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Abstract: To describe the hysteresis nonlinearities in smart actuators, numerous models have been
presented in the literature, among which the Preisach operator is the most effective due to its capability
to capture multi-loop or sophisticated hysteresis curves. When such an operator is coupled with
uncertain nonlinear dynamics, especially in noncanonical form, it is a challenging problem to develop
techniques to cancel out the hysteresis effects and, at the same time, achieve asymptotic tracking
performance. To address this problem, in this paper, we investigate the problem of iterative inverse-
based adaptive control for uncertain noncanonical nonlinear systems with unknown input Preisach
hysteresis, and a new adaptive version of the closest-match algorithm is proposed to compensate for
the Preisach hysteresis. With our scheme, the stability and convergence of the closed-loop system can
be established. The effectiveness of the proposed control scheme is illustrated through simulation
and experimental results.

Keywords: adaptive control; neural networks; stability analysis; piezo actuators; noncanonical
nonlinear systems

1. Introduction

Hysteresis widely occurs in smart material-based actuators [1–3], such as electromag-
netic actuators [4] and piezoelectric actuators [5]. Experiments show that the system with
hysteresis would exhibit poor tracking performance when the feedback control does not
explicitly consider hysteresis [6]. To compensate for the hysteresis nonlinearity in con-
trol design, a mathematical operator that can describe the characteristics of the hysteresis
nonlinearity is needed. In the literature, commonly used hysteresis models include the
Preisach operator [7,8], the Duhem operator [9], the Prandtl–Ishlinskii (PI) operator [10],
etc. Among these, the Preisach operator is considered the most effective due to its general
and well-established mathematical structure and its ability to capture both multi-loop
and asymmetric hysteresis curves, where the hysteresis nonlinearity is modeled using a
superposition of infinity-weighted elementary relays. Consequently, the question naturally
arises of how to compensate for the Preisach-type hysteresis nonlinearity.

It is well-known that traditional robust control methods are effective in accommo-
dating nonlinearities in a controlled system [11–13]. However, such control approaches
cannot adequately compensate for the hysteresis nonlinearity, which can lead to a sig-
nificant degradation in the tracking performance of the system when the effects of the
hysteresis nonlinearity are considerable. Therefore, it becomes necessary to employ ad-
vanced methods to compensate for the hysteresis nonlinearity. In this regard, one of the
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fundamental approaches in effectively addressing the hysteresis nonlinearity is inverse
compensation [14–16]. In [14], the inverse of the Krasnoselskii–Pokrovskii model was
constructed using an inverse multiplicative structure. In [15], a direct hysteresis inverse
model was constructed using clockwise relay operators. In [16], the parameters in a direct
hysteresis inverse model were updated using an adaptive Kalman filter. These results
aimed to reduce or eliminate the hysteresis effects by constructing an approximate or
right-inverse hysteresis model. However, unlike some other hysteresis models, such as
the PI operator (as a special case of the Preisach operator) and the Duhem operator, it is
challenging to compute the analytical inverse of the Preisach operator. This difficulty arises
due to the implicit involvement of the input signal within the operator [17].

To overcome the above challenge, Tan, Venkataraman, and Krishnaprasad proposed
the closest-match algorithm [18], which is a classical iterative approximation algorithm
for the Preisach inverse. In this algorithm, the number of iterations does not exceed the
discretization degree of the input, and the state of the thermostat relay operator (1) changes
only once for each solution, greatly saving computation time [18,19]. By requiring the
piecewise monotonicity and Lipschitz continuity of the Preisach operator and allowing the
density function to be non-negative and constant, an approximate inverse model based
on the closest-match algorithm was proposed in [20] for calculating the inverse of the
Prerisach operator iteratively, and the convergence of the algorithm was proven. When the
density function of the Preisach operator is unknown or not available for measurement, the
previously mentioned open-loop inverse control is not possible. In this case, the feedback
information obtained from the hysteresis output can be utilized to estimate the density
function of the Preisach operator by developing an iterative algorithm with an adaptive
estimator, ultimately reducing the inversion error [19]. The above-mentioned iterative
adaptive inverse-control framework was established in [19,21]. For an individual Preisach
operator, the compensation scheme has been studied in great depth. However, these results
only consider the hysteresis nonlinearity while neglecting the influence of the plant. When
the Preisach operator couples with some system dynamics (for example, smart material-
based actuators can be modeled as a Preisach operator preceding linear dynamics [22] or
when the hysteretic actuator modeled by the Preisach operator drives linear or nonlinear
dynamics [19,23]), it remains unobserved for the output of hysteresis nonlinearity, which
serves as the input to the system dynamics, and the adaptive scheme of the closest-match
algorithm in [19] is not applicable. To overcome the above challenge, it is necessary to
develop a new adaptive version of the closest-match algorithm to compensate for the
Preisach hysteresis with complete convergence proof and stability analysis, especially when
the system dynamics are described as a noncanonical nonlinear system with parametric
uncertainties. Unlike the canonical nonlinear system, the noncanonical nonlinear system
has no explicit relative structure, and the system output depends on several or all state
variables. To address the presence of parameter uncertainties in the system, the predom-
inant approach involves employing approximators for their approximation to construct
a parameterized model. Neural networks, recognized as universal approximators, have
recently experienced extensive and successful applications [24,25]. They are capable of
approximating smooth functions with arbitrary accuracy in a desired compact set and
effectively constructing dynamic system models. Leveraging this property, the method of
utilizing neural network-based approximation techniques has been successfully applied to
address the challenge of adaptive control for noncanonical nonlinear systems with parame-
ter uncertainties [26–28]. In this regard, neural network approximation techniques will be
used to construct a parameterized model in this paper, thus facilitating the design of an
adaptive control scheme.

