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Abstract: Micro-newton thrust stands are widely used in thruster ground calibration procedures
for a variety of space missions. The conventional analytical model does not consider the gravity-
induced extension effect and systematic error in displacement for thrust stands consisting of hanging
pendulums based on flexure hinge structures. This paper proposes an improved analytical model of
a hanging pendulum for thrust measurement, where an elliptical notched flexure hinge is the key
component. A parametric model of the bending stiffness of the flexure hinge is developed. Equally,
both the bending stiffness shift under the gravity-induced extension effect and the systematic error in
displacement due to the assumed rotational center offset of the hinge are investigated. The presented
stiffness equations for elliptical notched hinges can be degenerated into stiffness equations for circular
notched as well as leaf-type hinges. The improved model aims to evaluate and highlight the influence
of the two considered factors for use in thrust stand parameter design and thrust analysis. A finite
element modeling solution is proposed to validate the proposed analytical model. The results show
that the proposed model can quantify the hinge bending stiffness shift, which also demonstrates that
even a small bending stiffness shift may introduce great uncertainty into the thrust analysis.

Keywords: micro-newton thrust stand; analytical model; flexure hinge; bending stiffness; uncertainty

1. Introduction

With the development of space investigations, the control of satellites requires a
rising degree of accuracy. These high-precision controls include pointing adjustment in
satellite attitude control, absolute positioning in drag-free control, and relative positioning
in multi-satellite coordinated flight. The realizations of these desired controls are often
accompanied by the need for high-precision, high-resolution thrusters [1,2]. In recent
years, space science missions that have relied on micro-newton thrusters include Gaia,
Darwin, Aspics, Microscope, LISA Pathfinder (LPF), Taiji, and so on. Among them, the
space gravitational wave detection mission represented by LPF was extremely demanding
on the thruster [3–5], which is required to achieve a wide dynamic range of 0.1 µN–100 µN
thrust. This means the noise is required to be less than 0.1µN/

√
Hz in the frequency range

of 1 mHz–1 Hz [6,7].
To characterize the high-performance thrusters on the ground, many different types of

high-sensitivity thrust stands have been developed [8–10]. Typically, these thrust stands
are based on different types of pendulum structures. The typical pendulums used are
of three types: the hanging pendulum [11,12], the torsional pendulum [13,14], and the
inverted pendulum [15,16]. Various measurement systems have been derived from the
three prototypes: for example, a double pendulum system based on the hanging pendulum
structure [17] and a null-displacement control system based on the torsional pendulum
structure [18]. Due to the inherent instability of the inverted pendulums, it is difficult to
meet the requirements of a wide range of thrust measurements and large weight loads.
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For torsional pendulums that rotate around fibers, a symmetrical configuration in the
horizontal direction may be difficult to achieve. Accordingly, a hanging pendulum with the
simplest solution is widely adopted. A quasi-static thrust analytical model, which indicates
its measurement principles with generalized Hooke’s law, is given in all thrust stand design
schemes, as well as in those based on hanging pendulums [19–21]. James E. Polk et al. give
details of the thrust measurement principle of a hanging pendulum, which also represents
a standard [22].

The selection and parameter setting of the “rotating shaft component” is an essential
part of the design of a hanging pendulum. This is because it both carries the loads and pro-
vides the rotation function. In compliant mechanisms, flexure hinges have been applied by
many designers due to their excellent mechanical properties without wear and mechanical
friction. Then, flexure hinges are manufactured in different shapes according to different
application scenarios. Among them, notched hinges are the most advisable because they
have a more stable axis of rotation, for example, elliptical, V-shaped, parabolic, circular,
cycloidal [23–26], etc. Stefano et al. use flexure hinges with symmetrical semicircular
notches to connect the “tilt plate” to a rigid block [27]. Xu et al. choose a beryllium copper
strip hinge as the rotating mechanism with a length of only 1 mm to avoid uncertainty
in the position of the rotating axis [28]. Nevertheless, almost all thrust stand designers
utilize only an equivalent spring with constant K to characterize the flexure hinge in their
analytical models, and few have investigated the mechanical properties of the hinge as
operating conditions change. Indeed, the equivalent spring stiffness will be affected by
the axial force due to the extension. This effect may bring greater uncertainty to the thrust
analysis, especially in the case of heavy loads. Therefore, it is necessary to improve the
“standard” analysis model of the thrust measurement principle.

To improve the theoretical system of thrust stand modeling, this study develops a
new analytical model for a thrust stand consisting of a hanging pendulum based on an
elliptical notched flexure hinge. In the new model, parametric modeling of the bending
stiffness of the hinge is emphasized as it is the basis for the subsequent analysis. On the
one hand, the gravity-induced extension effect on the hinge which leads to a bending
stiffness shift will be considered. On the other hand, during pendulum deflection, a major
source of errors in displacement measurements is the offset of the assumed rotational center.
It can be misinterpreted as an action from the thruster and also needs to be considered.
One benefit of the presented analytical model for thrust measurement is such that the
notch boundary and dimensional characteristics of the flexure hinge are parametrically
characterized, thus facilitating the quantitative calculation of the bending stiffness of the
“rotating mechanism” and the traceability of the uncertainty budget. Another benefit is
that the established relationship between the axial tensile force and bending stiffness of
the hinge, as well as the relationship between the offset of the assumed rotational center
and thrust quantification, will provide a great reference value and high convenience to the
optimal design of the thrust stand.

