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Abstract: Magnetic suspended dual-rotor systems (MSDS) provide the potential to significantly
improve the performance of aero-engines by eliminating the wear and lubrication system, and solve
vibration control issues effectively. However, the nonlinear dynamics of MSDS with rubbing is
rarely investigated. In this work, the nonlinear support characteristics of active magnetic bearings
(AMBs) are described by the equivalent magnetic circuit method, the impact force is characterized
by the Lankarani–Nikravesh model, and the nonlinear dynamic model is established using the
finite element method. On this basis, the influence of speed ratio on the nonlinear dynamics is
investigated. Simulation results show that the fundamental sub-synchronous vibration of period n is
the dominant motion of MSDS, where n is determined by the speed ratio. The frequency components
of sub-synchronous vibrations of period k are integer multiples of the minimum dimensionless
frequency component 1/k, where k is a positive integral multiple of n. Quasi-periodic and chaotic
vibrations are more likely to occur near critical speeds, and their main frequency components can be
expressed as a variety of combined frequency components of the rotating frequency difference and
its fractional frequency. To reduce the severity of fluctuating stresses stemming from complicated
non-synchronous vibrations, speed ratios, corresponding to smaller n and AMB control parameters
attenuating vibration amplitude or avoiding critical speeds, are suggested.

Keywords: speed ratio; fixed-point rubbing; magnetic suspended dual-rotor system; non-synchronous
vibration

1. Introduction

In order to obtain high efficiency and a high thrust-to-weight ratio, the dual-rotor
structure is widely adopted as the core rotor component of aero-engines. In virtue of
advantages like no mechanical friction, no wear, no lubrication, high speed and the long life
of active magnetic bearings (AMBs), the substitution of AMBs for mechanical bearings to
support a dual-rotor system constitutes the magnetic suspended dual-rotor system (MSDS),
which can achieve significant reduction in system complexity and weight, structure opti-
mization, and improvement in system reliability, maintainability and overall performance,
in addition to being an effective solution to vibration control issues [1].

Reducing clearance between rotating and stationary components brings many benefits,
such as a sharp decrease in specific fuel consumption, compressor stall margin and engine
efficiency as well as increased payload and mission range capabilities [2]. At the same
time, it also increases the possibility of rub impact. Rub impact is a typical fault in rotating
machinery, and it may result in violent structural vibration, severe seal wear, increased
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noise, or even catastrophic accidents. Therefore, the investigation of MSDS’ rubbing
characteristics is of great concern to the stability and security of actual aero-engines.

In the last decade, extensive attention was focused on the rubbing faults between
rotating and stationary parts of dual-rotor systems in aero-engines. Since multi-frequency
excitation of inner and outer rotors and complicated coupling characteristics induced by
inter-shaft bearings concurrently exist in dual-rotor systems, the influence of rubbing on
their dynamic behaviors is more complicated. Taking blade-casing rubbing, nonlinear
characteristics of bearings and misalignment between dual-rotor structures and couplings
into consideration, Jin et al. [3] explored the fault response characteristics of blade-casing
rubbing. Yu et al. [4,5] developed a modal analysis method of aero-engine rotors under rub
impact and investigated the nonlinear modal of a dual-rotor system and its effect on rotor
vibration. Ling et al. [6] derived a rub impact force model between inner and outer shafts
in a dual-rotor system, established a dynamic model of rub impact based on the solid finite
element method, and analyzed the dynamic characteristics of a dual-rotor system caused
by rub impact between shafts. With the Lankarani–Nikravesh model describing the impact
force, Yang et al. [2,7] analyzed the influence of speed ratio, initial clearance and radius of
curvature of limiters on the dynamic responses under fixed-point rubbing. Wang et al. [8]
discussed the influence of speed ratio, unbalance and contact stiffness on rubbing fault
between rotor blades and a casing, and found that the fractional frequency components of
the rotational speed difference of inner and outer rotors were stimulated near the impact
frequency and its multiple frequency components. In addition, some scholars studied the
nonlinear dynamics of dual-rotor systems under rubbing faults. Chen et al. [9] presented
a modified harmonic balance-alternating frequency/time domain method to analyze the
nonlinear dynamics of a dual-rotor-bearing-casing system, and determined nonlinear
dynamic behaviors such as vibration jumping and bi-stable and resonance hysteresis.
Zhang et al. [10] investigated the spectral characteristics and bifurcation behaviors of
a dual-rotor system and observed that both torsional vibration and bending vibration
were portrayed by similar characteristic frequencies like fractional frequency, multiple
frequency and the combined frequency of working and multiple frequency, or fractional
frequency. The above-mentioned research not only considered the complex structure of
rotors and stators, but also described the change process and the form of rub impact
more accurately. Furthermore, these publications mainly investigated dynamic modeling
and dynamic characteristics with rub impact in dual-rotor systems supported by only
mechanical bearings.

Research on the dynamic characteristics of MSDS has been conducted. Ebrahimi et al. [11,12]
developed a dynamic model of a MSDS supported by two AMBs and two auxiliary bear-
ings based on Lagrange equation, and explored the effects of some control parameters on
the nonlinear dynamic characteristics. However, the potential rub impact fault between a
dual-rotor system and casing was not incorporated into the dynamic model. The authors
investigated the basic dynamic characteristics [13] and unbalance response characteris-
tics [14,15] of the MSDS and explored the effects of AMB control parameters on the dynamic
rubbing characteristics such as spectrum characteristics, rubbing trajectory, normal impact
force, invading length and so on [16,17].

As is known, the speed ratio, defined as the ratio of rotational speed of the outer
rotor to that of the inner rotor, is an important design parameter in dual-rotor systems.
From the above research, it is shown that the speed ratio has a significant effect on the
dynamic characteristics of dual-rotor systems. For example, when the speed ratio is
close to 1, a beat vibration phenomenon occurs [2,7]. However, research on the nonlinear
dynamic characteristics of MSDS under fixed-point rubbing faults requires consideration
in the existing literature, and lacks insight into the bifurcation behavior and nonlinear
motion characteristics of MSDS. Although the influence of speed ratio on fixed-point
rubbing characteristics was analyzed in the previous literature, there is no systematic
and comprehensive analysis of the influence of speed ratio on the nonlinear dynamic
characteristics of MSDS, and the relationship between speed ratio and nonlinear periodic
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motion has not been revealed. In fact, it is of crucial importance to perform such work for
the safe and reliable operation and fault detection of MSDS.