Motivated by the above observation, we have studied the adaptive inverse-control
problem for uncertain noncanonical nonlinear systems with unknown input Preisach
hysteresis. When the Preisach operator precedes the dynamics of an uncertain noncanonical
nonlinear system, the hysteresis parameters, hysteresis output, and system parameters
are all unknown, and the relative degree structure is also implicit. In this situation, we
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propose an iterative adaptive inverse algorithm to effectively compensate for the hysteresis
nonlinearity. This study makes the following contributions:

(1) A new adaptive version of the closest-match algorithm is proposed to address the
inversion problem of the Preisach operator with unknown parameters and unobserved
outputs. Based on the piecewise-monotonicity and Lipschitz-continuity properties of the
adaptive Preisach operator, the convergence of the iteration algorithm for inverting the
Preisach operator is successfully established.

(2) A Lyapunov-based adaptive inverse-control framework is proposed for uncer-
tain noncanonical nonlinear systems with Preisach-type hysteresis inputs, with complete
convergence proof and stability analysis.

The rest of the paper is organized as follows. In Section 2, we introduce the Preisach
operator and formulate the control problem. In Section 3, by utilizing the feedback lin-
earization technique, we derive a specific condition to define the relative degree of the
neural network approximation system in noncanonical form. In Section 4, we propose
an adaptive tracking control scheme containing an iterative adaptive inverse algorithm
for an uncertain neural network approximation system with an unknown input Preisach
hysteresis, which is the main focus of this paper. In Section 5, we provide a simulation
example with corresponding results that validate the effectiveness of the control scheme.
Finally, we provide the conclusions in Section 6.

2. Background and System Modeling

This section provides a concise review of the Preisach operator and applies it to
effectively capture the complex hysteresis nonlinearity discussed in this paper, and the
control problem is then formulated.

2.1. The Hysteresis Model

The Preisach operator stands out among various hysteresis models due to its ability
to accurately represent complex hysteresis curves, including multi-loop and asymmetric
hysteresis curves. It is constructed using the weighted superposition of infinite basic relay
operators. Typically, the thermostat relay operators [19] are chosen as the fundamental
components for constructing the Preisach operator, as shown in Figure 1.

 

Figure 1. A thermostat relay operator γ∗αβ(·, ·).

Thermostat relay operator: We first consider the Preisach plane as

T0 = {(β, α) ∈ |β ≥ β0, α ≤ α0, α ≥ β},

which is a right triangle area and consists of a vertex coordinate (β0, α0) and a portion of
the line α = β. For a visual representation, we present the geometric interpretation of the
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Preisach plane T0 in Figure 2. For any given point (β, α) on the Preisach plane T0, there is a
corresponding thermostat relay operator

γ∗αβ(v(t), τ0(β, α)) =


+1, if v(t) > α
−1, if v(t) < β
γ∗αβ(v(t

−), τ0(β, α)) if v(t) ∈ [β, α],
(1)

where v(t) ∈ [0, tm] is the input of the thermostat relay operator with continuity and
piecewise monotonicity, t− = limε>0,ε→0 t− ε, and τ0(β, α) represents the initial value of
the thermostat relay operator γ∗αβ(v(0), ·). For example, τ0(β, α) = 1, whereas ∀(β, α) ∈ T0

and v(0) > α0.

 

Figure 2. The Preisach plane T0 and memory curve.

Preisach operator: The Preisach operator is constructed using the weighted superpo-
sition of infinite thermostat relay operators on the Preisach plane T0, which is expressed
as follows

u(t) = H(v(t), τ0(β, α))

=
∫∫

T0

µ(β, α)γ∗αβ(v(t), τ0(β, α))dβdα,
(2)

where the weighting function µ(β, α) is also referred to as the density function. According
to the definition of the Preisach operator, all points (β, α) ∈ T0 have the corresponding
density function µ(β, α) 6= 0, and when (β, α) /∈ T0, the density function µ(β, α) = 0, as
shown in Figure 2.

Memory curve: The memory effects of the Preisach operator can be captured using
the memory curve in the Preisach plane T0 (as illustrated in [19]). When the Preisach input
increases monotonically, the output of the thermostat relay operator above the α threshold
switches to +1 and forms an upward-shifting curve. Similarly, when the Preisach input
decreases monotonically, the output of the thermostat relay operator below the β threshold
switches to −1 and forms a leftward-shifting curve. Then, in the Preisach plane T0, a
piecewise monotonic input signal v(t) can create the memory curve Φ(β, v(t)), as shown
in Figure 2, where the memory curve divides the plane T0 into two parts:

S+(t) =
{
(β, α) ∈ T0 | γ∗αβ(v(t), ·) = +1

}
,

S−(t) =
{
(β, α) ∈ T0 | γ∗αβ(v(t), ·) = −1

}
,

(3)
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and we can rewrite the integral (2) as

u(t) = H(v(t), τ0(β, α))

=
∫∫

S+(t)
µ(β, α)dβdα−

∫∫
S−(t)

µ(β, α)dβdα

= 2
∫∫

S+(t)
µ(β, α)dβdα−

∫∫
T0

µ(β, α)dβdα,

(4)

which is an essential form for analyzing the output range of the Preisach operator and
proving the piecewise monotonicity of the adaptive Preisach operator.