The remainder of the paper is organized as follows: Section 2 presents the conceptual
illustration. The conventional measurement model of the hanging pendulum is introduced
in Section 3. In Section 4, the improved analytical model of the thrust measurement is
derived. The finite element modeling strategies and comparison results of the simulation
experiments are presented and discussed to validate the proposed analytical model in
Section 5. In Section 6, a summary of this research and future work is given.

2. Conceptual Illustration

In this section, a conceptual illustration of improvements to the analytical model of
the hanging pendulum thrust stand with a flexure hinge structure is presented.

Figure 1a,b present the conventional schematic model and the improved one, respec-
tively. The red line indicates the bent flexure hinge and the thin black line indicates the
pendulum arm that is equivalent to a rigid body. In the past, the extension effect of the
flexure hinge and displacement error were omitted. The hinge during pendulum deflection
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is not a purely ideal bend in the conventional analytical model (see Figure 1a). It suffers due
to two points: first of all, the point o, the assumed rotational center of the hinge, would drift
to point o′ (the offset is ∆u, as shown in Figure 1b). This offset of the assumed rotational
center would lead to errors in the measured displacement. Secondly, the hinge would be
extended due to the axial component of gravity Gaxial . Such an extension can be intuitively
expressed as the lengthening of the hinge (the green part in Figure 1b) and further reflected
in changes in other geometric parameters such as the hinge thickness. This, in turn, brings
about a change in the line stiffness Kline of the pendulum. Therefore, it is necessary to
improve the conventional model by considering the load effects and rotational center offset.
In particular, the conventional analytical model F = Klineu is revised into the form of
F = K′ line(u− ∆u), where K′ line is the linear stiffness of the pendulum after taking into
account the extension effect, and ∆u is the measurement displacement error considering
the offset of the assumed rotation center.
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Figure 1. Comparison before and after analytical model improvement. (a) The conventional an-
alytical model and pendulum deflection schematic; (b) the new analytical model and pendulum
deflection schematic.

It should be noted that the bending stiffness of a flexure hinge is determined by the
geometrical boundary of a given notch. Equally, the change in the geometrical boundary
under the influence of the loads is deduced by bearing an axial tensile force on the hinge.
Therefore, “modified bending stiffness” is equal to “modified boundary” plus “bending
stiffness”. The general methodology for deriving the improved analytical model is to
integrate the modified flexure hinge bending stiffness and the measured displacement error.
Based on the force analysis while the pendulum is working in the equilibrium state, the
derivation and mathematical equations of the analytical model are given in detail in the
following sections.

3. Conventional Analytical Model of the Thrust Stand

In this section, we briefly present the designed thrust stand and use it to give a
conventional thrust analytical model.

Like most of the micro-newton thrust balances that are being or have been devel-
oped [29,30], we have also developed a thrust stand consisting of a compound pendulum,
as shown in Figure 2. Figure 2a shows the 3D structural schema of the thrust stand. In the
pendulum, there are two elliptical notched flexure hinges located on both sides of the center
axis of the compound pendulum. Each flexure hinge can be thought of as a small-length
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frictionless pivot, which provides a rotating function and is located in the middle of the
hinge. Figure 2b displays a physical diagram of the thrust stand.
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Figure 2. The designed thrust stand consisting of the compound pendulum (partial). (a) 3D rendering
diagram; (b) physical diagram.

Without loss of generality, the pendulum is assumed to operate in an open-loop
condition. As a common practice, the micro-newton thrust adopts the quasi-static force
measurement method. Figure 3 shows the schematic principle. Table 1 lists the parameters,
the corresponding symbols, and the units. Equally, CW denotes the counterweight, while
C denotes the center of mass of the entire pendulum. The measurement principle is based
on the equilibrium of the pendulum torque, given as:

FlTh. = Kpθ + g sin θ(mTh.lTh. + mro.lro. −mcout.lcout.) (1)

where Kp is the bending stiffness of the flexure hinge. The left side of Equation (1) is the
torque provided by the thrust, and the right side of the equation represents the torques
associated with the flexure hinge itself and the gravity tangential component, respectively.
When the deflection angle θ is small, for example, less than 5◦, it can be considered that
sin θ ≈ θ [22]. Simplifying Equation (1) yields

FlTh. ≈ Kangθ = (Kp + KGtangent)θ (2)

where Kang is the torsional stiffness of the pendulum. KGtangent is the equivalent spring stiff-
ness supplied by the tangential component of gravity Gtangent, and KGtangent = g(mTh.lTh. +

mro.lro. −mcout.lcout.).

Table 1. Description of parameters adopted in the model.

Parameter Symbol Unit

Applied thrust F N
Distance from thrust point to torsion center lTh. m
Distance from pendulum arm centroid to torsion center lro. m
Distance from counterweight to torsion center lcout. m
Distance from measurement point to torsion center lsen. m
Thruster mass mTh. kg
Pendulum arm mass mro. kg
Counterweight mass mcout. kg
The gravitational acceleration g ms−2

Gravity of the whole pendulum G N
Tangential component of the gravity of the whole pendulum Gtangent N
Deflection angle of the pendulum θ rad
Horizontal displacement at measuring point u m
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Rather than directly measuring the angle θ, we characterize the magnitude of the
thrust by measuring the horizontal displacement of a point on the pendulum arm at a
distance lsen. from the assumed rotational axis in real applications. Therefore, we have

F =
Kang

lTh.
∗ u

lsen.
= Kline ∗ u =

Kp + KGtangent

lTh.lsen.
∗ u (3)

where u is the horizontal displacement of the measurement point. Kline is the linear stiffness
of the pendulum, satisfying Kline = Kang/[lTh.lsen.]. From Equation (3), it can be found that
all symbols except the bending stiffness Kp of the flexure hinge are characterized by the most
refined parameters. The bending stiffness of the hinge, as the key component of the com-
pound pendulum deflection, requires a more explicit parametric equation. Furthermore,
if the mass parameter m∗ (the subscript “∗” denotes “Th.”, “ro.”, and “cout.”) will affect
the stiffness Kp, or if the non-ideal deformation of the hinge will affect the displacement
measurement value u, then continuing to use Equation (3) to calculate and analyze will
result in deviations. Hence, an improvement needs to be made to the conventional model.

