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Abstract: High-precision industrial manipulators are essential components in advanced manufactur-
ing. Model-based feedforward is the key to realizing the high-precision control of industrial robot
manipulators. However, traditional feedforward control approaches are based on rigid models or flex-
ible joint models which neglect the elasticities out of the rotational directions and degrade the setpoint
precision significantly. To eliminate the effects of elasticities in all directions, a high-precision setpoint
feedforward control method is proposed based on the output redefinition of the extended flexible joint
model (EFJM). First, the flexible industrial robots are modeled by the EFJM to describe the elasticities
in joint rotational directions and out of the rotational directions. Second, the nonminimum-phase
EFJM is transformed into a minimum-phase system by using output redefinition. Third, the setpoint
control task is transformed from Cartesian space into joint space by trajectory planning based on
the EFJM. Third, a universal recursive algorithm is designed to compute the feedforward torque
based on the EFJM. Moreover, the computational performance is improved. By compensating the
pose errors caused by elasticities in all directions, the proposed method can effectively improve the
setpoint control precision. The effectiveness of the proposed method is illustrated by simulation and
experimental studies. The experimental results show that the proposed method reduces position
errors by more than 65% and the orientation errors by more than 62%.

Keywords: industrial robot manipulator; setpoint control; feedforward control; nonminimum-phase
system; elasticity compensation; extended flexible joint model

1. Introduction

Industrial robot manipulators have been applied in many manufacturing fields, such as
assembly and welding. However, it is still a great challenge to expand robotics applications
to high-precision machining processes due to the low accuracy [1]. Various feedback control
methods such as PID control, sliding mode control [2], and observer-based control [3] have
been adopted to improve the end effector setpoint control precision of industrial robots.
However, it is difficult to achieve high-precision control with only feedback controllers
owing to the complex nonlinear dynamics of industrial manipulators. Alternatively, model
inversion-based feedforward control [4] is an effective approach that solves the problem
by compensating the nonlinear dynamics. A nonlinear PD controller plus feedforward
compensation was proposed for rigid robots to achieve the finite-time stabilization of
the tracking error [5]. To improve the robustness-to-payload uncertainty, an intelligent
feedforward controller using a neural network and fuzzy logic was designed for a two-link
robot manipulator [6].

Nevertheless, the above feedforward control methods are based on the rigid robot
model, which neglects the flexible deformations of manipulators. Actually, the flexibilities
of some compliant transmission elements such as harmonic drives and cycloidal gears have
significant effects on setpoint control performance [7]. In response to the problem, the flexi-
ble joint model (FJM) was proposed, which models the joint as a linear torsional spring [8].
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Based on the FJM, a feedforward minimum-time position control method was proposed
to avoid oscillation of a flexible robot [9]. Based on comprehensive modeling of the flexi-
ble joint and an extended generalized Maxwell friction model, an adaptive feedforward
controller was designed to compensate the nonlinear dynamics of transmissions [10].

However, only the elasticities in revolute directions are considered in the FJM, which
neglects the elasticities out of the rotational plane. In practice, modern industrial manip-
ulators tend to have a slender design and lightweight materials. As a result, the flexible
deformations out of the rotational plane caused by links and bearings are unneglectable,
especially for high-speed and heavy-load manipulators [11]. Hence, the flexible joint
model can not accurately describe a modern industrial robot. To improve the model ac-
curacy, an extended flexible joint model (EFJM) was proposed [12] which can describe
not only the elasticities in rotational planes but also the elastic deformations out of the
plane. Then, the EFJM was validated on a modern industrial manipulator, and the results
showed that the EFJM can greatly improve the model accuracy [13]. Thus, feedforward
control based on the EFJM is a prospective way to improve the control precisions of flexible
industrial manipulators.

Nevertheless, the EFJM possesses a differential nonflat characteristic, which is a great
challenge for the feedforward controller design [14]. The feedforward control problem of a
minimum-phase EFJM was solved by using differential algebraic equation (DAE) theory;
thus, the tracking performance was improved significantly [12]. However, the EFJM is
minimum phase only in special configuration. In most cases, the EFJM is a nonminimum-
phase system [15]. A nonminimum-phase system possesses unstable internal dynamics;
thus, the traditional feedforward control method cannot give a bounded solution [16].
To obtain a bounded feedforward input, a continuous DAE optimization solver and a
discretized DAE optimization solver were proposed to solve the feedforward control
problem of an EFJM with three degrees of freedom (DOFs) [17].

However, numerical optimization was adopted in the above methods due to the
limitation of being nonminimum phase. Consequently, the existing methods have a heavy
burden of calculation which is unacceptable for industrial robots with high DOFs. Moreover,
the above methods are all based on analytic dynamic equations, which are difficult to
obtain for complex manipulators. Thus, a high-precision feedforward control method with
reasonable computational burden for general complex flexible industrial manipulators
should be further explored.