Following the description of the Preisach operator, we proceed to introduce the con-
sidered plant model and formulate the adaptive control problem.

2.2. System Modeling

Consider the following uncertain noncanonical nonlinear system with an unknown
input Preisach hysteresis:

ẋ(t) = N (x(t)) + Bu(t),

y(t) = Cx(t), u(t) = H(v(t), τ0(β, α)),
(5)

where the N (x(t)) ∈ Rn represents the unknown unparametrizable system nonlinearities,
x(t) ∈ Rn denotes the system state vector, y(t) ∈ R denotes the system output, and
B ∈ Rn, C ∈ R1×n are the unknown system parameters. The control input v(t) ∈ Rn is
implicitly involved in the Preisach operator, and u(t) is the Preisach output, which directly
affects the system. Since the Preisach hysteresis parameters µ(β, α) are unknown, the output
of the Preisach operator u(t) is not available for measurement, which poses a challenge in
compensating for the hysteresis nonlinearity.

An approximation system: In our research, the system nonlinearities N (·) in (5) can-
not be fully parameterized and are considered to be unknown. This poses a challenge in
designing the control scheme for the original system (5) due to the lack of an explicit charac-
terization of these nonlinearities. To overcome this challenge, we construct a parametrizable
neural network approximation system, which serves as an equivalent representation of the
original system (5) over any desired compact set Ψ ∈ Rn [29] and takes the following form:

ẋ(t) = Ax(t) +W∗S(x(t)) + Bu(t),

y(t) = Cx(t), u(t) = H(v(t), τ0(β, α)),
(6)

where A ∈ Rn×n is a stable matrix, and W∗ ∈ Rn×l and S(x(t)) ∈ Rl are an unknown
connection weight matrix and a known activation functions vector, respectively.

Remark 1. The nonlinear termW∗S(·) in (6) is considered a parameterizable uncertainty, which
is capable of approximating unparametrizable uncertainties with arbitrary accuracy within a desired
compact set. Hence, the proposed control scheme for the approximation system (6) in this paper is
valid for the general noncanonical nonlinear system (5) with unparametrizable nonlinearities. By
leveraging the neural network approximation system as an equivalent representation, our control
scheme provides a practical and viable solution for achieving the desired control performance with
an unknown input Preisach hysteresis.

Considering the constructed approximation system (6), our control objective is to
design a control input signal v(t) by coupling the Lyapunov method with the iterative
algorithm to ensure that the signals within the closed-loop system are bounded and achieve
asymptotic tracking performance.
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3. Relative Degree Conditions and Stability of Zero Dynamics Subsystem

In this paper, our main focus is on addressing the control problem for noncanonical
nonlinear systems with input hysteresis using adaptive control techniques, specifically
in the relative-degree-one case. It should be pointed out that the relative degree greater
than one case remains open for future research and will be considered in our future work.
This noncanonical neural network system can be considered a general nonlinear system,
allowing the feedback linearization theory to be used to define its relative degree. In a later
section, we provide the specific conditions for the relative-degree-one case.

Relative Degree Conditions: By combining the definition of relative degree [30] with
the noncanonical nonlinear system (6), we establish the following necessary condition for
the cases where the system has a relative degree of one.

Lemma 1 ([29]). The approximation system (6) preceded by the Preisach operator has a relative
degree $ = 1 if and only if

CB 6= 0. (7)

The approximation system (6) can be equivalently transformed into the general nonlin-
ear system ẋ(t) = f0(t) + g0(t)u(t), y(t) = Cx(t), and based on the feedback linearization
conclusions, Lemma 1 can be straightforwardly proven.

Lemma 2 ([29]). Suppose the approximation system (6) has a relative degree $ on the compact set Ψ.
To facilitate analysis and control design, we employ a diffeomorphism Ω(x) = [TT

c (x), TT
z (x)]T ∈ Rn

where

Tc(x) = ξ(t) = [ξ1(t), ξ2(t), · · · , ξ$(t)]T

= [h0(x), L f0 h0(x), · · · , L$−1
f0

h0(x)] ∈ R$,

Tz(t) = η(t) ∈ Rn−$,

which can transform the system into two subsystems [31]. The first subsystem, known as the
tracking dynamics subsystem, is dedicated to achieving accurate tracking of a desired reference
signal, and it is defined as follows

ξ̇k(t) = ξk+1(t), k = 1, 2, · · · , $− 1,

ξ̇$(t) = L$
f h(x) + LgLg−1

f h(x)u(t).
(8)

The second subsystem, referred to as the zero dynamics subsystem, is of great importance for
ensuring the convergence and stability of the system’s internal dynamics. It takes the following form:

η̇(t) = Ξ(ξ(t), η(t)). (9)

Stability of the zero dynamics system: By utilizing the feedback linearization technique,
the approximate system (6) can be divided into two subsystems (as illustrated in Lemma 2).
The zero dynamics subsystem does not contain control inputs. Therefore, the stability of
the zero dynamics subsystem needs to be guaranteed to ensure that the control scheme
developed for the noncanonical nonlinear system with input hysteresis in this paper is
available. The following assumption satisfies our requirements.