4. The Improved Analytical Model of the Thrust Stand

In the previous section, the thrust measurement principle of the compound pendulum
under quasi-static conditions is given in detail. Nevertheless, the effect of gravitational
effects on the thrust measurement system for each component of the pendulum is only
partially considered—providing the torsional return stiffness of the pendulum. The compo-
nent of gravity in the normal direction of rotation of the pendulum will exert an axial tensile
force on the flexure hinge, which will introduce a shifting of the original Kp. Moreover,
an offset in the assumed center of rotation during pendulum deflection can also lead to
a false displacement measurement u. Therefore, an improved analytical model of the
pendulum based on the establishment of a comprehensive theory of flexure hinge bending
is presented.

4.1. Hinge Bending Deflection Modeling

The flexure hinge used in the thrust stand is a symmetrical elliptical notched structure,
whose physical style is shown in Figure 2, and the structural schematic is given in Figure 4.
Based on the Euler–Bernoulli beam theory, it is assumed that the small deflection satisfies
the material elastic deformation theory. Moreover, the hinge can only rotate in the XY plane.
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Here, we define the X-axis as the axial direction of the hinge. The deformations caused by
shear and torsion in the other directions are ignored.
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Figure 4. Bending diagram of a flexure hinge with elliptical notched boundary.

In Figure 4, the blue dashed part indicates the small deflection around the Z-axis
(the assumed rotational center) under the bending moment MZ. P1 and P2 are located at
the midpoints of the upper and lower sides of the deformed end, respectively. The line
connecting the two can be used to indicate the deflection angle θ. w is the width of the hinge
and H is the height of the hinge. a and b are the long and short axes of the elliptical notched
portion, respectively. t is the thickness of the thinnest part in the middle of the hinge, where
t = H − 2b. The elliptical notched structure represents an intermediate solution between
the semicircular structure and the leaf structure. When the long and short axes are equal
(a = b), the hinge of the elliptical notch evolves into a semicircular flexure hinge. When
b approximates to 0, the elliptical notched hinge can be equivalent to a hinge of the leaf
structure. Therefore, the analysis of this elliptical notched hinge is of general significance.

There are many methodologies to calculate θ under the bending moment MZ [31–35].
The commonly used one is to obtain a concise formula for calculating the deflection angle
by introducing the elliptic centrifugal angle as an integral variable. The schematic of the
bending deflection modeling is shown in Figure 5.
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In Figure 5, ϕ is defined as the centrifugal angle of the ellipse, so an arbitrary point q
on the ellipse is given [36]:

xq = a sin ϕ
yq = b cos ϕ
h(x) = h(ϕ) = 2b + t− 2b cos ϕ

(4)

where ϕ has a range of [−π
2 , π

2 ].
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It is assumed that the deformation of the hinge is mainly concentrated in the elliptical
part L where L = 2a and the deformation of other parts is neglected. The bending of the
continuous beam of the variable section is regarded as the result of the accumulation of
many tiny bending deformations. Each tiny section is regarded as a rectangular section
beam of length dx (the red shaded part in Figure 5). In general, the size of the hinge is
much smaller than that of the pendulum arm, and the bending moment variation can be
considered small enough to treat MZ as a constant.

According to the theory of a small deformation of the cantilever beam, we have the
following differential equation of the deflection line:

EI(x)
d2y
dx2 = MZ (5)

where E is the elastic modulus of the material, and I(x) is the moment of inertia of the
section about the central axis with I(x) = (1/12)w[h(x)]3.

Combining Equations (4) and (5), the hinge deflection angle can be obtained,

θ =
dy
dx

=
∫ a

−a

12MZ

Ew[h(x)]3
dx =

12MZa
Ewt3

∫ π/2

−π/2

cos ϕ

Φ(ϕ)3 dϕ (6)

where Φ(ϕ) = h(ϕ)/t = 2σ + 1− 2σ cos ϕ and σ = b/t. The expression of the integral
term is obtained using the MATHEMATICA:

∫ π/2

−π/2

cos ϕ

Φ(ϕ)3 dϕ =
12σ2 + 8σ + 2

(4σ + 1)2(2σ + 1)
+

12σ(2σ + 1)arctan
√

4σ + 1

(4σ + 1)5/2 (7)

In summary, the bending stiffness of the flexure hinge in the direction of thrust
measurement can be parametrically modelled as

Kp =
MZ

θ
=

Ewt3

12aγ1
(8)

where the coefficient γ1 is

γ1 =
12σ2 + 8σ + 2

(4σ + 1)2(2σ + 1)
+

12σ(2σ + 1)arctan
√

4σ + 1

(4σ + 1)5/2 (9)

The above parametric modeling successfully establishes the relationship between
hinge bending stiffness and its geometric dimensions and refines the characterization of Kp.
Its modeling method also provides the basis for other stiffness modeling research to follow.