To improve the setpoint control precision and reduce the computational burden, a new
feedforward control approach based on the output redefinition of the EFJM is proposed
for flexible industrial robots in this paper. Firstly, the output of the EFJM is redefined to
transform the EFJM into a minimum-phase system. Thus, the limitation of the unstable
internal dynamics is eliminated. Secondly, the joint trajectory is planned based on the
kinematics and statics equations of the EFJM. Thus, the pose error caused by elasticity
is compensated, and the setpoint problem is transformed into joint space. Finally, a
universal feedforward torque computation algorithm for the EFJM is designed to reduce
the calculation burden. The simulation and experimental studies demonstrate that the
proposed method improves the control precision and computational efficiency remarkably.

The rest of this paper is organized as follows. In Section 2, the EFJM is introduced, and
the setpoint control problem is formulated. The feedforward control method is proposed in
Section 3. In Section 4, simulations and experiments are implemented. The conclusion is
given in Section 5.

2. Problem Formulation
2.1. Extended Flexible Joint Model

Lightweight design has been widely adopted in modern industrial robot manipulators,
which causes complex mechanical elasticity in all directions. However, the traditional
flexible joint model describes the joint by using a torsional spring, which can only model



Actuators 2023, 12, 357 3 of 17

the joint flexibilities in rotational directions. In view of the problem, the EFJM was proposed
to describe the elasticities of modern industrial robots more accurately [12].

The extended flexible joint robot model is a lumped-parameter model consisting of
a serial kinematic chain of rigid bodies. The rigid bodies are connected with extended
flexible joints which consist of actuated joints and nonactuated joints. An example of
an extended flexible joint is shown in Figure 1. The actuated joint consists of a motor,
transmission, and a spring damping system, describing the elasticity in the rotational
direction. The nonactuated joint uses a spring–damper pair to describe the elasticity out
of the rotational plane caused by bearings, tools, and links. Consequently, the EFJM can
describe the elasticities in all directions; thus, the model accuracy is improved significantly.
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Figure 1. An example of an extended flexible joint.

Assuming the weight of the load is known, the EFJM of a robot can be obtained by
using the bottom-up approach in [13]. During the modeling process, the number and
location of nonactuated joints should be determined by making a compromise between
model accuracy and complexity. Then, the equations of dynamics can be derived by using
Lagrange equations.

M(q)
..
q + C

(
q,

.
q
) .
q + G(q) =

[
τs − Fa

( .
qa
)

τe

]
(1)

B
..
θ+ τs + Fm

( .
θ
)
= τc (2)

where q =
[
qT

a , qT
e
]T ∈ Rna+ne , qa ∈ Rna , and qe ∈ Rne are the actuated and nonactuated

joint angular position vectors, respectively; θ = η−1θm ∈ Rna and θm ∈ Rna are the motor
angular position vector; η ∈ Rna×na denotes the gear ratio matrix; Fa

( .
qa
)
∈ Rna and

Fm

( .
θ
)
∈ Rna are the friction torque vectors of the link side and motor side, respectively;

M(q) ∈ Rn×n is the inertia matrix of the robot; C
(
q,

.
q
) .
q ∈ Rn is the Coriolis and centripetal

torque vector; and G(q) ∈ Rn is the gravity torque vector, where n = na + ne. B = η−2J.
J ∈ Rna×na denotes the inertia diagonal matrix of the motor side. τc is the motor torque
vector, i.e., the control input. Since the flexible deflections are small, the flexibilities are
modeled by linear springs and dampers in this paper. Then, the elastic torque vectors τs
and τe are expressed as:

τs = −Ks(θ− qa)−Ds

( .
θ− .

qa

)
(3)

τe = −Keqe −De
.
qe (4)

where Ks, Ds ∈ Rna×na and Ke, De ∈ Rne×ne denote the stiffness and damping matrices in
actuated and nonactuated directions, respectively. Consequently, the elasticity deformations
of the manipulator are divided into two parts: elasticity deformation in the actuated
direction θ− q and in the nonactuated direction qe.

Partitioning the generalized coordinates into actuated and nonactuated coordinates,
the link-side dynamics (1) can also be separated into two parts:[

Ma Mae
MT

ae Me

][ ..
qa..
qe

]
+

[
Ca Cae
Cea Ce

][ .
qa.
qe

]
+

[
Ga
Ge

]
=

[
τs − Fa

τe

]
(5)
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where the dependency on the generalized coordinate q and its derivate
.
q is dropped

for readability.
Obviously, the submatrices Me, Ce, and Ge satisfy the following properties [7].
Property 1: Inertia matrix Me(q) is symmetric and positive definite, i.e., ∀q ∈ Rn,

ξ ∈ Rne : ξTMe(q)ξ = ξTMe
T(q)ξ ≥ 0, ξTMe(q)ξ = 0⇔ ξ = 0 .