Assumption 1. The partial derivatives of the zero dynamics subsystem with respect to ξ(t) (9) are
bounded, and the zero dynamics subsystem satisfies the following inequality:

ηT(t)Ξ(0, η(t)) ≤ −λ0ηT(t)η(t) + λm(t), (10)

where λ0 is a positive constant, and λm(t) is a bounded function [32].
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Remark 2. Based on Assumption 1, we can establish the following inequality

‖η(t)‖ ≤ K1‖ξ(t)‖+K2, (11)

whereK1, K2 > 0 are the proper constants. Inequality (11) indicates that the state vector η(t) in (9)
is bounded, along with the bounded input vector ξ(t). Such a conclusion is called bounded-input
bounded-state (BIBS) stability [33], which indicates that the response of the system remains within
a specific range in the presence of disturbances or external inputs.

4. Adaptive Inverse-Control Scheme for Relative-Degree-One Case with
Preisach Hysteresis

This section proposes a control scheme for the relative-degree-one case of the uncertain
noncanonical nonlinear neural network system (6) with input Preisach hysteresis, for which
the necessary condition is given in (7). The procedure for designing the control scheme is
detailed below.

4.1. System Parameterization

According to Lemma 1, the relative degree of the approximation system (6) is one
when it satisfies CB 6= 0, which leads to the formulation of the tracking control dynamics
subsystem, which can be expressed as follows

ẏ(t) = CAx(t) + CW∗S(x(t)) + CBu(t),

u(t) = H(v(t), τ0(β, α)),
(12)

where the system parameters A, B, C, andW∗ are all unknown. For the tracking control
study, the following basic assumption is needed.

Assumption 2. The sign of the control gain CB in (12) is known and positive [26].

This assumption guarantees that the design procedure of the control scheme is free
from any unknown control direction problems.

For ease of designing an adaptive control scheme, the system (12) needs to be reparam-
eterized. We introduce some new parameters to transform the system into a more suitable
form for adaptive control scheme design. Let ϑ∗1 = [CA, CW∗]T represent a parameter vec-
tor, v1(t) = [x(t), ST(x(t))]T denote the state vector, and µ∗(β, α) = CBµ(β, α) represent
the modified density function. Then, the system (12) can be expressed as follows

ẏ(t) = ϑ∗T1 v1(t) +H∗(v(t), τ0(β, α)),

H∗(v(t), τ0) =
∫∫

T0

µ∗(β, α)γ∗αβ(v(t), τ0)dβdα.
(13)

Assumption 3. The modified density function µ∗(β, α) defined on a finite right triangle plane T0
takes values between two known non-negative bounded values µa(β, α) and µb(β, α), implying that
µa(β, α) ≤ µ∗(β, α) ≤ µb(β, α).

Assumption 3 is used later in a projection design to equip the adaptive estimate
µ̂(β, α, t) of µ∗(β, α) with non-negativity and boundedness properties.

4.2. Implicit Controller Equation

To compensate for the input hysteresis nonlinearity H(v(t), τ0) and to construct a
tracking error system with asymptotic convergence properties, we develop an adaptive
Preisach inverse implicit controller as follows
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∫∫
T0

µ̂(β, α, t)γ∗αβ(v(t), τ0)dβdα

= −ι(y(t)− ym(t))− ϑT
1 (t)v1(t) + ẏm(t),

(14)

where µ̂(β, α, ·) and ϑ1(·) are the estimates of µ∗(β, α) and ϑ∗1 , respectively, and ι is a positive
constant. The implicit controller equation (14) consists of an adaptive Preisach operator,
with µ̂(β, α, t) as the adaptive estimate of µ∗(β, α) on the left sides and the desired output
of the adaptive Preisach operator on the right sides. Then, we define

Ĥ(v(t), τ0) =
∫∫

T0

µ̂(β, α, t)γ∗αβ(v(t), τ0)dβdα, (15)

ud(t) = −ι(y(t)− ym(t))− ϑT
1 (t)v1(t) + ẏm(t), (16)

and the implicit controller equation (14) is rewritten as

Ĥ(v(t), τ0) = ud(t). (17)

The next task is to solve the implicit controller equation (17) so that we can compute
the control input v(t) in real time. This is essentially equivalent to constructing the inverse
function v(t) = Ĥ−1(ud(t), τ0). Next, we propose an inverse iterative algorithm to solve it.

A closest-match algorithm for solving the implicit controller equation (17) and its
convergence proof: Given that the desired output of the adaptive Preisach operator ud(t)
exhibits continuous, piecewise monotonic behavior over the defined time interval [0, tE],
where the partition is

0 = t0 < t1 < · · · < tN−1 < tN = tE, (18)

for a positive integer N ≥ 1, and during each sub-interval (ti, ti+1], i = 0, 1, 2, · · · , N − 1,
ud(t) is monotonic. Then, the implicit controller Equation (17) will be solved on each
sub-interval (ti, ti+1]. It is shown in the analysis in Remark 4 that the adaptive estimate
density function µ̂(β, α, t) changes slowly with time. In this sense, we can assume that
µ̂(β, α, t) = µ̂(β, α, ti) during each sub-interval (ti, ti+1], where i = 0, 1, 2, · · · , N − 1. With
this in mind, the adaptive Preisach operator Ĥ(v(t), τ0) can be expressed as

Ĥ(v(t), τ0) =
∫∫

T0

µ̂(β, α, ti)γ
∗
αβ(v(t), τ0)dβdα,

t ∈ (ti, ti+1], i = 0, 1, 2, · · · , N − 1.
(19)

With the later projection design, µ̂(β, α, t) is ensured boundedness as µa(β, α) ≤ µ̂(β, α, t) ≤
µb(β, α), and non-negativity for ∀t > 0 and ∀(β, α) ∈ T0. Then, using the third equality
in (4), it is not hard to prove that the adaptive Preisach operator Ĥ(v(t), τ0) has monotonic-
ity on each sub-interval (ti, ti+1], and the output range of Ĥ(v(t), τ0) can be obtained using
the following equation during (ti, ti+1]:

Hi,min = −
∫∫

T0

µ̂(·)dβdα, Hi,max =
∫∫

T0

µ̂(·)dβdα.