4.2. Gravity-Induced Extension Effect

As a high-precision compliant mechanism, a flexure hinge often exhibits an increase
in length and a decrease in thickness in the axial extension effect under a whole pendulum
load (including the counterweight, thruster, and pendulum arm, excluding the hinge itself).
These will change the original bending stiffness of the hinge. The bending stiffness shift
introduced by the axial extension effect is studied below.

The pendulum, considering the extension effect, is shown in Figure 6. In Figure 6,
Gaxial is the axial component of the gravity of the whole pendulum load, perpendicular to
the swing direction. The restoring force generated by the tangential component of gravity
Gtangent has been considered in the conventional analytical model, and it is modeled as
an equivalent spring KGtangent . While the angle θ is very small, there is G ≈ Gtangent. If
the load on the hinge is large, the axial extension effect due to Gaxial is more pronounced,
which is manifested as a dimensional change. For this reason, we propose characterizing
the gravity-induced extension effect by modeling an additional equivalent spring KGaxial
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(see Figure 6). The zero potential energy point of this spring is in the free vertical state of
the pendulum.
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Figure 6. Schematic diagram of a moment of pendulum swing under extension effect.

The equivalent spring KGaxial is attached to Kp so that it is shifted and

K′p = Kp + KGaxial (10)

During the preparation phase of the thrust measurement, the loads are mounted, and
the extension effect of the static axial force T on the hinge is shown in Figure 7. ∆L is the
deformation in the axial direction, and the yellow point o and the green point o′ are the
centers before and after the deformation, respectively. t′ is the thickness after deformation
at the center in the middle part, with t′ = t − ∆t where ∆t is the variation due to the
extension effect. In the case of a large cross-sectional aspect ratio, the variation in the hinge
width w is negligible.
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Applying Castigliano’s second theorem, it follows that

∆L =
∂U
∂T

(11)

where U is the deformation energy, which is given by

U =
∫ T2

2EA(x)
dx (12)
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where A(x) is the cross-sectional area of the hinge, and A(x) = w ∗ h(x). Combining
Equations (11) and (12) gives

∆L =
∫ L/2

−L/2

T
Ewh(x)

dx =
T

Ew

∫ L/2

−L/2

1
h(x)

dx (13)

Using the “elliptic centrifugal angle” integration methodology (see Section 4.1 for
details), the length elongation is

∆L =
aT

Ewt

∫ π/2

−π/2

cos ϕ

Φ(ϕ)
dϕ =

aT
Ewt

γ2 (14)

where γ2 satisfies the equation obtained from the MATHEMATICA:

γ2 =
−π
√

4δ + 1 + 4(2δ + 1)arctan
√

4δ + 1
2δ
√

4δ + 1
(15)

where δ = b/t.
Furthermore, from the theory of Poisson’s ratio (v) of material, the minimum thickness

change in the hinge can be described by

∆t = t ∗ ε lateral = tvε lateral = tv
T

Ewt
=

Tv
Ew

(16)

Notably, there exists Gaxial ≈ G at tiny deflection angles, so that

T ≈ G (17)

Referring to Equations (8) and (9), the improved bending stiffness of the hinge under
the tensile pre-stress of the whole pendulum load can be parameterized as

K′p = Kp + KGaxial =
Ew(t− ∆t)3

12(a + ∆L
2 )γ1[t− ∆t]

(18)

where γ1[t− ∆t] denotes the value of γ1 after the minimum thickness has been reduced
by ∆t.

It is worthwhile to report that KGtangent can be represented explicitly, while KGaxial
originates from the additional effect of the hinge’s own geometrical boundary change,
which cannot be expressed separately due to the complexity of the calculation.

4.3. Rotational Center Offset Effect

In this section, we proceed to model the offset of the assumed rotational center. An
accurate calculation of the thrust based on an analytical model is not only related to
the stiffness coefficient Kline (see Equation (3)), but also depends on the reliability of the
displacement u. That is, the displacement u has to be generated by the thrust rather than
other unknown factors. However, the hinge is subject to a non-ideal situation during
bending deformation—the assumed rotational center would have an offset.

Figure 8a shows that the assumed rotational center will be offset from the position of
point o (the yellow dot) to the position of o′ (the green dot) during the bending deformation
of the hinge. Figure 8b exhibits the uncertainty of the displacement measurement due to the
assumed rotational center offset effect ∆u. Here, the red part is the bent hinge, the black line
is the pendulum arm, u is the measured displacement, and u′ is the displacement generated
by the actual thrust. Note that the interference of other environmental noises such as
seismic vibration and thermal effects on the measurement is not included in this study.
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In order to characterize the offset effect at point o, a zero-value force Fy is assumed
to be applied at point o along the Y-axis. According to Castigliano’s second theorem, the
following equations exist:  ∆u = ∂U

∂Fy

U =
∫ [−MZ−Fy(−x)]2

2EI(x) dx
(19)

The symbols used in Equation (19) and the subsequent formulas in this section refer to
the previous two subsections. Thus, ∆u can be derived from the above formula:

∆u =
12MZ

Ew

∫ 0

−a

−x

[h(x)]3
dx =

12MZa2

Ewt3

∫ 0

−π/2

− sin ϕ cos ϕ

Φ(ϕ)3 dϕ =
12MZa2

Ewt3 γ3 (20)

The coefficient γ3 is expressed as

γ3 =
1

2 + 4σ
(21)

where σ = b/t. As such, we define the offset line stiffness of the assumed rotational
center as

Kd =
MZ
∆u

=
Ewt3

12a2γ3
(22)

4.4. The Improved and Corrected Analytical Model

In this section, we formulate the improved model of the pendulum considering the
extension effect and assumed rotational center offset. During the measurement operation
of the thrust stand, the flexure hinge exhibits the characteristics first of elongation and
thinning, and then bending. The bending line stiffness (Kline) of the pendulum changes
accordingly. Moreover, as the hinge bends, the assumed center of rotation is offset, resulting
in an error in the displacement measurement (u).