Property 2: Me(q) and Ce
(
q,

.
q
)
=
[
cij
]

satisfy the following equations:[
Ma Mae
MT

ae Me

][ ..
qa..
qe

]
+

[
Ca Cae
Cea Ce

][ .
qa.
qe

]
+

[
Ga
Ge

]
=

[
τs − Fa

τe

]
(6)

Property 3: Both gravity torque and its partial derivative with respect to q are formed
by trigonometric functions of the variable q. Thus, there exist positive constants M and α
such that:

‖Ge(q)‖ 6 M,
∥∥∥∥∂Ge(q)

∂qe

∥∥∥∥ 6 α, ∀q ∈ Rn (7)

where ‖·‖ denotes the Euclidean norm of a vector or matrix.
Correspondingly, the reasonable assumptions are made as follows:

Assumption 1. The damping matrix De in the nonactuated direction is not zero.

Assumption 2. The stiffness matrix of the nonactuated joint satisfies:

λmin(Ke) > α (8)

where λmin(Ke) denotes the minimum eigenvalue of Ke.

2.2. Setpoint Control Problem

Using the forward kinematics of the robot, the orientation and position of the end
effector can be expressed as:

Z = Γ(q) (9)

The objective of point-to-point feedforward control is to design a control torque τc such
that the end effector of manipulator systems (1), (2), and (9) moves to a desired constant
pose Z f at specified time t f from initial configuration q0, with all elastic deformations being
compensated and all closed-loop signals remaining bounded.

The EFJM is a differentially nonflat system; thus, the feedforward control input relies
on the stable solution of the internal dynamics. However, from motor torque τc to end
effector pose Z, the system is nonminimum phase in most cases, i.e., the solution of the
internal dynamics may be unbounded [16]. Thus, it is difficult to compute the feedforward
torque directly based on the end effector pose.

In response to the above limitations, the proposed feedforward setpoint control method
consists of two steps, as shown in Figure 2. Firstly, the system output is redefined as qa,
and the reference trajectories of actuated joint positions qad(t) are planned. Secondly, the
nominal feedforward torque is computed by using the EFJM of the robot based on the
reference actuated joint trajectories qad(t). Then, the desired point-to-point motion of the
end effector is accomplished indirectly.
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3. Controller Design

To achieve high-precision setpoint control of the end effector, an output-redefinition-
based feedforward control method is proposed for the EFJM in this section.

Firstly, it is proven through Lyapunov theorem that the EFJM is transformed into a
minimum-phase system by redefining the system output as qa. Secondly, the reference
trajectory qad(t) is planned in joint space based on the kinematics and static equation of the
EFJM. Thus, the pose error caused by the flexibility deformations is compensated accurately.
Finally, the feedforward control torque for the EFJM is calculated by using the recursive
dynamics algorithms; thus, the computational burden is further reduced.

3.1. Output Redefinition of EFJM

As mentioned above, from motor torque τc to end effector pose Z, the EFJM is non-
minimum phase in most cases. Consequently, an unbounded solution of internal dynamics
may be obtained, leading to unbounded feedforward torques. To stabilize the internal
dynamics and overcome the limitation of being nonminimum phase, the system output is
redefined as y = qa in this section. Then, the stability of internal dynamics is analyzed.

Differentiating the first equation of (5) twice yields:

Maq(4)a + Maeq
(4)
e + fa =

..
τs (10)

where fa = 2
( .

Maq(3)a +
.

Maeq
(3)
e

)
+

..
Ma

..
qa +

..
Mae

..
qe +

..
Na +

..
Fa.

Neglect the damping of actuated joints Ds and consider the motor dynamics (2); then,
the input output relationship of the EFJM is obtained.

y(4) = −M−1
a

(
Ks

..
qa + Maeq

(4)
e + fa

)
+ M−1

a KsB−1(u− τs − Fm) (11)

where u = τc is the system input.
Clearly, the dynamics of the unactuated joints coordinates are the internal dynamics

of the EFJM.
Me

..
qe + Mea

..
qad + Ce

.
qe + Cea

.
qa + Ge = −Keqe −De

.
qe (12)

Let the output qa = qad and
.
qad =

..
qad = 0; then, the zero dynamics of the EFJM are

obtained as:
..
qe = −M−1

e Keqe −M−1
e (Ce + De)

.
qe −M−1

e Ge (13)

We can conclude from Assumption 2 [7] that system (13) has an equilibrium qe0,
.
qe = 0,

which satisfies:
Ge(qe0) + Keqe0 = 0 (14)

The Lyapunov candidate function is chosen as:

V =
1
2

.
qT

e Me
.
qe + P(qe)− P(qe0) (15)

where P(qe) denotes an energy-like function which is defined as:

P(qe) =
1
2
(qe − qe0)