In this research, considering the nonlinear support characteristics of AMBs and de-
scribing the impact force of fixed-point rubbing with the Lankarani–Nikravesh model,
a rubbing dynamic model of MSDS is established with the finite element method and
solved by the Newmark-β method. On this basis, the influence of speed ratio on nonlinear
dynamic rubbing characteristics are investigated by bifurcation diagrams, dynamic trajecto-
ries, Poincaré maps and spectrum graphs. In order to enhance the computational efficiency
of bifurcation diagram generation, a parallel computing strategy is employed.

2. Mathematical Formulation

In this section, the governing equations of MSDS under a fixed-point rubbing fault
are derived. The MSDS structure is depicted in Figure 1. It contains an inner rotor and an
outer rotor, three disks, two AMBs and two inter-shaft bearings. The outer rotor and inner
rotor are used to simulate the high-pressure shaft and low-pressure shaft in aero-engines,
respectively. One end of the high-pressure shaft is connected to a high-pressure turbine and
the other end is connected to a high-pressure compressor. One end of the low-pressure shaft
is connected to a low-pressure turbine and the other end is connected to a low-pressure
compressor after passing through the hollow high-pressure shaft. During the operation
of aero-engines, sufficient air is introduced into the compressors through an intake port.
The high-speed rotating compressors work on the air to produce high-pressure air. The
high-pressure air is mixed with fuel in a combustion chamber to form high-temperature and
high-pressure gas. The gas expands in the turbines to drive them to rotate, and continues
to expand in a nozzle to make it eject at high speed to generate thrust. By effectively
improving the volume utilization of the engine compression chamber, dual-rotor structures
can achieve a higher efficiency and thrust-to-weight ratio than single-rotor systems. In
addition, AMBs monitor and adjust the dynamic response of the outer rotor in real time
through a feedback control system.

Due to neither extremely long or slender of the two rotor shafts, effects of torsion may
be neglected, and later vibration is mainly focused in this work. Rubbing is supposed to
occur between disk 3 and a fixed limiter. To facilitate analysis, the influence of thermal
effect and friction torque during the rubbing process is neglected, and two eccentricities
are, respectively, distributed on disk 1 and disk 3.
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2.1. AMB Modeling

The model of AMB support characteristics is established by the equivalent magnetic
circuit method. The structure of an eight-pole AMB in horizontal direction is illustrated in
Figure 2a, where 1~4 represent the numbers of magnetic poles. Assuming that flux leakage,
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magnetic saturation, and magnetic coupling are neglected, the equivalent magnetic circuit
for a pole-pair is provided in Figure 2b. The magnetomotive forces M1 and M2 of coils are

M1 = M2 =
N(Ib + Ix)

2
(1)

where, N is coil turn, and Ib and Ix, respectively, are the bias current and control current of
the coils. The total reluctance Rt for the pole-pair is expressed as

Rt = Rg1 + Rg2 =
g1 + g2

µ0 Ap
(2)

where, Rg1 and Rg2 are air gap reluctances, g1 and g2 are air gap lengths, µ0 is permeability
of vacuum, and Ap is the sectional area of a stator pole. As a result, the magnetic flux Φ in
a pole-pair is

Φ =
M1 + M2

Rt
(3)
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The electromagnetic force Fe produced by a pole-pair is expressed as

Fe =
Φ2 cos ϕ

µ0 Ap
(4)

where ϕ is the half angle between central lines of two adjacent poles. Therefore, for the
AMB with a differential drive mode, the nonlinear electromagnetic force Fex generated in
the horizontal direction is

Fex = µ0N2 Ap cos ϕ

[(
Ib + Ix

g3 + g4

)2
−
(

Ib − Ix

g1 + g2

)2
]

(5)

where g3 and g4 are air gap lengths between another pole-pair and the rotor in Figure 2.
When the rotor center drifts to a position (x, y), the four air gap lengths are expressed as

g1 = g0 + x cos ϕ + y sin ϕ
g2 = g0 + x cos ϕ− y sin ϕ
g3 = g0 − x cos ϕ− y sin ϕ
g4 = g0 − x cos ϕ + y sin ϕ

(6)

Under PD control, Ix is given by

Ix = −Kpx− Kd
.
x (7)

where, Kp and Kd are the proportional and derivative coefficients, respectively. Similarly,
the nonlinear electromagnetic force Fey in the vertical direction can be obtained.
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2.2. Fixed-Point Rubbing Model

In actual aero-engines, there is a great possibility for the existence of convex points in
vertical direction of a casing, resulting from thermal deformation or complicated external
suspensions like pipelines and fuel tanks. Therefore, a fixed limiter is located in vertical
direction to simulate a convex point, as shown in Figure 3. The Lankarani–Nikravesh
model [2] is adopted to describe the impact force during a rubbing process. The friction
force is assumed to obey the Coulomb law of friction. As a result, the normal impact force
Fn and tangential friction force Ft are Fn = krh1.5

[
1 +

3(1−c2
e)v

4v0

]
Ft = frFn

(8)

where ce and f r are, respectively, the restitution coefficient and friction coefficient. h is the
invading length of disk 3 in a collision direction. v and v0 are, respectively, the impact
velocity of disk 3 and initial impact velocity during each rubbing process. The contact
stiffness kr is given as

kr =
4

3
(

1−µ2
d

Ed
+

1−µ2
p

Ed

)( RdRp

Rd + Rp

)0.5
(9)

where µd, µp, Ed, Ep, Rd and Rp are, respectively, the Poisson’s ratio, elastic modulus and
radii of disk 3 and the limiter end.
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According to the geometric relationship in Figure 3, the invading length h obeys

h = Rd + Rp −
√(

Rd + Rp + δ0 − y
)2

+ x2 (10)

where h > 0 indicates the appearance of a collision. The contact angle β can be written as

