moment requirements. By solving
the optimization problem, the optimal driving torques for each wheel can be calculated.

2.5.2. Corner Distribution

The coordinated control layer calculates the target yaw moment for ARS, so the lateral
force of the rear axle can be obtained:

Fyr =
MARS

lr
(61)

Based on the built tire model, the inverse tire model of the mapping relationship
between tire lateral force and tire slip angle is obtained via transformation. Then, the slip
angle at the rear axle center is calculated based on the rear lateral force:

αr = F−1
y (Fyr) (62)

The equivalent rear wheel angle can be calculated as

δr =
Vy − lrω

Vx
− αr = β − lrω

Vx
− αr (63)

Combined with the obtained front wheel angles from lateral path tracking, according
to the Ackermann steering principle, the steering angles for each wheel can be determined:

tan δ f l =
tan δ f

1− d
2l (tan δ f −tan δr)

tan δ f r =
tan δ f

1+ d
2l (tan δ f −tan δr)

tan δrl =
tan δr

1− d
2l (tan δ f −tan δr)

tan δrr =
tan δr

1+ d
2l (tan δ f −tan δr)

(64)

where δij is the angle of each wheel; αij is the side slip angle of each wheel; and δ f and δr
are the equivalent angles of the front and rear wheels, respectively.

3. Simulation and Results
3.1. Environment and Configuration

In this section, we develop a simulation model using the CarSim 2019 software pro-
duced by MSC (USA) and MATLAB R2022a software produced by MathWorks (Natick,
MA, USA), as shown in Figure 11. The vehicle model employed in this study is based on
the CarSim vehicle model. To evaluate the effectiveness of the control strategy on different
road surfaces, two different driving conditions, namely the slalom test and double-lane
change, are simulated. The slalom test is conducted on a high-adhesion road surface,
while the double-lane change is performed on a low-adhesion road surface. By comparing
the experimental results of AFS, AFS + DYC, 4WS, and coordinated control, we analyze
and verify the efficacy of the proposed control strategy. The AFS strategy involves only
MPC trajectory tracking control. The AFS + DYC strategy is a strategy that adds DYC
control on the basis of AFS and sets the control weight of DYC to 1. The 4WS strategy
is a strategy that adds ARS control on the basis of AFS and sets the ARS control weight
to 1. Coordinated control is the strategy based on the extension dynamic stability region
proposed in this article.
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To further validate the effects of the coordinated control strategy on economy opti-
mization, this study compared it with the equal torque distribution strategy. The equal
torque distribution strategy is commonly used in practical engineering due to its simplicity
and efficiency. In this strategy, the generalized longitudinal force and generalized yaw
moment output from the upper layer are evenly distributed to each wheel. The torque
distribution for each wheel can be expressed as follows:{

Tf l = Trl =
Fxd
4 Re f f − Mzd

2d Re f f

Tf r = Trr =
Fxd
4 Re f f +

Mzd
2d Re f f

(65)

3.2. Results and Analysis
3.2.1. Slalom Test

The vehicle speed is set to 80 km/h, the road adhesion coefficient is set to 0.8, and the
simulation time is set to 20 s. The proposed coordinated control strategy is verified from
three aspects: trajectory tracking results, handling stability results, and economy results.

The longitudinal tracking results are presented in Figure 12. During the slalom test,
the longitudinal velocity tracking based on the expert PID performs well in tracking the
desired velocity, with a tracking error of less than 0.5 km/h. This meets the accuracy
requirements for longitudinal tracking. Moreover, when compared with the control results
of AFS, the longitudinal tracking results of AFS + DYC and coordinated control exhibit
significant fluctuations and relatively reduced tracking accuracy.
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The results of the lateral tracking are presented in Figure 13 and Table 1. The AFS
strategy, based on lateral path tracking using MPC, demonstrates good tracking perfor-
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mance with minimal errors, meeting the accuracy requirements. Comparing the lateral
offsets and heading angle errors under different strategies, it is observed that AFS + DYC,
4WS, and coordinated control outperform AFS. Among these, 4WS exhibits the best lateral
displacement tracking performance, with a maximum error of 0.1053 m and an RMS value
of 0.0435 m. Coordinated control closely follows, with a maximum error of 0.1062 m and an
RMS value of 0.0445 m. In terms of heading angle tracking, coordinated control performs
the best, with a maximum error of 0.0286 rad and an RMS value of 0.0067 rad, followed by
4WS, with a maximum error of 0.0302 rad and an RMS value of 0.0070 rad. These results
indicate that 4WS and the proposed coordinated control strategy have the best tracking
performance, while AFS + DYC shows relatively poorer tracking performance but still
outperforms the pure tracking control strategy of AFS. In summary, the lateral tracking
results can be summarized as follows: 4WS ≈ coordinated control > AFS + DYC > AFS.
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Table 1. Comparison of path tracking errors under slalom test.