TKe(qe − qe0) + Ue(qe)− qT
e Ge(qe0) (16)

where Ue(qe) means the gravitational potential energy of robot which satisfies:

∂Ue(qe)

∂qe
= Ge(qe) (17)
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Obviously, qe = qe0 is the stationary point of function, as the partial derivative of
P(qe) w.r.t qe is:

∂P(qe)

∂qe
= Ke(qe − qe0) + Ge(qe)−Ge(qe0) = 0 (18)

Taking the partial derivative of (18) with respect to qe again yields:

∂2P
∂qe

2 = Ke +
∂Ge(qe)

∂qe
(19)

According to Property 3 and the assumption λmin(Ke) > α, the right side of (19) is
positive definite. Hence, qe0 is the global minimum point for P(z1). Then, we obtain
∀qe ∈ Rne ,

.
qe ∈ Rne , V > 0, and V = 0⇔ qe = qe0,

.
qe = 0 .

The time derivative of V is:

.
V =

.
qT

e Ke(qe − qe0) +
.
qT

e (Ge(qe)−Ge(qe0)) +
1
2

.
qT

e
.

Me
.
qe +

.
qT

e Me
..
qe (20)

According to (12) and (14), we obtain:

.
V = − .

qT
e De

.
qe +

1
2

.
qT

e

( .
Me − Ce

) .
qe −

.
qT

e (Keqe0 + Ge(qe0)) (21)

Recalling Property 2 yields:

.
V = −z2

TDez2 6 0 (22)

According to Assumption 1,
.

V is negative semi-definite if and only if z2 = 0. What
is more, the function V is a radially unbounded positive semi-definite function. We can
conclude from the Krasovskii theorem that the equilibrium z1 = z10, z2 = 0 is globally
asymptotically stable. Thus, the original unstable internal dynamics are transformed into
new, stable internal dynamics by choosing actuated joint position vector qa as system out.
The limitation of the nonminimum-phase EFJM can be avoided.

3.2. Trajectory Planning in Joint Space

It is obvious that the flexible deformations of unactuated joints lead to a pose error of
the end effector; thus, the inverse kinematics problem of the extended flexible joint model
should first be studied in trajectory planning. For convenience, assume that the robot is
a six-DOFs serial joint robot manipulator and away from the singularity. Obviously, the
dimension of q is larger than six; thus, the kinematic relation (9) of the EFJM is noninvertible.
In order to obtain a unique solution, additional constraints on unactuated joints should be
considered. In a static condition, the unactuated joint positions are determined by gravity
torque; thus, the following equations should be satisfied: Z f = Γ

(
q f

)
Ge

(
q f

)
= −Keqe f

(23)

The desired joint positions qa f and qe f can be obtained by solving the above nonlinear
algebraic equations with a numerical solver which requires an initial guess. Considering
the elastic deformations in nonactuated directions are small, the solution of the inverse
kinematics of the rigid model can be chosen as the initial guess.

Based on the initial configuration q0 and desired configuration q f , the joint position

reference trajectories qad and its derivatives
.
qad,

..
qad, q(3)ad , and q(4)ad can be planned in joint

space by adopting a trajectory planning algorithm with continuous jerk profile.[
qad,

.
qad,

..
qad, q(3)ad , q(4)ad

]
= TrajectoryPlanAlgorithm

(
qa0, qa f , t0, t f

)
(24)
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Through the accurate trajectory tracking of qad, the end effector accomplishes the
desired point-to-point motion. Thus, the setpoint control problem is transformed to the
trajectory tracking problem in joint space.

3.3. Calculation of Feedforward Torque

According to (2) and (3), the feedforward torque can be obtained as:

τFF = B
(

Ks
−1 ..

τs +
..
qa

)
+ τs + Fm (25)

The elastic torque vector in actuated direction τs and its derivatives
.
τs and

..
τs can be

expressed as:
τs = Ma

..
qad + Mae

..
qed + Na + Fa (26)

.
τs = Maq(3)ad + Maeq

(3)
ed +

.
Ma

..
qad +

.
Mae

..
qed +

.
Na +

.
Fa (27)

..
τs = Maq(4)ad + Maeq

(4)
ed + 2

.
Maq(3)ad + 2

.
Maeq

(3)
ed +

..
Ma

..
qa +

..
Mae

..
qae +

..
Na +

..
Fa (28)

where Na = Ca
.
qad + Cae

.
qed + Ga. The above equations can be calculated efficiently by

using the recursive Newton–Euler algorithm (RNEA) [18] and elastic joint Newton–Euler
algorithm (EJNEA) [19], respectively.