β = arctan
x

Rd + Rp + δ0 − y
(11)

Thus, Fn and Ft can be calculated based on Equation (8), and their components in x
and y are provided by {

Frx = Fn sin β + Ft cos β
Fry = −Fn cos β + Ft sin β

(12)
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2.3. Dynamic Model under Fixed-Point Rubbing

As depicted in Figure 4, the dual-rotor structure is discretized into 40 segments and
35 nodes, and 1~35 in Figure 4 are the node numbers. The discretized model consists of
33 beam elements, 3 disk elements, 2 AMB support elements and 2 inter-shaft bearing
support elements. The Euler–Bernoulli beam element is adopted to consider moment of
inertia and gyroscopic effect. For convenient analysis, disk elements are assumed as rigid,
and inter-shaft elements are modeled as linear springs and viscous dampers.
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Based on the rotor dynamics theory, the governing equations of an inner rotor can be
derived as {

Mi
..
q1i + ωiJi

.
q2i + Kiq1i = F1i

Mi
..
q2i −ωiJi

.
q1i + Kiq2i = F2i

(13)

where Mi, Ji and Ki, respectively, represent mass, gyroscopic and stiffness matrices of
the inner rotor. The detailed process of obtaining these matrix methods can be found in
reference [2,7]. ωi is the inner rotor rotational speed. The generalized displacement vectors
of inner rotor q1i and q2i are written as{

q1i =
{

x1 θy1 x2 θy2 . . . x12 θy12
}T

q2i =
{

y1 −θx1 x2 −θx2 . . . x12 −θx12
}T (14)

where xk and yk (k = 1, 2, . . ., 12) are the translational displacement of nodes 1–12 and θyk,
and θxk (k = 1, 2, . . ., 12) are their angular displacement. F1i and F2i are the generalized
force vectors, and they can be expressed as{

F1i =
{

0 0 0 . . . ud1ω2
i cos(ωit) 0 0 0 0 0

}T

F2i =
{

0 0 0 . . . ud1ω2
i sin(ωit) 0 0 0 0 0

}T (15)

where ud1 is the imbalance on disk 1 and t is the time.
In the same way, the governing equations of an outer rotor are provided as{

Mo
..
q1o + ωoJo

.
q2o + Koq1o = F1o

Mo
..
q2o −ωoJo

.
q1o + Koq2o = F2o

(16)

{
q1o =

{
x13 θy13 x14 θy14 . . . x35 θy35

}T

q2o =
{

y13 −θx13 x14 −θx14 . . . x35 −θx35
}T (17)

 F1o =
{

0 0 . . . FL
ex 0 . . . ud3ω2

o cos(ωot) + Frx 0 . . . FR
ex 0 . . . 0 0

}T

F2o =
{

0 0 . . . FL
ey 0 . . . ud3ω2

o sin(ωot) + Fry 0 . . . FR
ey 0 . . . 0 0

}T (18)

where FL
ex, FL

ey, FR
ex and FR

ey are the nonlinear electromagnetic forces of the left and right
AMBs in horizontal and vertical directions, respectively. The other variables have the same
physical meaning as Equations (13)–(15), and the subscript “o” of the variables represents
the outer rotor.

Assembling the governing equations of these two rotor subsystems, the MSDS govern-
ing equations are derived as
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
Mi 0 0 0
0 Mo 0 0
0 0 Mi 0
0 0 0 Mo




..
q1i..
q1o..
q2i..
q2o
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 (19)

In addition, the boundary conditions for the bearings, namely the stiffness and gyro-
scopic matrices in Equation (19), need to be handled. For simplicity, the specific modifica-
tion details can be consulted in [2]. Eventually, the Newmark-β method is employed to
obtain the solution of Equation (19).

2.4. Model validation

Based on the experimental results in [7], the validity of the MSDS dynamic model is
verified. When the AMB works in a linear interval, the nonlinear factors have little effect on
its support characteristics, and the dynamic responses of these two systems are essentially
consistent [18]. Under this condition, AMB support characteristics can be linearized as
equivalent stiffness and equivalent damping models [19]. The dual-rotor system [7] is
shown in Figure 5, where 1~8 indicate the numbers of nodes. Applying the above modeling
method to this dual-rotor system, with the equivalent stiffness and equivalent damping of
AMBs, respectively, equivalent to those of mechanical bearings, the support characteristics
of dual-rotor systems remains unchanged. The structural parameters of the dual-rotor
system are consistent with those in reference [7], so they are not listed here.
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When fixed-point rubbing occurs, the response spectra diagrams of the dual-rotor
system are shown in Figure 6. It is shown that the response spectrum mainly includes the
rotating frequencies ωi and ωo of inner and outer rotors as well as their combined frequency
components ωo+ωi and 2ωo. Hence, the simulation results are in good agreement with the
experimental results. The variances of response amplitudes at these frequency components
are caused by the differences in imbalance positions and initial conditions of the dual-
rotor system. Therefore, the modeling method above is effective and the validity of the
established dynamic model is verified.
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3. Numerical Results and Discussion

Numerical integration is performed to explore the nonlinear dynamic characteristics
of MSDS with fixed-point rubbing. The basic dimensions (unit, mm) of MSDS structure are
depicted in Figure 1, and the other main parameters are listed in Table 1.

Table 1. Main parameters of MSDS.