Compared to the conventional analytical model represented by Equation (3), the
improved analytical model is given as

F = K′ line ∗ u′ = K′ line(u− ∆u) = K′ lineu− K′ line
12lTh.Fa2

Ewt3 γ3 = K′ lineu− K′ line
12lTh.a2γ3

Ewt3 F (23)
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where K′ line is the modified linear stiffness of the pendulum, and K′ line =
K′ p+KGtangent

lTh.lsen.
.

∆u = 12lTh.Fa2

Ewt3 is obtained from the offset stiffness using Equation (22) with MZ = lTh.F.
Simplifying the resulting expression yields

F =
K′ line

(1 + K′ line
12lTh.a2γ3

Ewt3 )
∗ u (24)

Finally, the improved and corrected thrust analytical model is given as

F =
K′ line

(1 + K′ lineW)
∗ u (25)

where 

K′ line =
K′ p+KGtangent

lTh.lsen.

W =
12lTh.(a+ ∆L

2 )
2
γ3[t−∆t]

Ew(t−∆t)3

K′p = Ew(t−∆t)3

12(a+ ∆L
2 )γ1[t−∆t]

KGtangent = g(mTh.lTh. + mro.lro. −mcout.lcout.)

γ1[t− ∆t] = 12σ2+8σ+2
(4σ+1)2(2σ+1)

+ 12σ(2σ+1)arctan
√

4σ+1
(4σ+1)5/2

γ3[t− ∆t] = 1
2+4σ

σ = b+∆t/2
t−∆t

∆t = Gv
Ew

∆L = aG
Ewt γ2

G = g(mTh. + mro. + mcout.)

γ2 = −π
√

4δ+1+4(2δ+1)arctan
√

4δ+1
2δ
√

4δ+1
δ = b

t

Here, the conventional Equation (3) is revised as Equation (25). In particular, the
bending stiffness shift in the flexure hinge under an extension effect and the offset of the
assumed center of rotation after bending deformation are all taken into account in the new
model. In addition, the parametric equations for the bending and tensile deformations of
the hinge are derived in detail. Since the elongation and thinning behavior of the hinge
occurs before the bending behavior, the initial conditions for the respective modeling are
different, so different symbols (δ and σ) denote the intermediate variables involved.

5. Case Study and Discussion

In this section, case studies and discussions are presented. Firstly, we propose a
finite element modeling solution for an elliptical notched hinge. Then, the validity and
generalizability of the proposed parametric analytical model are verified using the finite
element analysis (FEA) method. Finally, the necessity of the proposed improvements is
demonstrated by analyzing the parametric design of multiple sets of thrust stands.

5.1. The Improved and Corrected Analytical Model

The FEA technique is a powerful tool for research in the field of structural mechanics.
The well-modeled finite element model (FEM) has very high accuracy in the problem
domain of this study. In this research, the FEM results are adopted as a benchmark to
verify the validity of the proposed analytical model for thrust analysis. Reasonably, we are
interested in the elastic deformation of the flexure hinge. Hence, the bending and tensile
deformations of the pendulum arm are neglected by assuming the pendulum arm to be
rigid. Moreover, the proposed analytical model points out that the mechanical properties
of hinges not previously considered are the core link of the research. Therefore, the focus of
finite element modeling is the flexure hinge.
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COMSOL Multiphysics 6.0 as a very mature FEA simulation software will be applied.
In the FEA, the accuracy of the solution is related to the mesh size. In principle, a finer
custom meshing brings higher accuracy. However, it is difficult to be adopted in real appli-
cations due to the limitation of time and computing resources. Nevertheless, unstructured
meshing algorithms represented by tetrahedral elements are prone to low-quality meshes
with distorted tetrahedral shapes when meshing structures with large aspect ratios such
as flexure hinges. Consequently, a solution for meshing is given to make the FEM results
convincing.

In the finite element modeling, as shown in Figure 9a, the left side of the hinge is the
fixed end, and the right side is the free end. A shear force F is applied at the middle position
of the free end to generate torque with respect to the assumed center of rotation. Based on
Saint-Venant’s principle, the length of the non-hinged part is designed to be Lc ≥ 3H to
avoid the effect of fixed restraint and load on the hinge part with inhomogeneous stress.
For the building of the hinge mesh, we divide it into three parts: the fine region A, the
transition region B, and the coarse region C, which are described as follows,

(1) Region A is the thinnest region of the hinge, has a length about 1/3 of the entire
one, and has the characteristics of a large aspect ratio. The stresses and strains in
both bending and tensile deformation are large. It is a key concern in force analysis.
Therefore, a controlled structured hexahedral mesh is used instead of an unstructured
one for the meshing (see Figure 9b). A three-level hexahedral mesh is established in
the thickness direction, and 30 and 100 elements are divided in the axial and width
directions, respectively, using “mapped” and “swept” techniques to accomplish the
above operations. Accordingly, region A is equivalent to a large number of healthy
micro-cantilevers.

(2) Region B contains the part of the hinge root with larger curvature, the hexahedral
element is no longer applicable, and the physical field-controlled tetrahedral element
is used to build the mesh. Furthermore, in order to avoid a poor-quality mesh in
the narrow region of the hinge root, a virtual mesh technique is applied to its root to
supplement a circular arc-shaped region (see Figure 9a); this region is only used to
distinguish the difference between the meshes, and does not have an actual physical
partitioning function (i.e., the machining of the hinge shown in Figure 9a is shaped in
one piece).