τs = RNEA
(
qd,

.
qd,

..
qd
)

(29)

.
τs = EJNEA3

(
qd,

.
qd,

..
qd, q(3)d

)
(30)

..
τs = EJNEA

(
qd,

.
qd,

..
qd, q(3)d , q(4)d

)
(31)

where qd =
[
qT

ad, qT
ed
]T,

.
qd =

[ .
qT

ad,
.
qT

ed

]T
,

..
qd =

[ ..
qT

ad,
..
qT

ed

]T
, q(3)d =

[
q(3)Tad

T
, q(3)Ted

]T
, and

qd
(4) =

[
q(4)ad

T
, q(4)ed

T
]T

, and EJNEA3 means the reduced version of the EJNEA, returning
.
τs.

Note that the nonactuated joint angular positions qed, velocities
.
qed, accelerations

..
qed,

jerks q(3)ed , and snaps q(4)ed are required. Since the stability of zero dynamics is ensured, qed
and

.
qed can be obtained by solving the internal dynamics (12) using numerical integration

solvers based on initial condition qe(t0) = qe0,
.
qe(t0) = 0.

Then,
..
qed can be obtained efficiently by solving the following linear equations:

Me
..
qe = −

(
Mea

..
qad + Ne

)
−Keqed −De

.
qed (32)

where Me , Me(qad, qed), Mea , Mea(qad, qed), and Ne = Ne
(
qad, qed,

.
qad,

.
qed
)
. Me and Mea

are obtained using the composite rigid body algorithm (CRBA) [20]. Let
..
qed = 0; then,

Mea
..
qad + Ne can be obtained through adopting the RNEA.

Mea
..
qad + Ne = RNEA

(
qd,

.
qd,
[ ..
qT

ad, 0
]T
)

(33)

Similarly, q(3)ed and q(4)ed can be obtained by solving the following equations:

Me
...q ed = −ne −Ke

.
qed −De

..
qed (34)

Meq
(4)
ed = −

(
.
ne +

.
Me

...q ed

)
−Ke

..
qed −De

...q ed (35)
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where ne =
.

Me
..
qed + Mea

...q ad +
.

Mea
..
qad +

.
Ne. The nonlinear terms ne and

.
ne +

.
Me

...q ed are
calculated by adopting the EJNEA and EJNEA3 as follows:

ne = EJNEA3

(
qd,

.
qd,

..
qd,
[ ...q T

ad, 0
]T
)

(36)

.
ne +

.
Me

...q ed = EJNEA

(
qd,

.
qd,

..
qd, ...q d,

[
q(4)ad

T
, 0
]T
)

(37)

According to (3), the motor position θd and velocity
.
θd are derived as:

θd = −K−1
s τs + qad (38)

.
θd = −K−1

s
.
τs +

.
qad (39)

By now, all required variables in (25) are known; thus, the feedforward torque calcula-
tion is completed, and the total procedure is summarized as follows:

Step 1. Solve the internal dynamics (12) using an ODE solver to obtain qed and
.
qed;

Step 2. Compute matrices Me and Mea using the CRBA;
Step 3. Compute Mea

..
qad + Ne using the RNEA and solve (32) to obtain

..
qed;

Step 4. Compute ne using the EJNEA3 and solve (34) to obtain q(3)ed ;

Step 5. Compute
.
ne +

.
Me

...q ed using the EJNEA and solve (35) to obtain q(4)ed ;
Step 6. Compute τs,

.
τs, and

..
τs using the RNEA, EJNEA3, and EJNEA, respectively;

Step 7. Compute θd and
.
θd using (38) and (39);

Step 8. Compute feedforward torque τcFW using (25).

Remark 1. The elastic deformations in nonactuated directions are compensated by solving (23),
while the elasticities in actuated directions are compensated in the feedforward torque calculation
algorithm. Thus, the proposed method can further improve the control precision.

Remark 2. It is time consuming to solve the internal dynamics (12) through numerical integration.
However, the traditional stable inversion methods [17] are based on numerical optimization which
needs to solve the internal dynamics repetitively. In contrast, the internal dynamics need to be solved
only once in the proposed calculation algorithm since the EFJM is transformed into a minimum-phase
system. Thus, the computational burden is remarkably reduced.

Remark 3. The proposed calculation algorithm does not require the analytic expression of the robot;
thus, it can be applied to general open-chain robots easily.

4. Simulation and Experimental Results

Considering the disturbance, noise, and the parameter uncertainties of actual manipu-
lators, a PID feedback controller is employed in simulations and experiments to improve the
robustness and to avoid the drift of tracking errors. Since only the motor side is equipped
with position sensors for most industrial manipulators, the motor torque command is
designed as:

τc = τFF + KP(θ− θd) + KD

( .
θ−

.
θd

)
+ KI

∫
(θ− θd)dt (40)

where τFF is the feedforward torque, and KP, KD, and KI are constant controller gain
matrices. The reference motor trajectories θd are obtained using (38).
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4.1. Simulation Results

(1) Example 1: A planar robot

To validate the superiority of the proposed output-redefinition-based feedforward con-
trol approach (ORFF), simulations using the ORFF, the traditional FJM-based feedforward
approach (FJMFF) [21], and the continuous DAE optimization solver (CDAEOS) [17] are
carried out on a planar robot in this section. As shown in Figure 3, the EFJM of this planar
robot has three rigid bodies, two actuated joints, and one nonactuated joint. The dynamic
parameters of each link in this planar robot are shown in Table 1 where the link parameters
include length l, inertia I, mass m, center of mass c, and joint parameters including stiffness
k, damping d, and motor inertia b.
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Table 1. Dynamic parameters of planar robot.