Physical Parameter Value Physical Parameter Value

Vacuum permeability µ0 (H/m) 4π × 107 Inter-bearing damping cc (N·s/m) 0
Half angle between two poles ϕ (◦) 22.5 Radius of disk 3 Rd (m) 0.046

Nominal air gap length g0 (mm) 0.5 Radius of limiter end RP (m) 1.25 × 10−4

Sectional area of stator pole Ap (mm2) 247 Poisson ratio of disk 3 µd 0.3
Coil turn N 160 Poisson ratio of limiter µp 0.3

Bias current Ib (A) 3 Elastic modulus of disk 3 Ed (Pa) 2.09 × 1011

Maximum control current icmax (A) 3 Elastic modulus of limiter Ep(Pa) 2.09 × 1011

Proportional coefficient Kp 5 Restitution coefficient ce 0.9
Derivational coefficient Kd 3 × 10−4 Friction coefficient f r 0.3

Initial rubbing clearance δ0 (m) 1 × 10−5 Imbalance of disk 1 ud1 (Kg·m) 3 × 10−5

Inter-bearing stiffness kc (N/m) 1 × 107 Imbalance of disk 3 ud3 (Kg·m) 3 × 10−5

In a dual-rotor system, speed ratio is a basic and important parameter during the
operation process, and it usually has a great influence on the dynamic response of dual-
rotor systems. The speed ratio r is defined as the ratio of outer rotor speed ωo to inner
rotor speed ωi, namely, r = ωo/ωi, and r > 0 indicates a co-rotation, while r < 0 indicates
a counter-rotation. Generally, the values of speed ratio adopted in dual-rotor systems
reported in literatures [2,8,11,12] change from 1 to 2 for the typical case of co-rotation.
Hence, the values of speed ratio r fixed at 1.2, 1.3, 1.5 and 2.0 are selected to investigate their
effects on MSDS responses. The rotating speed of the inner rotor is varied from 5 rad/s
to 3000 rad/s at intervals of ∆ωi = 5 rad/s. For convenient analysis, ωi is normalized
to the first order critical speed ωc1i of MSDS excited by the inner rotor, the response
displacements x and y are normalized to the AMB nominal air-gap length g0, and the
response frequency ω is normalized to ωi, namely Ω = ωi/ωc1i, X = x/g0 and Y = y/g0, and
N = ω/ωi, respectively. For example, in the case of r = 1.2, control parameters Kp = 5 and
Kd = 0.0003, the first three order critical speeds calculated by complex Riccati transfer matrix
method [13] are provided in Table 2. It is clear from Table 2 that r = 1.2 is in co-rotation with
ωc1i = 828.48 rad/s. Thus, a step of Ω is ∆Ω = ∆ωi/ωc1i ≈ 0.006. Furthermore, the
simulation results show that the vibration characteristics of inner and outer rotors are
similar, so the analysis is focused on the dynamic response of disk 1 on the inner rotor.

Bifurcation diagrams, dynamic trajectories, Poincaré maps and spectrum graphs are
employed to exhibit the results of numerical simulation. Dynamic trajectories represent
the instantaneous positions of the rotor center. Spectrum graphs exhibit the frequency
contents of the rotor response and are obtained from the Fourier transformation of the
time series of rotor response in the vertical direction. Poincaré maps are determined by
sampling the trajectory of the rotor center at a constant interval of the forcing period of
T = 2π/ωi and projecting the outcome on the X(nT) versus Y(nT) plane. Bifurcation dia-
grams demonstrate the trajectory of the rotor in the vertical direction against the variation
of speed parameter Ω. In order to clearly demonstrate the variations of bifurcation with
rotating speed, bifurcation diagrams are depicted with 3∆Ω as the speed interval in this
research. To significantly improve the computational efficiency of generating bifurcation
diagrams, a parallel computing strategy is adopted in MATLAB programming and is
implemented at the workstation.
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Table 2. The first three order critical speeds of MSDS.

Order
Inner Rotor Excitation (rad/s) Outer Rotor Excitation (rad/s)

r=1.2 r=−1.2 r=1.2 r=−1.2

1 828.48 828.47 828.46 828.46

2 1025.9 1023.2 1010.7 1008.5

3 3293.2 3289.5 3287.2 3284.1

3.1. Nonlinear Dynamic Responses

In the case of r = 1.2, the types of bifurcation for the inner rotor response without
rubbing are examined with the increase of speed parameter Ω, and the corresponding
bifurcation diagrams are generated in Figure 7. After careful inspection, each speed corre-
sponds to five points, which indicates that the MSDS always performs the sub-synchronous
vibration of period 5 over the full speed range. It should be noted that for some speed
ranges, the number of points displayed is less than five due to multiple close response
amplitude points at the speed shown in a larger scale figure, as shown in Figure 8a,c. In
some intervals, the number of points for some rotational speeds is also less than five, while
the corresponding Poincaré diagram shows that the number of points is still five. The
reason is that displacements in the vertical direction that are intercepted by the bifurcation
diagram at this moment are almost equal, as illustrated in Figure 8b. It should be noted
that the dynamic trajectories in Figure 8, “#” and “4”, respectively, represent the positions
of rotor center at a certain moment and the subsequent moment, according to which the
change of the rotor whirling trajectory with time is demonstrated and the whirling direction
of the rotor can be judged.
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(a) Period 5 motion with Ω = 0.096, (b) Period 5 motion with Ω = 1.090, (c) Period 5 motion with
Ω = 3.549.

In the case of r = 1.2 without rubbing, the vibration of MSDS is mainly dominated by
the dual-frequency unbalanced excitation of inner and outer rotors. More specifically, it
is determined by the speed ratio and rotational frequency difference of inner and outer
rotors. Taking Figure 8a as an example, there are two dimensionless frequency components
of 1 and 1.2 in the spectrum, namely the dimensionless rotating frequencies of inner and
outer rotors. In Figure 8b, the dimensionless rotating frequency difference 1/5 and its
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multiple frequency components also appear in the spectrum. The most likely cause of this
phenomenon is the operation of MSDS near the first-order critical speed. As a result, the
MSDS is dominated by the sub-synchronous vibration of period 5 without rubbing when
the speed ratio is r = 1.2.