(3) Region C is the part outside the hinge, which is not the focus of attention, so it is
subjected to a coarser free-division tetrahedral mesh.
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The above meshing scheme for the finite element modeling of the flexure hinge can
provide a feasible FEA solution strategy not only for thrust stands but also for flexure hinge
structures in other devices.

5.2. Results and Discussion

In this section, we present comparisons between the parametric equations and FEA in
order to evaluate the accuracy and generalizability of the proposed parametric equations
to describe the mechanical behavior of the hinge. Beryllium copper material is used in
the flexure hinge due to its advantages of high mechanical strength and high temperature
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stability. Table 2 gives the initial geometric parameters and mechanical parameters of the
hinge.

Table 2. Initialization of the flexure hinge parameters.

Parameter Symbol Value

Length L 12 mm
Width W 20 mm
Height H 3 mm
Minimum thickness t 0.1 mm
Elliptic long axis a 6 mm
Elliptic short axis b 1.45 mm
Young’s modulus E 110 Gpa
Poisson’s ratio v 0.3
Density ρ 8750 kg/m3

The primary concern is the reliability of the equations describing the assumed rota-
tional center offset of the hinge in the proposed model. It is noticeable that the length
change in the hinge under axial tension can also be interpreted as an axial offset of the
assumed rotational center (see Figure 7), except that this offset does not lead to uncertainty
in the displacement measurement. The linear stiffness KT_line and Kd_line obtained from
the analytical model are KT_line = Ewt/aγ2 and Kd_line = Ewt3/[12a2(a + Lc)γ3] (refer to
Equation (14) and Equation (22)), respectively, which are compared with the FEM results to
verify the stiffness equations under a small deformation. Figure 10 shows a schematic of
the access of FEM results. Five points are selected at equal intervals at the front (fixed end),
middle, and rear (free end) of the hinge section, distinguished by black, green, and red in
turn (see Figure 10). The mean values of their respective displacements are calculated to
represent the displacements at the front, middle, and rear of the hinge. Thus, the bending
and tensile deformations caused by the black points are subtracted from the total defor-
mation obtained from the red points or green points to obtain the pure deformation of the
flexure hinge itself.
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In real applications, the minimum thickness of the flexure hinge frequently becomes
the point of penetration for customizing the mechanical properties of the hinge. Therefore,
the variation range of the minimum thickness t is set to be 0.1~0.4 mm, and the hinge
height H is kept constant. As formula H = 2b + t needs to be satisfied, the short axis b
matches 1.3~1.45 mm. The other parameters are listed in Table 2. The comparisons within
this parameter range are given in Figure 11.
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Figure 11a,b present the comparative results of tension line stiffness and offset line
stiffness under the stiffness equation and FEM, respectively. It can be obtained that the
result curves calculated by the stiffness equations agree well with the result curves of FEM,
and they also have the same trend of change. In addition, the hinge tension line stiffness is
much greater than the offset line stiffness by about two orders of magnitude over a range
of variations in parameter t. This is because the function of the hinge is to provide bending
rather than axial elongation. The comparative results seen for an incomplete fit mainly
come from the assumptions made in those theoretical derivations. It can be substantiated
that the equations (Equations (14) and (22)) describing the hinge rotational center offset
in the proposed analytical model are valid when the thickness t is within the allowed
variation range.

The accuracy of the hinge bending stiffness equation is central to the persuasiveness
of the proposed model. With reference to Kp (see Equation (8)), we define the bending line
stiffness of the hinge as Kp_line = Ewt3/[12a(a + Lc)aγ1]. It is important to point out that
the actual displacement produced by the force F in the FEM should be the displacement
of the free end of the hinge minus the offset of the middle of the hinge due to the offset
of the assumed rotational center. The comparison is plotted in Figure 12. The results of
the equation calculation and the FEM results also have small discrepancies and the same
trends, which verifies the stiffness equation (Equation (8)). Comparing Figure 11b, the
offset line stiffness is only about 10 times higher than the bending line stiffness for the
hinge itself. Even if the thrust is applied at the end of the pendulum arm rather than at the
end of the hinge in practice, this multiplier is magnified again. However, the system still
has significant measurement uncertainty due to the offset of the assumed rotational center.
The subsequent analysis will give a detailed confirmation of this point.
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In order to further investigate the influence of dimensional changes on the bending
stiffness under a gravity-induced extension effect in the hinge proposed in the analytical
model (refer to Equation (18)), an axial tensile force is first applied to the hinge in the FEM.
Then, the changing dimensional parameters are recorded and modified before applying
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force F, which provides torque. It is significant to emphasize that the axial tensile force
needs to be removed after the correction of the hinge dimensional parameters; otherwise,
an additional stiffening effect will be introduced. Meanwhile, the offset of the assumed
rotational center is also considered in the FEA. Based on the thrust stand we designed, the
whole pendulum load needs to reach about 10 kg. Thus, we choose T ≈ G → 100N. The
results of the bending line stiffness variation obtained using both approaches are shown in
Figure 13. Such results show that the overall effect of the dimensional change is a decrease
in the bending line stiffness. It can be observed that the stiffness equation successfully
predicts the variation in the bending line stiffness under the axial tensile force, and it
coincides very well with the FEM fitting (the green curve in Figure 13). Among them, the
best prediction is achieved when the thickness t lies in the range of 0.1 mm to 0.2 mm.
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In addition, combined with Equation (10), it can be seen that the variation in stiffness
is equivalent to KGaxial in the formula, and the difference between the two is a conversion
multiple of linear stiffness and torsional stiffness. In other words, the presented analytical
model can accurately give the numerical solution of the bending stiffness shift in the flexure
hinge under a certain pendulum load, indicating that it makes sense.