For the implicit controller equation (17) to have a solution, the following constructed
saturation condition is necessary:

Hi,min ≤ ud(t) ≤ Hi,max for ∀t ∈ (ti, ti+1], (20)

where i = 0, 1, 2, · · · , N − 1. The limitation of the output range (20) stems from the fact
that the Preisach operatorH(v(t), τ0) is a saturated hysteresis model, and the saturation
occurs when the control input v(t) is above the upper threshold α0 or below the lower
threshold β0.



Actuators 2023, 12, 341 9 of 17

Suppose that Condition (20) is satisfied. There are two discretization steps involved:
the discretization of the time interval [0, tE] has been described in (18), and the discretization
range R = [vmin, vmax] of the adaptive Preisach operator (15) input v(t) is uniformly
divided into L segments as VL =

{
v̄j, j = 1, 2, · · · , L + 1

}
, where v̄j = vmin + (j − 1)∆v,

∆v = (vmax − vmin)/L, and L is called the discretization level. The result of discretizing the
input range R is that the Preisach plane T0 is divided into cells. Considering the plane T0
with discretization degree L, and within each discretization cell, assuming that the density
function µ̂(β, α, t) in (15) is non-negative and remains constant. The inversion problem is as
follows: given the desired instantaneous value of ud(t) and the memory curve Φ(β, v(td))
generated by the previous input, find the corresponding input signal v∗(t), such that the
equality ud(t) = Ĥ(v∗(t), τ0) is satisfied, which can be calculated using the following
Algorithm 1:

Algorithm 1 Closest-Match Algorithm For Adaptive Preisach Operator [20].

Input: The memory curve Φ(β, v(td)) and the desired value of ud(t)
Output: Control input v∗L(t)

(Step 1) Set m = 0, v(m) = vmin
(Step 2)
if v(m) = v̄L+1 then

go to Step 5.
else

v(m+1) = v(m) + ∆v;
Φ̃ = Φ(β, v(m)) (backup the memory curve);
m = m + 1;
go to Step 3.

end if
(Step 3) Calculate u(m)

d = Ĥ(v(m), τ0), and update the memory curve to Φ(β, v(m)).

if u(m)
d = ud(t) then
go to Step 5.

else if u(m)
d < ud(t) then

go to Step 2.
else

go to Step 4.
end if
(Step 4)
if |u(m)

d − ud(t)| ≤ |u
(m−1)
d − ud(t)| then

go to Step 5.
else

v∗L(t) = v(m−1);
Φ(β, v∗L(t)) = Φ̃;
Exit.

end if
(Step 5)

v∗L(t) = v(m);
Φ(β, v∗L(t)) = Φ(β, v(m));
Exit.

The algorithm is based on the piecewise-monotonicity property of the adaptive
Preisach operator Ĥ(v(t), τ0), and it is not hard to see that the algorithm obtains the
solution v∗L(t) in at most L times. The convergence of the above iterative algorithm is
provided below.
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Proposition 1. Under Assumption 1–3, suppose that Condition (20) is satisfied. Then, the iterative
algorithm can find a solution v∗L(t) = v̄j ∈ VL, such that

|Ĥ(v∗L(t), τ0)− ud(t)| = min
v̄j∈VL

|Ĥ(v̄j, τ0)− ud(t)|. (21)

In addition, as the discretization degree tends to infinity, we can find the exact solution of the
inverse problem, i.e., limL→∞ v∗L(t) = v∗(t).

Proof. Our task is to prove the piecewise monotonicity and Lipschitz continuity of the
adaptive Preisach operator (15). Based on this property, we can follow the arguments in
Proposition 5.1 in [20] to prove Proposition 1.

As previously demonstrated, it has been established that the adaptive Preisach op-
erator (15) can be represented in the form of (19) during the sub-intervals (ti, ti+1] with
the adaptive density function µ̂(β, α, ti) being non-negative. Then, from the third equality
of (4), the following inequality holds(

Ĥ(v(t2), τ0)− Ĥ(v(t1), τ0)
)
(v(t2)− v(t1)) ≥ 0, (22)

for ∀t1, t2 ∈ (ti, ti+1]. Hence, the adaptive Preisach operator (15) is piecewise monotonic
on [0, tE] for the continuous, piecewise monotonic control input signal v(t) on (0, tE].
In addition, with the later projection design, the adaptive density function µ̂(β, α, ti) is
guaranteed to be non-negative and bounded for ∀ti ≥ 0, and ∀(β, α) ∈ T0. Then, based on
the piecewise expression (19), we can obtain the following Lipschitz continuity property:∥∥Ĥ(v(T2), τ0)− Ĥ(v(T1), τ0)

∥∥ ≤ KL‖v(T2)− v(T1)‖, (23)

for ∀T1, T2 ∈ [0, tE], where KL is a Lipschitz constant.
Based on the piecewise monotonicity (22) and Lipschitz continuity (23) of the adaptive

Preisach operator (15), we can follow the arguments in Proposition 5.1 in [20] to prove
Proposition 1.