In the case of r = 1.2 with rubbing, the bifurcation diagrams are provided in Figure 9.
For the range 0 < Ω ≤ 0.978, the rotor response is the period 5 vibration. For Ω = 0.984
and 0.990 ≤ Ω ≤ 1.002, the responses of period 20 and period 15 are observed, respectively.
With further increase of Ω, the sub-synchronous vibration of period 5, quasi-periodic
and chaotic vibration are observed alternately. Period 5 vibration occurs in the ranges
Ω = 1.008, 1.074 ≤ Ω ≤ 1.110 and 1.123 ≤ Ω ≤ 1.129. Quasi-periodic vibration is observed
to exist in the ranges 1.020≤Ω≤ 1.038, Ω = 1.116, 1.153≤Ω≤ 1.159 and 1.183≤Ω≤ 1.195.
Chaotic vibration is seen in the ranges Ω = 1.014, 1.044 ≤ Ω ≤ 1.068, 1.165 ≤ Ω ≤ 1.177 and
1.201 ≤ Ω ≤ 1.304. Period 5 vibration is largely seen to dominate the rotor response for
the range 1.310 ≤ Ω ≤ 3.6, except at Ω = 3.253 where chaotic vibration is observed. By
comparing Figures 7 and 9, it is found that rubbing will cause stable multiple periodic
motion, critical quasi-periodic motion and unstable chaotic motion.
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In order to have a deep insight into the above abundant nonlinear vibrations stimulated
by rubbing, the dynamic responses of period 5, 15, 20, quasi-periodic and chaotic vibration
at Ω = 1.008, Ω = 0.996, Ω = 0.984, Ω = 1.032 and Ω = 1.044 are depicted in Figure 10. It
is easy to observe that the period n motion is characterized by n points in Poincaré maps,
and the minimum dimensionless frequency component in the spectrum is 1/n. In addition,
the response trajectory becomes more complicated with larger n, as shown in Figure 10a–c.
When ghosting appears in the trajectory in Figure 10d, the Poincaré map is exhibited as
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five closed elliptic curves, and the frequency components with clear contours can still
be observed in the spectrum, which infers that MSDS performs a quasi-periodic motion.
Furthermore, chaotic motion occurs when the trajectory becomes chaotic, many irregular
points exist in the Poincaré diagram, and dense burrs appear in the spectrum, as depicted
in Figure 10e.

In the above nonlinear dynamic behaviors in co-rotation with r = 1.2, the high-order
sub-synchronous motion of period 15 and period 20 are multiples of five, corresponding
to the rotating frequency difference 1/5 with speed ratio r = 1.2. Under the combined
actions of exponential order rubbing force, nonlinear electromagnetic force and unbalanced
force, the fractional frequency components 1/15 and 1/20 are excited, which corresponds
to 1/3 and 1/4 of the rotational frequency difference 1/5, respectively. Accordingly, in
the spectrums in Figure 10b,c, the frequency components can be regularly expressed as
multiple frequency components of 1/15 and 1/20, respectively. Even for the quasi-periodic
and chaotic motions, the main frequency components in the spectrums can be expressed as
a series of combined frequency components of the rotating frequency difference 1/5 and its
fractional frequency component 1/25, as shown in Figure 10d,e. Therefore, the nonlinear
vibration characteristics of MSDS are closely related to the speed ratio.
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irregular points exist in the Poincaré diagram, and dense burrs appear in the spectrum, as 
depicted in Figure 10e. 
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Figure 10. Trajectories, Poincaré maps and spectrograms of MSDS response in co-rotation with
r = 1.2. (a) Period 5 motion with Ω = 1.008, (b) Period 15 motion with Ω = 0.996, (c) Period 20 motion
with Ω = 0.984, (d) Quasi-periodic motion with Ω = 1.032, and (e) Chaotic vibration with Ω = 1.044.

With parameters unchanged in counter-rotation r = −1.2, the bifurcation diagrams of
MSDS are shown in Figure 11. For 0 < Ω ≤ 0.972, the rotor response is period 5. The attractors
of period 10, 20, and 15 are, respectively, observed for Ω = 0.978, Ω = 0.984 and Ω = 0.996,
and the rotor response is chaos at Ω = 0.990. With further increase of Ω, the alternation of
chaotic vibration and sub-synchronous vibration of period 5 is captured, except for Ω = 1.044
and 1.889 where period 10 vibration is observed, for Ω = 1.919 where period 15 vibration is
seen, and for Ω = 1.183 where the response is quasi-periodic. Chaotic vibration is seen to exist
in the ranges 1.002 ≤ Ω ≤ 1.038, 1.159 ≤ Ω ≤ 1.177, 1.225 ≤ Ω ≤ 1.267, 1.316 ≤ Ω ≤ 1.340,
Ω = 1.786 and 1.805 ≤ Ω ≤ 1.835. The existence of period 5 vibration is found in the
ranges 1.050 ≤ Ω ≤ 1.153, 1.189 ≤ Ω ≤ 1.219, 1.273 ≤ Ω ≤ 1.310, 1.346 ≤ Ω ≤ 1.780,
1.792 ≤ Ω ≤ 1.799 and 1.841 ≤ Ω ≤ 1.925. Quasi-periodic vibration is found in the
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ranges 1.931 ≤ Ω ≤ 1.961 and 2.022 ≤ Ω ≤ 2.046. For the ranges 1.968 ≤ Ω ≤ 1.980,
2.004 ≤ Ω ≤ 2.016 and specific speed Ω = 1.986, period 5, 20 and 10 vibrations are observed.
The response is chaotic in the ranges 1.992 ≤ Ω ≤ 1.998 and 2.052 ≤ Ω ≤ 2.094. Period 5
vibration dominates the response for the range 2.100 ≤ Ω ≤ 3.6, except for chaos vibration
in the small range 3.313 ≤ Ω ≤ 3.319.
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≤ Ω ≤ 0.6, (b) 0.6 ≤ Ω ≤ 1.2, (c) 1.2 ≤ Ω ≤ 1.8, (d) 1.8 ≤ Ω ≤ 2.4, (e) 2.4 ≤ Ω ≤ 3.0, (f) 3.0 ≤ Ω ≤ 3.6. 