Control Strategy
Lateral Offset

(m) Heading Angle Error (Rad)

Max RMS Max RMS

AFS 0.1206 0.0439 0.0453 0.0107
AFS + DYC 0.1076 0.0453 0.0308 0.0071

4WS 0.1053 0.0435 0.0302 0.0070
Coordinated Control 0.1062 0.0445 0.0286 0.0067
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The handling stability results are presented in Figures 14 and 15 and Table 2. During
the slalom test, AFS + DYC, 4WS, and coordinated control all exhibit better handling stabil-
ity compared to the simulation results of AFS. Notably, coordinated control demonstrates
the highest level of handling stability, with a maximum yaw rate error of 0.2037 rad/s
and an RMS value of 0.0258 rad/s. The maximum sideslip angle error is 0.0326 rad, with
an RMS value of 0.0108 rad. In summary, the handling stability results can be ranked as
follows: coordinated control > AFS + DYC > 4WS > AFS.

Actuators 2024, 13, x FOR PEER REVIEW 25 of 34 
 

 

  
(c) (d) 

Figure 13. Path tracking results under slalom test: (a) results of lateral displacement; (b) results of 

heading angle; (c) results of lateral offset; (d) results of heading angle error. 

Table 1. Comparison of path tracking errors under slalom test. 

Control Strategy 

Lateral Offset 

(m) 
Heading Angle Error (Rad) 

Max RMS Max RMS 

AFS 0.1206 0.0439 0.0453 0.0107 

AFS + DYC 0.1076 0.0453 0.0308 0.0071 

4WS 0.1053 0.0435 0.0302 0.0070 

Coordinated Control 0.1062 0.0445 0.0286 0.0067 

The handling stability results are presented in Figures 14 and 15 and Table 2. During 

the slalom test, AFS + DYC, 4WS, and coordinated control all exhibit better handling sta-

bility compared to the simulation results of AFS. Notably, coordinated control demon-

strates the highest level of handling stability, with a maximum yaw rate error of 0.2037 

rad/s and an RMS value of 0.0258 rad/s. The maximum sideslip angle error is 0.0326 rad, 

with an RMS value of 0.0108 rad. In summary, the handling stability results can be ranked 

as follows: coordinated control > AFS + DYC > 4WS > AFS. 

 

Figure 14. Side slip angle under slalom test. Figure 14. Side slip angle under slalom test.

Actuators 2024, 13, x FOR PEER REVIEW 26 of 34 
 

 

  
(a) (b) 

Figure 15. Yaw rate results under slalom test: (a) results of yaw rate; (b) results of yaw rate error. 

Table 2. Comparison of handling stability errors under slalom test. 

Control Strategy 

Yaw Rate Error 

(Rad/s) 
Sideslip Angle Error (Rad) 

Max RMS Max RMS 

AFS 0.3752 0.0878 0.0536 0.0171 

AFS + DYC 0.2393 0.0306 0.0328 0.0112 

4WS 0.2957 0.0433 0.0347 0.0118 

Coordinated Control 0.2037 0.0258 0.0326 0.0108 

Under the slalom test, comparing the path tracking results and handling stability re-

sults of AFS + DYC and 4WS, it can be seen that the path tracking results of 4WS are su-

perior to those of AFS + DYC, while the handling stability results are worse. Therefore, 

the 4WS strategy can achieve better trajectory tracking performance than the AFS + DYC 

strategy but sacrifices a certain degree of handling stability accuracy. Conversely, the AFS 

+ DYC strategy exhibits the opposite trend. 