So far, we have provided an iterative algorithm through which the control input signal
v(t) in the implicit controller equation (17) can be computed iteratively, and finally, the
convergence of this iterative algorithm has been proven. Next, we analyze the performance
of the adaptive control scheme.

4.3. Performance Analysis

Due to the limitations of computation time and the efficiency of the iterative algorithm,
obtaining an exact solution within a finite number of iterations is challenging. Therefore,
the implicit control equation (14) can be reformulated as follows∫∫

T0

µ̂(β, α, t)γ∗αβ(v
∗
L(t), τ0)dβdα + δ(t)

= −ι(y(t)− ym(t))− ϑT
1 (t)v1(t) + ẏm(t),

(24)

where δ(t) is the bounded iteration error. Using the iteration results v∗L(t) as the control
input and by substituting (13) into (24), we have the tracking error equation as follows

ė(t) =−
∫∫

T0

µ̃(β, α, t)γ∗αβ(v
∗
L(t), τ0)dβdα

− δ(t)− ιe(t)− ϑ̃T
1 (t)v1(t),

(25)

where e(t) = y(t)− ym(t), and the adaptive parameter errors are µ̃(β, α, ·) = µ̂(β, α, ·)−
µ∗(β, α) and ϑ̃T

1 (·) = ϑ1(·)− ϑ∗1 .
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Remark 3. In practical engineering applications, a proper bounded discretization degree L ensures
that |δ(t)| ≤ ε, where ε is an acceptable minor positive constant in engineering applications. Hence,
we consider the iterative error δ(t) as an external disturbance and use the following tracking error
Equation (26) for the next analysis in this paper.

ė(t) =−
∫∫

T0

µ̃(β, α, t)γ∗αβ(v
∗
L(t), τ0)dβdα

− ιe(t)− ϑ̃T
1 (t)v1(t).

(26)

By considering the tracking error Equation (26), we choose the positive definite
function as

V(e, µ̃) =
1

2φ

∫∫
T

µ̃2(β, α, ·)dβdα +
1
2

e2 +
1
2

ϑ̃T
1 Γ−1

1 ϑ̃1, (27)

where Γ1 = ΓT
1 > 0 and φ > 0 are the adaptive parameters for adaptive laws. Then, the

time derivation of V(e, µ̃) is

V̇ = − 1
φ

∫∫
T

µ̃(β, α, t)
(

φγ∗αβ(v
∗
L(t), τ0)e(t)−

∂

∂t
µ̂(β, α, t)

)
dβdα

− ιe2(t)− ϑ̃T
1 Γ−1

1 (Γ1v1(t)e(t)− ϑ̇1(t)).
(28)

Lyapunov-based adaptive control scheme: To ensure that V̇ ≤ 0, the update laws for
the estimates ϑ(t) and µ̂(β, α, t) are chosen as

ϑ̇1(t) = Γ1v1(t)e(t), (29)

∂

∂t
µ̂(β, α, t) =


φγ∗(t)e(t) if µ̂ ∈ (µa, µb), or

if µ̂ = µa, γ∗(t)e(t) ≥ 0, or
if µ̂ = µb, γ∗(t)e(t) ≤ 0,

0, otherwise,

(30)

where γ∗(t), µ̂, µa, and µb are the brief representations of γ∗αβ(v
∗
L(t), τ0), µ̂(β, α, t), µa(β, α),

and µb(β, α), respectively. By choosing the initial value of µ̂(β, α, t) within the range
[µa(β, α), µb(β, α)], the projection design (30) ensures that µa(β, α) ≤ µ̂(β, α, t) ≤ µb(β, α)

and µ̃(β, α, t)
(

φγ∗αβ(v
∗
L(t), τ0)e(t) − ∂

∂t µ̂(β, α, t)
)
≥ 0 for ∀t ≥ 0. Therefore, we have the

following results for limt→∞ e(t) = 0.

Theorem 1. Under Assumptions 1–3 and Proposition 1, all signals in the closed-loop system
consisting of the noncanonical nonlinear system (6), the Preisach operator (2), the iterative inverse
algorithm, and the implicit controller (14), which is updated using the adaptive laws (29) and (30),
are bounded, and the tracking error e(t) satisfies

lim
t→∞

e(t) = 0.

Proof. By substituting the adaptive laws (29) and (30) into the derivation of V (28), we can
derive that

V̇ ≤ −ιe2(t). (31)

Since ι is a positive constant, we have V̇ ≤ 0. Then, e(t), ϑ1(t), and µ̂(β, α, t) are
bounded, which implies that y(t) is bounded. From Assumption 1, we can establish the
inequality that ‖η(t)‖ ≤ K‖y(t)‖ + K for a proper constant K, thus η(t) and x(t) are
bounded. From the desired output of the adaptive Preisach operator (16), we can derive the
boundedness of ud(t). Then, the boundedness of all the closed-loop signals is established.
Next, we show the properties that e(t) ∈ L2 and limt→∞ e(t) = 0. Integrating both sides
of the first inequality in the derivation of V in (31) yields

∫ ∞
0 e2(t)dt < ∞, so e(t) ∈ L2.
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From the tracking error equation (26), it is evident that ė(t) is bounded. Therefore, using
Barbalat’s Lemma, we can conclude that limt→∞ e(t) = 0.