As typical examples of nonlinear dynamic behaviors in counter-rotation with r = −1.2, 
the sub-synchronous vibrations of period 10, 15, 20, quasi-periodic and chaotic vibration 
are illustrated in Figure 12 at Ω = 0.978, Ω = 0.996, Ω = 0.984, Ω = 1.183 and Ω = 2.052, 
respectively. In the case of rubbing, the dynamic response characteristics for counter-ro-
tation with r = −1.2 are almost the same as those of co-rotation with r = 1.2. When MSDS 
performs sub-synchronous vibrations of period n with n = 10, 15 and 20, its frequency 

Figure 11. Bifurcation diagram of MSDS response with rubbing in counter-rotation r = −1.2.
(a) 0.006 ≤ Ω ≤ 0.6, (b) 0.6 ≤ Ω ≤ 1.2, (c) 1.2 ≤ Ω ≤ 1.8, (d) 1.8 ≤ Ω ≤ 2.4, (e) 2.4 ≤ Ω ≤ 3.0,
(f) 3.0 ≤ Ω ≤ 3.6.

As typical examples of nonlinear dynamic behaviors in counter-rotation with
r = −1.2, the sub-synchronous vibrations of period 10, 15, 20, quasi-periodic and chaotic
vibration are illustrated in Figure 12 at Ω = 0.978, Ω = 0.996, Ω = 0.984, Ω = 1.183 and
Ω = 2.052, respectively. In the case of rubbing, the dynamic response characteristics for
counter-rotation with r = −1.2 are almost the same as those of co-rotation with r = 1.2.
When MSDS performs sub-synchronous vibrations of period n with n = 10, 15 and 20, its
frequency components can be expressed as multiple times of the fractional frequency 1/n
corresponding to the rotating frequency difference 1/5. For the quasi-periodic motion and
chaotic motion, the main frequency components can be expressed as various combined
frequency components of rotating frequency difference 1/5 and its fractional frequency.
Therefore, the nonlinear dynamic characteristics for counter-rotation with rubbing are also
determined by the speed ratio. In addition, it can be observed that the rotor alternately
performs forward whirl and backward whirl in the dynamic trajectories in Figure 12a–d,
while the rotor only performs forward whirl in the dynamic trajectories in Figure 10a–d. It
implies that the dynamic response of MSDS in counter-rotation is more complicated than
that in co-rotation.
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motion with Ω = 0.984, (d) Quasi-periodic motion with Ω = 1.183, (e) Chaotic vibration with Ω = 
2.052. 
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Figure 12. Trajectories, Poincaré maps and spectrograms of MSDS response in counter-rotation with
r = −1.2. (a) Period 10 motion with Ω = 0.978, (b) Period 15 motion with Ω = 0.996, (c) Period
20 motion with Ω = 0.984, (d) Quasi-periodic motion with Ω = 1.183, (e) Chaotic vibration with
Ω = 2.052.

From the above analysis, it is obvious that the sub-synchronous vibration of period 5 is
the fundamental motion under fixed-point rubbing with r = ±1.2. In contrast to co-rotation
r = 1.2, the dynamic responses in counter-rotation r = −1.2 are more complicated due
to the opposite direction of the gyroscopic moment. More specifically, period n (n = 5m,
m = 2, 3, 4,...), quasi-periodic and chaotic vibrations span wider speed ranges and occur
more frequently in counter-rotation, which is also tenable for other speed ratios.

3.2. Influence of Speed Ratio

To investigate the effects of speed ratio on the bifurcation characteristics of MSDS, the
bifurcation diagrams and nonlinear dynamic responses for r = 1.3, r = 1.5 and r = 2.0 in
co-rotation are investigated in this section.

When the speed ratio is r = 1.3, the bifurcation diagrams of MSDS are illustrated
in Figure 13. By careful examination, sub-synchronous motion of period 10 is found
to be the fundamental motion that dominates the dynamic responses. n = 10 seems to
correspond to the denominator of the rotational frequency difference 3/10. In addition, sub-
synchronous motion of period 20, quasi-periodic and chaotic motion mainly occur in the
ranges 1.104 ≤ Ω ≤ 1.593 and Ω = 3.006. The dynamic responses of various typical motions
are shown in Figure 14. Similarly, for the sub-synchronous motion of period 10 and period
20 in Figure 14a,b, the basic frequency components are 1/10 and 1/20, respectively, and the
other frequency components can be expressed as their multiple frequency components. In
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quasi-periodic motion with at 10 closed curves in Figure 14c, the main frequency component
can be expressed as the multiples of basic frequency component 1/10.
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Figure 13. Bifurcation diagram of MSDS response with rubbing in co-rotation with r = 1.3.
(a) 0.006 ≤ Ω ≤ 0.6, (b) 0.6 ≤ Ω ≤ 1.2, (c) 1.2 ≤ Ω ≤ 1.8, (d) 1.8 ≤ Ω ≤ 2.4, (e) 2.4 ≤ Ω ≤ 3.0,
(f) 3.0 ≤ Ω ≤ 3.6.
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Figure 14. Trajectories, Poincaré maps and spectrograms of MSDS response in co-rotation with r = 
1.3. (a) Period 10 motion with Ω = 1.056, (b) Period 20 motion with Ω = 1.587, (c) Quasi-periodic 
motion with Ω = 1.104. 
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motion at Ω = 0.845, multiple period 28 vibration at Ω = 1.213 and the quasi-period motion 
with two closed curves at Ω = 1.044 are demonstrated as typical examples of dynamic 
responses in Figure 16. The sub-synchronous motion of period n is characterized by n 
points in the Poincaré maps and the basic frequency component 1/n. The main frequency 
components of quasi-period motion may be expressed as the combination of rotational 
frequency difference 1/2 and its fractional frequency 1/10, for example, 1/5 = 2 × 1/10, 3/10 
= 1/2 − 2 × 1/10, and so on.  

Figure 14. Trajectories, Poincaré maps and spectrograms of MSDS response in co-rotation with r = 1.3.
(a) Period 10 motion with Ω = 1.056, (b) Period 20 motion with Ω = 1.587, (c) Quasi-periodic motion
with Ω = 1.104.