To demonstrate the generalizability of the improved analytical model for different
notch boundary sizes and dimensions of the hinge, two additional sets of studies (see
Table 3) are carried out as follows. Figure 14 shows the comparisons for Case I. It is clear
from Figure 14a–c those stiffness parametric equations give a precise description of the
corresponding stiffness even under the condition of a wide range of variation in the elliptic
long axis parameter a. Since there are several outlier points in the FEM result, the first fitting
(the green curve) is not convincing, as shown in Figure 14d. The fitting result of the post-
processing FEM (the yellow curve) is highly consistent with that of the stiffness equation.
The comparisons under Case II are plotted in Figure 15. The results demonstrate the
predictive performance of these parametric equations. Notably, the bending line stiffness
variation under an axial extension effect is independent of the hinge width.

Table 3. Two additional sets of the flexure hinge geometric parameters traversed.

t b a H L W

[mm]

Case I 0.1 1.45 1.45~6 3 2 ∗ a 20
Case II 0.1 1.45 6 3 12 10~20
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Figure 14. Comparisons of the stiffness equations and FEM under Case I. (a) Tension line stiffness
KT_line; (b) offset line stiffness Kd_line; (c) bending line stiffness Kp_line; (d) bending line stiffness
variation under axial tensile force.

Furthermore, Figure 16 demonstrates the comparisons under three typical flexure
hinges. The three hinges maintain a consistent minimum thickness of t = 0.1 mm, and
their key boundary parameters are provided by the table in the figure. The results again
verify the improved analytical model. In the meantime, it can be summarized that the
elliptical notched hinge has both the advantage of the circular notched hinge, which has a
clear center of rotation, and the advantage of the leaf-type hinge, which has less bending
line stiffness. This is because with a very large bending line stiffness, the displacement
from a micro-thrust may be not perceptible.

In summary, these case studies on the flexure hinge reflect, on the one hand, the
validity and generalizability of the proposed new quasi-static thrust analytical model. On
the other hand, the variation laws of those stiffness properties of the hinge with the changes
in its geometrical parameters are shown in those comparative analyses. Therefore, based
on the parametric equation of the bending stiffness, the appropriate Kp can be easily found
for the thrust stand with the selection of its independent variables. In the next section, we
demonstrate the necessity of improvements to the conventional model analytically.
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5.3. Discussion for Thrust Measurement

In the previous sections, we verified the accuracy of the improved analytical model in
characterizing the neglected parts in conventional thrust analytical models, including the
shift in the bending stiffness Kp and the offset of the assumed rotational center during the
actual operation. In this section, we illustrate that the presence of these non-ideal factors can
introduce large uncertainties into the theoretical analysis of thrust measurements, which is
worthy of attention by designers of thrust stands.

On the basis of what is studied in Figures 12 and 13 (the parameter b changes with t
(t ∈ (0.1, 0.4)mm, and H remains constant), attention is paid to the impact of the change in
the hinge bending stiffness on the thrust analysis. We rewrite Equation (24) as follows:

Frevise =
K′p + KGtangent

lTh.lsen.
∗ u′ = (

Kp + KGtangent

lTh.lsen.
+

KGaxial

lTh.lsen.
) ∗ u′

where Frevise is the revised thrust calculated by the improved analytical model. And{
K′p = Kp + KGaxial
KGtangent = g(mTh.lTh. + mro.lro. −mcout.lcout.)

Figures 12 and 13 show that the equivalent spring stiffness KGaxial introduced by the
gravitational force component Gaxial is a negative number and its magnitude is small with
respect to the original stiffness Kp (about 0.02% to 0.06% of the total). Thus, if the pendulum
is designed so that the pendulum load gravity component Gtangent provides the main
torsional return stiffness, then the effect of the shift in Kp will be very slight. On the other
hand, a problem with this is that the heavy load requirements of the pendulum often make
the equivalent stiffness KGtangent too large, making displacement measurements much more
difficult. Therefore, the designer will adjust the counterweight to make KGtangent as small
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as possible, or even have a negative equivalent stiffness KGtangent to weaken the stiffness
effect of Kp, so as to obtain a lower total stiffness coefficient Kline. This is exactly what our
team is trying to undertake. In such a case, the effect of the shift in Kp on the thrust will be
magnified, and needs to be seriously considered.

To quantify the above analyses, several case studies are carried out, with the parame-
ters for the compound pendulum given in Table 4. The six designs are divided into three
groups: A, B, and C. The minimum thickness of the hinge is t = 0.1mm in both groups
A and B, while t is 0.3 mm in group C. The other geometric parameters of the hinge are
provided in Table 2. The difference between groups A and B lies in the different thrusters
and counterweight masses; the total stiffness coefficient Kline is adjusted by changing the
height of the counterweight bar within each group. The position of the thruster is fixed in
different groups, and the length and mass of the pendulum arm vary with the height of the
counterweight bar. The acceleration of gravity is chosen as g = 9.8ms−2. The distance from
the measurement point to the assumed rotational center is lsen. = 0.5m, and the true value
of the displacement at the measurement point is assumed to be u′ = 100um. The results
of the stiffness and thrust obtained with these three groups of parameters are reported in
Table 5, where Fabs_error is the absolute error of thrust and Fre_error is the relative error.