Link m (kg) I (kgm2) l(m) c(m) Joint k(Nm/rad) d (Nm/(rad·s−1)) b (kgm2)

1 and 2 100 0.5 1 0.5 1 and 2 5 × 105 0 100
3 200 0.7 1.4 0.7 3 5 × 105 500 -

To show the efficiency of the proposed computation algorithm clearly, the feedforward
torques are solved using three methods on an Intel i5-10400 PC with 16 G RAM. The step
size is selected as 1 ms in the simulation. The tip of the robot moves from Q0 = [0.5, 2.5] m
to Q f = [0, 3] m in 0.5 s, 1 s, and 2 s. The execution times and setpoint control errors of the
three methods are shown in Table 2.

Table 2. Solving times and control errors of the three methods in simulation, example 1.

Motion Time 0.5 s 1 s 2 s

Method ORFF FJMFF CDAEOS ORFF FJMFF CDAEOS ORFF FJMFF CDAEOS
Solving time (s) 0.6384 0.1680 154.0 1.209 0.2428 170.3 1.922 0.4038 129.8

Error (mm) 0.5062 0.9890 1.855 0.2510 2.644 1.344 0.02861 0.5760 0.07245

As indicated in Table 2, the setpoint control error of the proposed ORFF is significantly
reduced compared with that of the FJMFF and CDAEOS under three conditions. When the
moving time is 1 s, the control error of the ORFF is reduced by over 90% and 80% compared
with that of the CDAEOS and FJMFF, respectively. On the other hand, the execution time of
the ORFF is 4–5 times that of the FJMFF, while the execution time of the CDAEOS is much
longer than that of the other two methods.

The bounded feedforward torques and nonactuated joint positions obtained by using
the proposed ORFF are shown in Figure 4a. As a comparison, the feedforward torques are
solved without output redefinition, and the results are shown in Figure 4b. It is obvious
that the internal dynamics of the original EFJM system are unstable, and the feedforward
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torques are unbounded. Thus, the results in Figure 4 demonstrate that the system is
transformed into a nonminimum-phase system by output redefinition.
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Figure 4. Nonactuated joint positions and feedforward torques: (a) with output redefinition; (b) with-
out output redefinition.

(2) Example 2: Six DOFs Manipulator

To prove the proposed method can be applied to complex industrial manipulators,
simulations are carried out on an EFORT ER7 robot with six DOFs. The dynamic parameters
are shown in Table 3.

Table 3. Dynamic parameters of ER7.

Parameters Link1 Link2 Link3

Mass (kg) 9.1366 9.4724 4.9985
Center of mass (m) [0.01847, −0.017, −0.070] [0.1563, 0.0523, 0.0312] [0.0142, 4.8 × 10−3, 0.0248]

Inertia (kgm2)
0.1194 0.0009 0.006

0.0009 0.1093 −0.0036
0.006 −0.0036 0.055

  0.0518 −0.0088 −0.0415
−0.0088 0.44 0.0008
−0.0415 0.0008 0.4063

  0.0211 0.0027 2.02× 10−4

0.0027 0.0191 2.6× 10−4

2.0× 10−4 2.6× 10−4 0.0176


Parameters Link4 Link5 Link6

Mass(kg) 5.3476 1.6462 0.01
Center of mass (m) [−0.0132, 0.0251, −0.171] [6.1 × 10−4, −0.0174, 5.3 × 10−4] [1.5 × 10−4, 0, −9.8 × 10−4]

Inertia (kgm2)
0.2390 0.0052 0.0353

0.0052 0.2324 −0.0231
0.0353 −0.0231 0.0205

  4.7× 10−3 −2.4× 10−5 −1.2× 10−5

−2.4× 10−5 1× 10−3 −1.2× 10−6

−1.2× 10−5 −1.2× 10−6 4.8× 10−3

 1.36× 10−6 0 0
0 1.33× 10−6 0
0 0 2.66× 10−6



Firstly, simulations are carried out using the rigid model of ER7, where all elasticities
are ignored. The traditional rigid-model-based feedforward method (RMFF) is used to
control the robot, i.e., the feedforward torque τFF in (40) is computed using the rigid robot
model. The parameters of the PID controller are chosen as kPj = 100, kDj = 1, and kI j = 1,
where j = 1, 2, · · · , 6. The target pose of the end effector is selected randomly in the task
space, and 100-run simulations are carried out. The setpoint control root-mean-square
errors (RMSEs) are shown in Table 4.