The bifurcation diagrams and corresponding typical dynamic responses of MSDS
with speed ratio r = 1.5 are provided in Figures 15 and 16, respectively. In this situation,
the period 2 vibration dominates the whole speed range, where n = 2 is equal to the
denominator of the rotational frequency difference 1

2 . Quasi-periodic motion and chaotic
motion exist in the ranges 1.129 ≤ Ω ≤ 1.255 and 2.384 ≤ Ω ≤ 2.619. A double period 4
motion at Ω = 0.845, multiple period 28 vibration at Ω = 1.213 and the quasi-period motion
with two closed curves at Ω = 1.044 are demonstrated as typical examples of dynamic
responses in Figure 16. The sub-synchronous motion of period n is characterized by n
points in the Poincaré maps and the basic frequency component 1/n. The main frequency
components of quasi-period motion may be expressed as the combination of rotational
frequency difference 1/2 and its fractional frequency 1/10, for example, 1/5 = 2 × 1/10,
3/10 = 1/2 − 2 × 1/10, and so on.

The bifurcation diagrams and corresponding typical dynamic responses of MSDS with
speed ratio r = 2 are depicted in Figures 17 and 18. It is obvious that the simplest form
of motion, sub-synchronous motion of period 1, namely synchronous motion, occupies an
absolute advantage over other forms of motion. Also, the 1 in period 1 corresponds to the
rotating frequency difference 1 in the case of r = 2. The sub-synchronous motion of period 2,
quasi-periodic motion and chaotic motion mainly appear in the range of 1.165 ≤ Ω ≤ 1.219,
1.986 ≤ Ω ≤ 2.456, 2.837 ≤ Ω ≤ 2.861, respectively, and their spectral characteristics are
similar to those of other speed ratios.
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Figure 15. Bifurcation diagram of MSDS response with rubbing in co-rotation with r = 1.5. (a) 0.006 
≤ Ω ≤ 0.6, (b) 0.6 ≤ Ω ≤ 1.2, (c) 1.2 ≤ Ω ≤ 1.8, (d) 1.8 ≤ Ω ≤ 2.4, (e) 2.4 ≤ Ω ≤ 3.0, (f) 3.0 ≤ Ω ≤ 3.6. 
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Figure 15. Bifurcation diagram of MSDS response with rubbing in co-rotation with r = 1.5.
(a) 0.006 ≤ Ω ≤ 0.6, (b) 0.6 ≤ Ω ≤ 1.2, (c) 1.2 ≤ Ω ≤ 1.8, (d) 1.8 ≤ Ω ≤ 2.4, (e) 2.4 ≤ Ω ≤ 3.0,
(f) 3.0 ≤ Ω ≤ 3.6.
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Figure 16. Trajectories, Poincaré maps and spectrograms of MSDS response in co-rotation with r = 
1.5. (a) Period 2 motion with Ω = 0.990, (b) Period 4 motion with Ω = 0.845, (c) Period 28 motion 
with Ω = 1.213, (d) Quasi-periodic motion with Ω = 1.044. 
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Figure 16. Trajectories, Poincaré maps and spectrograms of MSDS response in co-rotation with
r = 1.5. (a) Period 2 motion with Ω = 0.990, (b) Period 4 motion with Ω = 0.845, (c) Period 28 motion
with Ω = 1.213, (d) Quasi-periodic motion with Ω = 1.044.
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(f) 3.0 ≤ Ω ≤ 3.6.
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Figure 18. Trajectories, Poincaré maps and spectrograms of MSDS response in co-rotation with r = 
2.0. (a) Synchronous motion with Ω = 0.845, (b) Period 2 motion with Ω = 0.664, (c) Quasi-periodic 
motion with Ω = 1.998. 
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Figure 18. Trajectories, Poincaré maps and spectrograms of MSDS response in co-rotation with
r = 2.0. (a) Synchronous motion with Ω = 0.845, (b) Period 2 motion with Ω = 0.664, (c) Quasi-periodic
motion with Ω = 1.998.

It is shown from the above analysis that the nonlinear vibration characteristics of
MSDS with fixed-point rubbing mainly depend on the speed ratio. First, the most basic
sub-synchronous vibration of period n is determined by the speed ratio r. The relationship
between n and r is that n equals the greatest common divisor (GCD) of 10 times 1 and
r divided by 10, i.e., n = 10/GCD(10 × [1·r]), which is listed in Table 3. The minimum
dimensionless frequency component is 1/n for the basic motion in the spectrum and other
frequency components can be expressed as integer multiples of 1/n. These two laws are
also applicable to the higher order sub-synchronous motion of period mn (m = 2, 3, 4,...).
Second, quasi-periodic motion with speed ratio r is characterized by mn closed curves, and
its main frequency components can be expressed as a variety of the combined frequency
components of rotating frequency difference r-1 and its fractional frequency, which is also
suitable for chaotic motion with the same speed ratio. It should be pointed out that the
above characteristics are also verified by the bifurcation diagrams of other speed ratios,
which are neglected for simplicity. Consequently, it clearly states that speed ratio has
considerable influence on the nonlinear dynamic characteristics of MSDS. Actually, the
influence of speed ratio is achieved by the coupling effects of inter-shaft bearings and
plentiful nonlinear dynamic behaviors reflect the strong cross-excitation phenomenon
between inner and outer rotors, which is one of the most significant differences between
dual-rotor systems and single-rotor systems.
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Table 3. The relationship between n and speed ratio r.

n 1 2 5 10

Speed ratio r 1 2 1.5 1.2 1.4 1.6 1.8 1.1 1.3 1.7 1.9

Another interesting phenomenon is the speed ranges where complicated dynamic
responses exist. Except for the most basic motion for each speed ratio, high-order sub-
synchronous motions, quasi-periodic and chaotic motions are generally excited near the
critical speeds of MSDS. Taking r = 1.2 in co-rotation in Figure 9 for an example, the sub-
synchronous vibrations, except for period 5, mainly exist in the range 0.984 ≤ Ω ≤ 1.304,
which includes the first two order critical speeds excited by the inner rotor, namely Ωc1i = 1
and Ωc2i = 1.238. For the chaotic vibration at Ω = 3.253, it is close to the inner rotor speed
Ω3i = Ωc3o/r = 3.306, corresponding to the third order critical speed Ωc3o = 3.968 excited by
the outer rotor. It indicates that the motions near critical speeds are much more complicated
than those away from them. The main reason is due to the fact that the vibration amplitude
is larger and the rubbing response is more intense when the MSDS operates near the critical
speeds, so the friction force during the rub impact process increases. Since the direction of
the friction force is always opposite to the rotation direction of rotors, it will drive the rotor
to whirl backward when its amplitude increases to a certain value, thus resulting in more
complicated nonlinear vibrations.