Table 4. Designs of the compound pendulum parameters.

t mTh. lTh. mro. lro. mcout. lcout.

[mm] [kg] [m] [kg] [m] [kg] [m]

A1 0.1 3 0.5 0.4529 0.1377 7 0.2246
A2 0.1 3 0.5 0.4500 0.1400 7 0.2200
B1 0.1 2 0.5 0.4528 0.1378 4 0.2245
B2 0.1 2 0.5 0.4519 0.1385 4 0.2230
C1 0.3 3 0.5 0.4656 0.1275 7 0.2450
C2 0.3 3 0.5 0.4438 0.1450 7 0.2100

Table 5. Calculation results of stiffness and thrust under different parameter designs.

KGaxial Kp KGtangent Frevise Fabs_error Fre_error

[N m rad−1] [N]

A1 −4.8976 × 10−5 0.0996 −0.0964 1.2511 × 10−6 1.9590 × 10−8 1.57%
A2 −4.8976 × 10−5 0.0996 0.2254 1.2998 × 10−4 1.9590 × 10−8 0.015%
B1 −2.9388 × 10−5 0.0996 −0.0894 4.0579 × 10−6 1.1755 × 10−8 0.29%
B2 −2.9388 × 10−5 0.0996 0.0155 4.6040 × 10−5 1.1755 × 10−8 0.026%
C1 −2.9064 × 10−4 1.5292 −1.5252 1.4831 × 10−6 1.1626 × 10−7 7.84%
C2 −2.9064 × 10−4 1.5292 0.9246 9.8139 × 10−4 1.1626 × 10−7 0.022%

From these results, it can be observed that the original bending stiffness Kp is deter-
mined by its own dimensions (here t). In addition, the shift (KGaxial ) in Kp is determined
by both the pendulum load gravity and the hinge dimensions. A negative value of the
equivalent stiffness KGtangent may cancel most of the hinge’s own stiffness Kp, making the
effect of the stiffness shift (KGaxial ) amplified, leading to large uncertainties in the thrust cal-
culations, such as 1.57% in A1, 0.29% in B1, and 7.84% in C1. However, the high-precision
metrology standard generally needs to reach an error level of 0.05% or even higher, and
only the designs in A2, B2, and C2 can reach this error level.

Table 6 shows the effect of the offset of the assumed rotational center on the theoretical
calculation of thrust under several sets of different parameters. The geometric parameters
of the hinge, except for the minimum thickness t, are shown in Table 2, and the structural
parameters of the compound pendulum are shown in group A2 in Table 4. Again, g =
9.8ms−2 and lsen. = 0.5m are set. The thrust calculation error due to the bending stiffness
shift is not considered at this point. From the relative error results (see Table 6), it can
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be obtained that the offset of the assumed rotational center introduces non-negligible
uncertainty into the thrust calculation. And this relative error depends mainly on the
geometric parameters of the hinge, independent of the measured displacement.

Table 6. Calculation results of thrust in case of offset of the assumed rotational center.

t u Frevise Fabs_error Fre_error

[mm] [um] [N]
Case 1 0.1 1 1.2974 × 10−6 2.7602 × 10−9 0.21%
Case 2 0.1 20 2.5948 × 10−5 5.5203 × 10−8 0.21%
Case 3 0.1 100 1.2974 × 10−4 2.7602 × 10−7 0.21%
Case 4 0.2 100 3.1343 × 10−4 4.0241 × 10−7 0.13%
Case 5 0.3 100 7.0094 × 10−4 8.9445 × 10−7 0.13%
Case 6 0.4 100 0.0013 1.8243 × 10−6 0.14%

To sum up, it is necessary to always pay attention to the influence of KGaxial when the
designer of the compound pendulum tries to customize the stiffness coefficient Kline by
changing the weight or height of the counterweight. The shift (KGaxial ) of the hinge bending
stiffness can be regarded as the systematic error of the thrust measurement device together
with the offset of the assumed rotational center. The systematic error of the equipment
needs to be taken seriously in the design or measurement process. Ultimately, an improved
analytical model that takes these factors into account is given in Equation (25).

6. Conclusions

This study investigated a new analytical model of thrust measurement for a thrust
stand with a flexure hinge structure, in an attempt to compensate for the uncertainty
that is not considered in conventional thrust analytical models. It is pointed out that the
uncertainty comes from two neglected aspects: first, the pendulum load during calibration
and the measurement of thrust will produce an axial extension effect on the flexure hinge,
which will change the stiffness coefficient that has been considered a constant; second, the
assumed center of rotation will be offset when the pendulum is deflected by the thrust,
which will introduce the displacement measurement error. Hinge models under different
parameter designs are analyzed using finite element methods and theoretical models, and
the results prove the validity and generalizability of the proposed analytical model.

The significance of this work is to point out the systematic errors that exist in the thrust
stand itself, which should be paid attention to as high-precision metrology equipment. The
improved model will guide the design of the structural parameters of the thrust stand
composed of the compound pendulum, so that it can minimize the uncertainty introduced
by the variation of the system’s own characteristics.

Meanwhile, it is worth emphasizing that the accuracy of the parametric modeling
of the flexure hinge is the basis for maintaining consistency between theory and practice.
Compared to other stiffness modeling methods for elliptical notched flexure hinges such as
inverse conformal mapping and empirical equations from FEA, etc., the modeling method
based on the Euler beam linear integral and Castigliano’s second theorem used in this study
is more applicable and available. Within a wide range of hinge geometric parameters, the
proposed stiffness equation achieves results that are consistent with simulation practices.
Additionally, further improvements to the hinge stiffness equation will enhance our work.
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