In order to take advantage of both, the coordinated controller adjusts the control 

weights of the drive and steering subsystems, as shown in Figure 16. When the vehicle is 

still in the linear region, the controller maximizes the effect of tire lateral forces, with 4WS 

being the primary contributor. As the vehicle gradually deviates from the linear region 

and tire lateral forces approach saturation, the weight of DYC increases. This explains why 

the coordinated controller can achieve improved trajectory tracking control while enhanc-

ing handling stability. 

  
(a) (b) 

Figure 15. Yaw rate results under slalom test: (a) results of yaw rate; (b) results of yaw rate error.

Table 2. Comparison of handling stability errors under slalom test.

Control Strategy
Yaw Rate Error

(Rad/s) Sideslip Angle Error (Rad)

Max RMS Max RMS

AFS 0.3752 0.0878 0.0536 0.0171
AFS + DYC 0.2393 0.0306 0.0328 0.0112

4WS 0.2957 0.0433 0.0347 0.0118
Coordinated Control 0.2037 0.0258 0.0326 0.0108



Actuators 2024, 13, 77 25 of 33

Under the slalom test, comparing the path tracking results and handling stability
results of AFS + DYC and 4WS, it can be seen that the path tracking results of 4WS are
superior to those of AFS + DYC, while the handling stability results are worse. Therefore,
the 4WS strategy can achieve better trajectory tracking performance than the AFS + DYC
strategy but sacrifices a certain degree of handling stability accuracy. Conversely, the
AFS + DYC strategy exhibits the opposite trend.

In order to take advantage of both, the coordinated controller adjusts the control
weights of the drive and steering subsystems, as shown in Figure 16. When the vehicle is
still in the linear region, the controller maximizes the effect of tire lateral forces, with 4WS
being the primary contributor. As the vehicle gradually deviates from the linear region and
tire lateral forces approach saturation, the weight of DYC increases. This explains why the
coordinated controller can achieve improved trajectory tracking control while enhancing
handling stability.
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In this study, the simulation results are compared between the equal distribution strat-
egy and the proposed compound distribution strategy using the system’s comprehensive
efficiency and battery energy consumption as economic evaluation indicators. Figure 17
shows that under the slalom test, the system comprehensive efficiency of the proposed
compound distribution strategy is superior to that of the equal distribution strategy. Addi-
tionally, the energy consumption of the battery is reduced from 240.8691 kJ to 234.4290 kJ,
representing a 2.67% decrease when using the compound distribution strategy. This con-
firms the effectiveness of the proposed compound distribution strategy in terms of energy
consumption economy.

3.2.2. Double-Lane Change

The vehicle speed is set to 60 km/h, the road adhesion coefficient is set to 0.4, and the
simulation time is set to 10 s. The proposed coordinated control strategy is verified from
three aspects: trajectory tracking results, handling stability results, and economy results.

The longitudinal tracking results are shown in Figure 18. Under the double-lane
change scenarios, longitudinal velocity tracking based on the performs well in tracking
the desired velocity, with a tracking error of less than 0.2 km/h. It meets the accuracy
requirements for longitudinal tracking. In addition, comparing the tracking results under
different strategies, the longitudinal tracking results are basically the same.
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The lateral tracking results are presented in Figure 19 and Table 3. In the double-lane
change scenarios, the AFS strategy demonstrates effective lateral path tracking based on
MPC, even on low-adhesion roads. When comparing the lateral offsets and heading angle
errors among different strategies, it is evident that AFS + DYC, 4WS, and coordinated
control outperform AFS in terms of lateral tracking results. Among these strategies, 4WS
exhibits the best lateral displacement tracking and heading angle tracking effects, with a
maximum lateral offset of 0.0811 m and an RMS value of 0.0320 m. The maximum heading
angle error is 0.0273 rad, with an RMS value of 0.0127 rad. Coordinated control closely
follows, with a maximum lateral offset of 0.0814 m and an RMS value of 0.0321 m. The
maximum heading angle error is 0.0276 rad, with an RMS value of 0.0127 rad. These results
indicate that 4WS demonstrates the highest tracking performance, followed by coordinated
control. AFS + DYC shows relatively poorer tracking performance but still outperforms
the pure tracking control strategy of AFS. In summary, the ranking of the lateral tracking
results is as follows: 4WS > coordinated control > AFS + DYC > AFS.
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Figure 19. Path tracking results under double-lane change: (a) results of lateral displacement;
(b) results of heading angle; (c) results of lateral offset; (d) results of heading angle error.