Remark 4. Since e(t) ∈ L2 ∩ L∞ and limt→∞ e(t) = 0, using the projection design in (30), it is
not hard to derive that

∂

∂t
µ̂(β, α, t) ∈ L2 ∩ L∞, and lim

t→∞

∂

∂t
µ̂(β, α, t) = 0, (32)

which means that µ̂(β, α, t), the adaptive estimate of µ∗(β, α), changes very slowly and eventually
converges to a time-independent value µ̂∗(β, α). Besides, the adaptive estimate µ̂(β, α, t) is limited
to a compact set [µa(β, α), µb(β, α)] by the projection design (30), which means that the µ̂(β, α, t)
would not be large. Then, during each sub-interval (ti, ti+1], i = 0, 1, 2, · · · , N − 1, we can
consider µ̂(β, α, t) = µ̂(β, α, ti) on the iterative algorithm for ∀t ∈ (ti, ti+1], and would not affect
the performance of the system.

5. Simulation Study

This section presents the simulation results for the relative-degree-one case of a non-
canonical nonlinear approximation system (6) with unknown parameters and preceded by
the Preisach hysteresis operator. The purpose of this section is to provide strong evidence
for the proposed adaptive control scheme in achieving the desired tracking performance,
as illustrated in Theorem 1, which guarantees that the tracking error converges to zero as
time tends to infinity.

5.1. Experimental Equipment

We developed a piezo actuator-driven stage as the experimental platform, which
mainly consists of four parts: (1) an E01 piezoelectric ceramic controller, including a
communication module E18.i3, a sensor control module E09.S3/L3, and a power amplifier
module E03.00, which has a voltage output range of 0–150 V; (2) a piezoelectric actuator,
which has a displacement output of 0–40 µm; (3) a vibration isolation table, which serves
the purpose of isolating the experimental equipment from external vibration; and (4) a
computer with MATLAB R2020a installed (see Figure 3).

 

Figure 3. Experimental platform.

5.2. Hysteresis Identification

As the only parameter of the Preisach operator, the upper and lower bounds of the
density function µ(β, α) play an important role in ensuring the convergence of the iterative
algorithm. Unreasonable settings of these bounds can seriously affect output accuracy.
Therefore, it is necessary to perform systematic identification of the actual piezoelectric
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actuator and then determine the upper and lower bounds of the estimator µ̂(β, α, t) based
on the identification results. With this in mind, we employed a gradient descent algorithm
to identify the density function. In this experiment, a triangular wave was chosen as the
voltage input signal v(t) at 5 Hz, with a range from 0 V to 115 V, and we set the sampling
rate at 1 kHz. The identified density function is shown in Figure 4a. To evaluate the
hysteresis curve matching degree between the one generated by the Preisach operator with
the identified density function and the experiment measurement, the voltage input was
chosen as a triangular wave signal at 5 Hz within a range of −55 V to 55 V, and the results
are shown in Figure 4b, demonstrating a close resemblance between the two curves.

(a) (b)

Figure 4. The identification results of the piezoelectric actuator. (a) The identified density function
µ(β, α) of the Preisach operator. (b) Matching degree of the Preisach operator with the identified
density function with the experimental measurement of the hysteresis curve.

5.3. Simulation System Modeling

In the simulation experiments, we follow the noncanonical nonlinear approximation
system (6) for the system parameter design, where B = [2, 1]T , C = [1,−1],

A =

[
2 1
0 1

]
, W∗ =

[
2.0 −0.6
1.2 0.2

]
, (33)

and the activation functions vector S(x) = [S1(x), S2(x)]T with

S1(x) =
3

1 + e−2x2
− 1.5, S2(x) =

(
4

1 + e−2x2
− 2
)(

3
1 + e−2x1

− 1.5
)

. (34)

The Preisach operator plane is defined by the thresholds β0 = −59 and α0 = 59.
The initial control input is chosen as v(0) = 0, and considering the definition of

the memory curve, we have Φ(β, 0) = 0. The initial output of the Preisach operator is
H(v(0), τ0(β, α)) = 0.558 with the density function µ(β, α) obtained from the identification.
The initial value of the state vector is chosen as x(0) = [0.6, 0]T , and a basic sinusoidal
function ym(t) = 2 sin(2t) + 2.5 is chosen as the reference signal.

Remark 5. For a general nonlinear system (5) in noncanonical form, it does not have an explicit
relative degree, neither do its approximation systems [29], and its relative degree depends entirely
on the unknown unparametrizable nonlinear functions in N (x(t)). In this regard, the system
matrix A, the connection weighted matrix W∗, and the activation functions vector S(x(t)) in
Equations (33) and (34) are in noncanonical form. An example of the general nonlinear system (5)
in canonical form is expressed as follows:

N (x(t)) =
[

x2
−50sin(x1)− 0.1x2

]
, B = [0, 50]T , C = [1, 0].
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5.4. Simulation Results

Initial parameters and design parameters: It is not hard to conclude that the sim-
ulation system satisfies the condition CB 6= 0, and then the adaptive scheme for the
relative-degree-one case in Section 4 can be used to control this system. With the diffeomor-
phism Ω(x) = [ξ, η]T = [x1 − x2,−x1 + 2x2]