3.3. Parameter Selection

During the operation of rotating machinery, prolonged exposure to fluctuating stresses
caused by non-synchronous vibrations may result in the fatigue failure of rotor compo-
nents [20–22]. In general, the alternating frequency of fluctuating stress increases with the
complexity of asynchronous motion, and high alternating frequency will accelerate fatigue
failure. Therefore, non-synchronous vibrations, especially high-order sub-synchronous
motion, quasi-periodic motion and chaotic motion, are undesirable.

It is found from the above analysis that the rotor motion is synchronous only when the
speed ratio is an integer. However, the speed ratio is usually not an integer, so the MSDS will
inevitably undergo non-synchronous motion even without rubbing. From the perspective
of reducing the severity of fluctuating stress, the complexity of nonlinear dynamic response
should be reduced if possible. In other words, the speed ratio corresponding to smaller n is
recommended to be selected.

Another more effective method is to take full advantage of the adjustable and con-
trollable support characteristics of MSDS. With the real time adjustment of the support
characteristics by the control system, the equivalent damping of AMBs can be increased to
attenuate response amplitudes, and the equivalent stiffness can be changed to keep critical
speeds away from the operating speeds of MSDS [13–15], which will bring the MSDS into
fundamental sub-synchronous vibrations. For example, with a larger derivative coefficient
of Kd = 0.0005 and other parameters remaining the same, the bifurcation diagrams of rotor
response for r =1.2 is depicted in Figure 19. Comparing Figures 9 and 19, it is obvious that
except for the basic sub-synchronous vibration of period 5, other types of sub-synchronous
vibrations disappear for larger Kd = 0.0005, especially for the range 0.984 ≤ Ω ≤ 1.304. It is
exactly where the MSDS is superior to the traditional dual-rotor system. Nevertheless, the
chaos vibration at Ω = 3.254, corresponding to the first order bending modes, still exists for
the reason that the derivative coefficient has little influence on this mode of the system [13],
which deserves further investigation.
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(e) 2.4 ≤ Ω ≤ 3.0, (f) 3.0 ≤ Ω ≤ 3.6.

In order to have an insight into the influence of AMB control parameters on MSDS
nonlinear dynamics, the bifurcation diagrams of rotor response with proportional coeffi-
cient Kp and derivative coefficient Kd are shown in Figure 20, where ωi = 700rad/s, r = 1.2,
and other parameters remained the same with Table 1. In Figure 20a, MSDS performs the
simplest sub-synchronous motion of period 5 when Kp is in the range 1.8 ≤ Kp ≤ 39.4 and
it alternately performs high-order sub-synchronous motion, quasi-periodic motion and
chaotic motion when Kp is beyond the range 1.8 ≤ Kp ≤ 39.4. The reason is that increasing
Kp will increase the equivalent stiffness of AMB, and too large or too small equivalent
stiffness will make the operating speed close to a certain order critical speed of MSDS.
In Figure 20b, MSDS performs the simplest sub-synchronous motion of period 5 when
Kp is in the range 0.0002 ≤ Kd ≤ 0.00086, and it performs complicated non-synchronous
motions when Kd is small or large. The reason is that the AMB equivalent damping in-
creases with Kd; when equivalent damping is too small, the capacity of MSDS to attenuate
vibration reduces, and when it is too large, it directly amplifies the influence of noise in
differential signal on the system stability, resulting in unstable motions [23]. Therefore, it is
necessary to select appropriate control parameters to make the MSDS perform the simplest
sub-synchronous motion.
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In summary, there are three suggestions for parameter selection to keep the asyn-
chronous vibrations of MSDS as simple as possible. First, the speed ratio r corresponding
to smaller n is recommended, where n = 10/GCD(10 × [1·r]), and GCD represents the
function of the greatest common divisor. Secondly, according to the MSDS working speed
and the influence of proportional coefficient on critical speeds of the system, appropriate
proportional coefficient is suggested to keep critical speeds away from working speeds.
Additionally, selecting a larger derivative coefficient to increase the equivalent damping of
AMBs can effectively attenuate the vibration of MSDS, but it should be noted that when
equivalent damping is too large, it will increase the instability risk by directly amplifying
the noise in the derivative signal. Thirdly, the designed operating speed of MSDS should
be far away from critical speeds corresponding to the bending modes.

4. Conclusions

In this paper, a dynamic model is established to investigate the influence of speed ratio
on nonlinear dynamics of MSDS with fixed-point rubbing. The nonlinear support charac-
teristics of AMBs are modeled by the equivalent magnetic circuit method; the Lankarani–
Nikravesh model is adopted to describe the impact force, and the dynamic model estab-
lished by the finite element method and solved by the Newmark-β method. The nonlinear
dynamic behaviors are discussed by bifurcation diagrams, trajectories, Poincaré maps and
spectrum graphs, and the following conclusions are drawn.

(1) Speed ratio has a significant influence on the dynamic responses of MSDS. The
fundamental sub-synchronous vibration of period n is determined by the speed ratio r,
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where n equals to the greatest common divisor of 10 times 1 and r divided by 10. For
the sub-synchronous vibration of period mn (m = 1, 2, 3,...), the minimum dimensionless
frequency component is 1/mn and other frequency components can be regularly expressed
as integer multiples of the minimum dimensionless frequency component. The quasi-
periodic vibration is characterized by mn closed curves in Poincaré maps. The main
frequency components can be expressed as a variety of combined frequency components
of the rotating frequency difference and its fractional frequency for quasi-periodic and
chaotic vibrations.

(2) In order to reduce the severity of fluctuating stresses caused by non-synchronous
vibrations, three methods are proposed. First, the speed ratio corresponding to smaller n is
suggested. Second, appropriate control parameters are recommended to reduce vibration
amplitudes or keep critical speeds away from operating speeds. Third, the operating speeds
of MSDS should be far away from the critical speeds that correspond to the bending modes.
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