Table 3. Comparison of path tracking errors under double-lane change.

Control Strategy
Lateral Offset

(m) Heading Angle Error (Rad)

Max RMS Max RMS

AFS 0.0821 0.0324 0.0278 0.0130
AFS + DYC 0.0819 0.0322 0.0276 0.0128

4WS 0.0811 0.0320 0.0273 0.0127
Coordinated Control 0.0814 0.0321 0.0276 0.0127

The handling stability results are presented in Figures 20 and 21, and Table 4. In the
double-lane change scenarios, AFS + DYC, 4WS, and coordinated control all exhibit superior
handling stability compared to the simulation results of AFS. Among these, coordinated
control demonstrates the highest level of handling stability, with a maximum yaw rate
error of 0.0597 rad/s and an RMS value of 0.0115 rad/s. The maximum sideslip angle error
is 0.032 rad, with an RMS value of 0.014 rad. In summary, the handling stability results can
be ranked as follows: coordinated control > AFS + DYC > 4WS > AFS.
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Table 4. Comparison of handling stability errors under double-lane change.

Control Strategy
Yaw Rate Error

(Rad/s) Sideslip Angle Error (Rad)

Max RMS Max RMS

AFS 0.3752 0.0878 0.0536 0.0171
AFS + DYC 0.2393 0.0306 0.0328 0.0112

4WS 0.2957 0.0433 0.0347 0.0118
Coordinated Control 0.2037 0.0258 0.0326 0.0108

In the context of double-lane change scenarios, a comparison was made between the
path tracking results and handling stability results of the AFS + DYC and 4WS strategies.
It was observed that the 4WS strategy outperforms in terms of path tracking, while the
AFS + DYC strategy exhibits better handling stability. These findings align with the results
obtained from the slalom test.

To achieve both trajectory tracking control and good handling stability, the coordinated
controller adjusts the control weights, as depicted in Figure 22. A trade-off is made between
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the two objectives. Due to a lower road adhesion coefficient, the friction ellipse of the
tires becomes smaller, leading to a higher likelihood of lateral forces reaching saturation.
To address this, the coordinated controller relies more on DYC control and adjusts the
longitudinal forces of the tires to enhance stability. Consequently, the lateral path tracking
performance under the coordinated control strategy is slightly inferior to that of 4WS, but
the handling stability surpasses other strategies.
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The economic simulation results for the double-lane change scenario are presented in
Figure 23. The comprehensive efficiency of the proposed compound distribution strategy
is higher than that of the equal distribution strategy. Additionally, the energy consumption
of the battery is 39.901 kJ under the equal distribution strategy, whereas it is reduced to
38.2123 kJ under the compound distribution strategy, resulting in a 4.23% decrease in
energy consumption. These findings confirm the effectiveness of the proposed compound
distribution strategy in terms of energy consumption economy.
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4. Discussion

Comparing the slalom test results on a high-adhesion road and the double-lane change
results on a low-adhesion road, the following conclusions can be summarized:

• The designed PID-based longitudinal velocity tracking controller and MPC-based
lateral path tracking controller in this study both achieve good tracking performance,
meeting the accuracy requirements of trajectory tracking control.

• When comparing the 4WS and AFS + DYC strategies, the 4WS strategy provides
better path tracking performance, while the AFS + DYC strategy offers better handling
stability.

• Stability and path tracking accuracy interact with each other. Improved stability leads
to a decrease in path tracking accuracy, and the increase in path tracking accuracy
reduces vehicle stability. The proposed coordinated control strategy maximizes the
advantages of the steering and drive subsystems. By combining 4WS with DYC,
it comprehensively controls stability and path tracking accuracy. This strategy can
achieve better trajectory tracking control while improving the vehicle’s handling
stability, realizing coordinated control with dual objectives.

• The proposed compound torque distribution strategy can enhance the vehicle’s econ-
omy while maintaining trajectory tracking performance and stability.

To further clarify the characteristics of the proposed control strategy in this study, a
comparison is made with chassis coordinated control strategies proposed in References [24,25].
Both references utilized chassis coordinated control strategies that were based on extension
theory and dynamically adjusted the control weights for the driving and steering subsys-
tems. Hence, by combining the findings from these two studies, an analysis is conducted
from two perspectives, as shown in Table 5.