T , the noncanonical nonlinear approximation
system (6) can be transformed into a tracking dynamics subsystem and a zero dynamics
subsystem with BIBS stability, thereby satisfying Assumption 1. Using a simple calculation,
the nominal parameters are ϑ∗1 = [2, 0, 0, 0.8]T , and µ∗(β, α) = CBµ(β, α), which are un-
known for the control design and are estimated using ϑ1(t) and µ̂(β, α, t), respectively. The
lower and upper bounds of µ∗(β, α) are chosen as µa(β, α) = 0 and µb(β, α) = 1.1µ(β, α)
for the projection design, where µ(β, α) is obtained from the identification results. The
initial parameters are chosen as ϑ1(0) = 0.5ϑ∗1 and µ̂(β, α, 0) = 0.7µ(β, α). Other design
parameters are chosen as ι = 4, φ = 0.08, and Γ1 = diag{1, 0.8, 0.8, 1.2}.

Simulation results and analysis: We employed the proposed adaptive control scheme
in the simulation system, and the tracking performance is depicted in Figure 5a, which
confirms the desired behavior of the control scheme and shows that the output y(t) con-
verges to the reference signal ym(t) over time. Figure 5b shows that the tracking error e(t)
gradually diminishes and eventually converges to zero over time. Furthermore, Figure 5c
shows the boundedness of the system input u(t) and control input v(t). As an example
to confirm that the estimate µ̂(β, α, t) changes very slowly and eventually converges to a
time-independent value µ̂∗(β, α), as described in Remark 4, Figure 5d shows the trajectories
of µ̂(30, 50) and µ̂(−50,−30) vs. time. With a discretization level of L = 118, Figure 6a
shows that the iteration error Ĥ(v∗L(t), τ0)− ud(t) is within the range of ±0.2 µm, where
the control input v∗L(t) is calculated using the iterative algorithm in the implicit control
Equation (17). The results confirm the convergence of the iterative algorithm established
in Proposition 1. The effectiveness of the iterative algorithm is shown in Figure 6b, where
we can see that the desired value ud(t) is achieved using the adaptive operator Ĥ(v(t), τ0).
For comparison, the PID control scheme is considered with the controller

v(t) = Kpe(t) +
1
Ti

∫ t

0
e(τ)dτ + λd

de(t)
dt

, (35)

where Kp = 0.8, Ti = 0.067, λd = 0.4. The closed-loop system tracking performance of the
PID scheme is depicted in Figure 7, which shows that the PID scheme with meticulously
adjusted parameters can also constrain the tracking error within a certain range. However,
it is not clear how to further minimize the tracking error by adjusting the parameters Kp,
Ti, and λd. With our scheme, the complete convergence proof and stability analysis of the
closed-loop system are well-established, and the tracking error can converge to zero over
time (as shown in Figure 5b), which effectively illustrates its advantages compared to the
PID scheme.

Remark 6. The limitation of the proposed method lies in the fact that the proposed adaptive inverse
compensation algorithm cannot be extended to other hysteresis models because the algorithm is
designed specifically to compensate for hysteresis nonlinearities modeled by the Preisach operator.
However, this limitation does not have an impact on this study. In the future, the authors intend to
investigate a new adaptive version of the closest-match algorithm to extend it to other hysteresis
models, aiming to eliminate this limitation.

Remark 7. The controlled plant in this article is modeled as a cascade of hysteresis nonlinearity
and noncanonical nonlinear systems, which can describe various practical systems, such as smart
material-based actuators (SMAs) [1], atomic force microscopes (AFMs) [34], and the end actuators
of macro- and micro-manipulation robotic arms [35]. They can perform tasks such as corrosion
measurement [36], polysaccharide microscopic analysis [37], intracytoplasmic sperm injections [38],
and have other practical industrial applications. Consequently, the proposed control scheme presented
in this article holds the potential for application in various real-world industrial scenarios.
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(a) (b)

(c) (d)

Figure 5. System response with ym(t) = 2sin(t) + 2.5. (a) Tracking performance y(t) and ym(t)
versus time (s). (b) Tracking error e(t) versus time (s). (c) Control input v(t) and system input u(t)
versus time (s). (d) Estimators µ̂(30, 50) and µ̂(−50,−30) versus time (s).

(a) (b)

Figure 6. Performance of iterative algorithm.

(a) (b)

Figure 7. The system response of the PID control scheme. (a) Tracking performance y(t) and ym(t)
versus time (s). (b) Tracking error e(t) versus time (s).



Actuators 2023, 12, 341 16 of 17

6. Conclusions

We have developed an iterative inverse-based adaptive control scheme for an uncertain
nonlinear system in a noncanonical form with unknown input Preisach hysteresis. The
control scheme utilizes a new adaptive version of the closest-match algorithm to effectively
compensate for the unknown hysteresis effects. The convergence of the iterative algorithm
was established by demonstrating the piecewise monotonicity and Lipschitz continuity of
the adaptive Preisach operator Ĥ(v(t), τ0). Furthermore, we conducted a complete stability
analysis of the closed-loop system. The simulation results serve as strong evidence for the
effectiveness of the proposed control scheme in achieving the desired tracking performance.

In our future work, for the completeness of the control scheme proposed in this article,
we will attempt to develop an adaptive control scheme for a controlled plant constructed
using the coupling of hysteresis nonlinearity and noncanonical nonlinear dynamics systems
with relative degrees greater than one.
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