Table 4. Setpoint control RMSEs of rigid model using RMFF.

∆x(mm) ∆y(mm) ∆z(mm) ∆ψ(deg) ∆θ(deg) ∆ϕ(deg)

9.581 × 10−4 8.713 × 10−4 3.015 × 10−4 2.712 × 10−3 7.822 × 10−3 7.285 × 10−3

Secondly, simulations are carried out using the flexible model of ER7 with different
load levels. The EFJM of ER7 with six actuated joints and two nonactuated joints is built as
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shown in Figure 5. The flexible parameters are shown in Table 5, where the two nonactuated
joints are denoted by joints 1Y and 3Y.
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Figure 5. Geometric model and extended flexible joint model of EFORT ER7.

Table 5. Parameters of extended flexible joints of ER7.

Joint 1 1Y 2 3 3Y 4 5 6

Stiffness (Nm/rad) 36,407 226,357 17,922 13,410 56,854 146,586 139,076 7446
Damping (Nm/(rad·s−1)) 0 858.99 0 0 37.25 0 0 0

Inertia of motor (kgm2) 2.047 0 2.285 0.4954 0 0.1847 0.0805 0.0288

Similarly, 100-run simulations for ER7 are carried out by selecting the target end
effector pose randomly. In order to demonstrate the improved performance of the proposed
method under the different load conditions, the payload of the robot is set to 0 kg, 3 kg, and
6.5 kg, respectively. Since the model is too complicated for the CDAEOS to obtain a solution
in reasonable time, only the traditional RMFF and FJMFF are adopted for comparison. The
step size of the feedforward torque solver is 1 ms. The average execution times of the ORFF
and FJMFF are 1.3457 s and 0.2554 s, respectively. The setpoint control RMSE of the ORFF
and FJMFF are shown in Table 6, where the orientation error is given in the form of a Euler
angle. The control results of the first group of simulations using the proposed ORFF under
6.5 kg payload are shown in Figures 6–9. The actuated joint and nonactuated positions are
shown in Figures 6 and 7, respectively. The actuated joint velocities are shown in Figure 8.
It can be seen that the nonactuated joint positions are bounded, which indicates that the
internal dynamics are stable. Hence, bounded control torques are obtained by using the
proposed ORFF method, as shown in Figure 9.

Table 6. Setpoint control RMSEs of flexible model in simulation, example 2.

Payload Method ∆x(mm) ∆y(mm) ∆z(mm) ∆ψ(deg) ∆θ(deg) ∆ϕ(deg)

0 kg
RMFF 9.553 × 10−1 7.806 × 10−1 2.061 × 10−1 1.192 × 101 8.256 × 100 6.531 × 100

FJMFF 8.660 × 10−2 4.815 × 10−2 1.196 × 10−2 3.867 × 10−1 7.419 × 10−1 4.289 × 10−1

ORFF 2.944 × 10−4 4.506 × 10−4 1.586 × 10−4 2.524 × 10−3 2.881 × 10−3 4.379 × 10−3

3 kg
RMFF 2.174 × 100 2.536 × 100 9.789 × 10−1 3.829 × 100 1.640 × 101 1.881 × 101

FJMFF 2.509 × 10−1 2.211 × 10−1 4.948 × 10−2 1.024 × 100 1.930 × 100 1.696 × 100

ORFF 8.139 × 10−4 7.726 × 10−4 3.249 × 10−4 4.230 × 10−3 6.909 × 10−3 6.773 × 10−3

6.5 kg
RMFF 9.553 × 10−1 7.806 × 10−1 2.061 × 10−1 1.192 × 101 8.256 × 100 6.531 × 100

FJMFF 1.677 × 100 1.595 × 100 5.654 × 10−1 2.419 × 100 1.162 × 101 1.137 × 101

ORFF 1.463 × 10−3 1.643 × 10−3 6.991 × 10−4 4.079 × 10−3 1.298 × 10−2 1.260 × 10−2
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Figure 8. Actuated joint velocities in first group simulation under ORFF.
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Figure 9. Control torques in first group simulation under ORFF.

As shown in Table 5, the traditional RMFF can achieve a satisfactory control accuracy
for a rigid robot model. However, the control accuracy of the RMFF is greatly reduced in
a flexible robot model when the effects of elasticities are considered, as shown in Table 6.
Although the FJM method can improve the control accuracy, it fails to achieve satisfactory
results as it can only compensate the effects of elasticities in rotational directions. In contrast,
the proposed ORFF method achieves optimal control precision since it can compensate
the effects of elasticities in all directions. In addition, it can be seen that the control RMSE
of the flexible model using the ORFF is at the same level as the control RMSE of the rigid
model using the RMFF control method. This also indicates that the pose error caused
by flexibilities are compensated accurately by using the ORFF. Moreover, by comparing
the control accuracy under different load conditions, it can be seen that the improvement
achieved by the ORFF is more evident under high-payload conditions.