Table 5. Comparison of different control strategies.

Control Strategy
Stability Domain Division Control Weights

Extension Domain Non-Domain System Strategy

Ref [24] Phase diagram
boundaries Scaling factor AFS + DYC Correlation

function

Ref [25] Tire’s linear
zone

Phase diagram
boundaries AFS + DYC Game theory

Proposed strategy Vehicle’s linear
zone

Phase diagram
boundaries 4WS + DYC Correlation

function

• Division of Stability Domain:

Reference [24] selected traditional phase diagram boundaries as the extension domain
boundaries and expanded them to obtain non-domain boundaries using a fixed scaling
factor. However, this strategy lacks a theoretical basis and cannot be adjusted according
to external conditions, resulting in overly conservative extension domain boundaries
and potential instability. In contrast, Reference [25] utilized the tire’s linear zone limit
as the extension domain boundary and the traditional phase diagram boundary as the
non-domain boundary. However, this approach cannot accurately determine the critical
angle of the tire’s linear zone and cannot adaptively adjust to external environmental
conditions. In this paper, we propose a strategy that defines the vehicle’s linear zone as
the extension domain boundary and the traditional phase diagram boundary as the non-
domain boundary. Both extension domain and non-domain boundaries can be adaptively
adjusted based on the vehicle’s speed and road adhesion conditions, enabling a more
accurate assessment of the vehicle’s lateral motion state.

• Adaptive Adjustment of Control Weights:

Reference [24] developed allocation coefficients for AFS and DYC control weights
based on the correlation function of extension theory. In a similar vein, Reference [25]
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optimized the control allocation coefficients for AFS and DYC control weights using a
combination of correlation functions and game theory. In contrast, this paper’s control
strategy directly determines control weights for 4WS and DYC based on the correlation
function. While References [24,25] focused on the control weights of the AFS system, our
study takes into account the impact of ARS on vehicle lateral motion, fully utilizing the
steering system’s role in handling stability. Furthermore, both Reference [24] and our strat-
egy design control weights based on the correlation function, which is a simple, efficient,
and practical approach. However, it heavily relies on the precise boundary definition
of the stability domain. On the other hand, Reference [25] incorporates game theory to
dynamically optimize the weights of the driving and steering systems, potentially leading
to superior control outcomes. Nonetheless, this approach involves more adjustment pa-
rameters, increases computational complexity, and reduces real-time performance, posing
challenges for practical engineering applications.

By considering both aspects, the control strategy proposed in this paper can dynami-
cally adjust the boundaries of the stability domain, resulting in a more accurate assessment
of the vehicle’s lateral motion state. Additionally, the allocation strategy for control weights
is relatively simple and, when combined with more precise stability domain boundaries,
can yield excellent control results.

5. Conclusions

This paper presents a study on the coordinated control problem of 4WID-4WIS electric
vehicles, focusing on trajectory tracking performance, handling stability, and economy.
Additionally, it addresses the coupling allocation issue between the driving and steering
subsystems. To tackle these challenges, the paper proposes a hierarchical chassis control
architecture. The expert PID algorithm is used for longitudinal velocity tracking, while
the MPC algorithm is employed for lateral path tracking. To achieve optimal control of
trajectory tracking performance and handling stability, a sliding mode controller is uti-
lized to calculate the additional yaw moment. Additionally, a coordinated control strategy
based on the extension dynamic stability domain is designed, where the control weights
of DYC and ARS are adaptively adjusted to output the optimal control objectives. Taking
into consideration the demand for energy efficiency, the optimal wheel drive torques are
calculated using MPSO and QP with driving efficiency and tire adhesion ratio as control ob-
jectives. Simulation test results demonstrate that the coordinated control strategy improves
trajectory tracking performance, handling stability, and economy, achieving multi-objective
coordinated control of the chassis. This method has high real-time performance, simple
implementation, and strong adaptability to working conditions, laying the foundation for
further research on chassis-integrated control.

In future work, vehicle tests will be conducted to validate the effectiveness of the
control strategy. Furthermore, the impact of vertical dynamics will be considered, and a
deeper investigation into the coupling characteristics between subsystems will be carried
out to achieve multi-dimensional dynamic optimization control of the chassis subsystems.
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