4.2. Experimental Results

To further evaluate the effectiveness of the proposed feedforward control method,
experiments are carried out using a Franka Emika Panda 7-DOF Manipulator. As shown in
Figure 10, the experimental platform consists of the robot, its control unit, and a workstation
PC. Based on ROS, the PC can send real-time torque commands at 1 kHz to the robot.
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Figure 10. Experimental platform.

In order to simulate the effect of the unactuated joint, the motor position of the third
joint remains fixed. Then, the dynamics of the Panda can be described by the EFJM, as
shown in Figure 11. The parameters of the extended flexible joints are identified through
experiments, as shown in Table 7, where the unactuated joint is denoted by joint 3Y. The
dynamic parameters of the Panda have already been identified [22].
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Table 7. Parameters of extended flexible joints of the Panda.

Joint 1 2 3 3Y 4 5 6

Stiffness (Nm/rad) 14,250 14,250 14,250 14,250 9000 9000 9000
Damping (Nm/(rad·s−1)) 0 0 0 15 0 0 0

In experiment, 25 target points are selected randomly in Cartesian space. Then, the
ORFF and FJMFF are employed to control the robot combined with the PD controller.
The parameters of the PD controller are shown in Table 8. Similarly, the CDAEOS is not
employed in the experiments due to its heavy computational burden. The feedforward
torques are solved offline, and the average execution times of the ORFF and FJMFF are
8.2552 s and 0.9884 s, respectively. The desired trajectories of the actuated joints are
generated by using a smooth planning algorithm [23], and corresponding feedforward
torques are computed. The setpoint control RMSEs of the two control methods are shown
in Table 9. It can be seen that the RMSE of the proposed method is reduced significantly
compared with that of the FJMFF. The position RMSEs of the proposed method decrease by
65%, 81%, and 92% in the x-, y-, and z-directions, respectively, and the orientation RMSEs
decrease by 62%, 64%, and 71% in the three directions, respectively.

Table 8. Parameters of PD controller in experiments.

Joint 1 2 3 4 5 6

kP 5000 5000 4000 2500 2500 1500
kD 30 30 30 15 15 10

Table 9. Setpoint control RMSEs of two methods in experiments.

∆x(mm) ∆y(mm) ∆z(mm) ∆ψ(deg) ∆θ(deg) ∆ϕ(deg)

FJMFF 1.761 × 10−1 2.101 × 10−1 4.962 × 10−1 2.867 × 10−2 3.259 × 10−2 4.448 × 10−2

ORFF 6.163 × 10−2 3.831 × 10−2 3.890 × 10−2 1.082 × 10−2 1.114 × 10−2 1.271 × 10−2

Figures 12–14 show the control results of the first group of experiments under the
proposed ORFF method. Figures 12 and 13 show the actuated joint positions and velocities,
respectively. The control torques using the proposed ORFF method are shown in Figure 14.
It can be seen that all signals are bounded, which indicates that the nonminimum-phase
EFJM is transformed into a minimum-phase system.
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Figure 12. Actuated joint positions in first group experiment under ORFF.
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Figure 14. Control torques in first group experiment under ORFF.

Through the simulation and experimental results, it can be seen that the ORFF achieves
better setpoint control performance compared with the FJMFF and CDAEOS. The excellent
setpoint control performance indicates that the pose error caused by elastic deformations
in all directions is compensated based on the EFJM. Compared with the FJMFF, the exe-
cution time of the ORFF is increased as the cost of significant performance improvement.
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Compared with the CDAEOS, the computational burden of the ORFF is greatly reduced.
In addition, the feedforward torques obtained by the ORFF are bounded in all simulations
and experiments. Thus, it is indicated that the unstable internal dynamics are transformed
into stable ones, which is consistent with the theoretical analysis.

Remark 4. Although the EFJM is more complicated than the classical FJM, the dynamics model
accuracy is improved significantly by using the EFJM. Consequently, the proposed ORFF based on
the EFJM can improve the end effector setpoint control precision remarkably.

5. Conclusions

In this paper, a feedforward control method based on the output redefinition of
the EFJM is proposed for flexible industrial manipulators. Based on the EFJM, the pose
error caused by flexibilities in actuated and nonactuated directions are compensated ac-
curately. By output redefinition, the original nonminimum-phase EFJM is transformed
into a minimum-phase system. A recursive feedforward torque computation algorithm
is designed to reduce the computational burden. Simulation and experimental results
indicate that the proposed method can improve the setpoint control precision significantly
compared with traditional feedforward control methods. Future work will focus on ex-
tending the feedforward control method to the trajectory tracking control problem and the
condition with unknown load.
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