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Abstract: In recent years, the aging of the rural population worldwide has become a major concern,
necessitating the development of agricultural automation. Pneumatic energy has emerged as a reliable
and environmentally friendly option, aiding in the global effort to reduce carbon emissions. The
purpose of this study is to reduce the amount of labor required for plug tray seeding by developing an
automated seeder that employs a precision pneumatic servo system via the rod-less actuator with real-
time trajectory tracking capabilities. The proposed seeder has a simple structure, is easy to maintain,
and saves energy. It mainly consists of a rod-less pneumatic cylinder, a needle seeding mechanism, a
soil drilling mechanism and a PC-based real-time controller. Mathematical models of the developed
precision pneumatic plug tray seeder are analyzed and established, and an adaptive sliding mode
controller is proposed. A PC-based real-time control system is developed using MATLAB/SIMULINK
via an optical encoder with a sampling frequency of 1 kHz to enable the development of precise
pneumatic plug tray seeder. An optical encoder is used to measure the displacement of the rod-less
cylinder which represents real-time positions of the plug tray loading platform. Experiments are
conducted using Brassicaceae seeds, and the rates of single seeding, multiple seeding, missed seeding
and germination are carried out through manual measurement. The results indicate that the seeder
exhibits satisfactory performance, with a root mean square error of less than 0.5 mm and a single-
seeding rate of more than 97%. Overall, our findings provide new insights for nurseries and could
contribute to the reduction in agricultural carbon emissions.

Keywords: plug tray seeder; pneumatic servo system; sliding mode control; trajectory tracking control

1. Introduction

Growing seedlings in plug trays is an efficient and reliable method that is often used
for vegetable crops. Seeding in plug trays saves seeds, produces a large yield per unit
area, induces independent seedling growth, and ensures uniform quality. In the seedling
industry, manual seeding is a slow and labor-intensive process. Gaikwad and Sirohi [1]
developed a low-cost pneumatic seeder and evaluated its performance using chili pepper
and tomato seeds. They reported that their seeder achieved a single-seeding rate of more
than 90% at approximately 15.27% of the overall cost of manual seeding. EL-Ghobashy
et al. [2] proposed a continuous feeding mechanism for precision plug tray seeders and
compared two plug tray types, four suction pressure levels, and four suction hole diameters
for cucumber and cabbage seeding; they reported that their precision plug tray seeder
resulted in 5–12-fold cost reductions compared with manual seeding. Plug trays with
104 cells are commonly used to promote the germination of many vegetable and fruit
seedlings. To reduce seed waste, labor, and seeding time, Naik and Thakur [3] developed
a pneumatic plug tray seeder that effectively saved 66.08% of the cost of manual seeding
and required only 27.87 h of operation to recover the seeder cost. To monitor seeder perfor-
mance and ensure seeding quality, Xia et al. [4] established a photoelectric measurement
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system using a row of fiber-optic sensors on a pneumatic roller seeder, and evaluated its
performance using 10 vegetable seeds; they reported that their system precisely determined
the corresponding single-seeding, missed-seeding, and multiple-seeding rates. Theoreti-
cally, optimal seeding parameters strongly correlate with the physical properties of seeds.
Karayel et al. [5] developed a mathematical model of seeder vacuum pressure to determine
the optimal vacuum pressure for seed suction depending on the physical properties of the
seeds; they also established a mathematical model for prediction. Xia et al. [6] proposed an
optimization method for determining the operational parameters of roller seeders; they
used collections of similar seeds to predict optimal operating conditions through particle
swarm optimization algorithms, which can be applied to real-life seeding scenarios. To
improve the performance of pneumatic precision seeders, Pareek et al. [7] combined an
artificial neural network method and a multiobjective particle swarm optimization method
to determine the optimal hole shape, hole size, vacuum pressure, and operating speed. Li
et al. [8] developed a pneumatic rapeseed seeder. In order to improve seeding performances,
they simulated and evaluated the suction hole shape, hole diameter and flow field effects
with a high-speed camera. They reported that their seeder achieved a missed-seeding rate
of less than 3% under optimal conditions.

In recent years, reducing carbon emissions and developing clean energy have become
global priorities. In line with these priorities, pneumatic actuators, which generate pressure
energy by compressing air, have garnered widespread attention in both industrial and
agricultural applications. Compared with traditional fuel engines, hydraulics, and motors,
pneumatic systems offer the advantages of being clean, cheap, safe, and easy maintenance.
In addition, they align with current international policies for reducing carbon emissions
and improving energy efficiency. However, pneumatic systems exhibit compressibility,
dead zones, zero drift, and other phenomena, all of which make them highly nonlinear
and difficult to control with precision. Therefore, achieving precise pneumatic control
requires the use of servo systems and careful controller design. Valdiero et al. [9] devel-
oped a mathematical model for a servo pneumatic actuator and proposed a fifth-order
nonlinear mathematical model that includes the primary characteristics of nonlinear dy-
namic systems; they also investigated the dynamic performances of multiple cylinders
through simulation, which enabled them to achieve precise control of pneumatic actuators.
Moriwaki [10] developed a pneumatic automatic cart which is used for harvesting. The
harvesting vehicle can maintain the level of the loading platform while driving on rugged
farm roads. Pneumatic servo systems have the potential to replace hydraulic and elec-
tromechanical systems. Lin et al. [11] applied position feedback dynamic surface control to
pneumatic systems and developed an improved dynamic surface controller to overcome
model uncertainty, external disturbances, and noise interference; they verified through
experiments that the proposed control method exhibited more advantages than traditional
proportional–integral–derivative (PID) controllers. Zhang et al. [12] proposed an accurate
model for a valve controlled pneumatic rotary actuator servo system. The characteristics
equations are derived precisely with the mass flow rate and the Stribeck friction method.
To address environmental concerns, Gao et al. [13] proposed an integrated mechanized
operation solution and explored the use of PID controllers and soft computing optimization
methods to control the positions of servo motors and pneumatic servo systems; according
to their simulation findings, the suggested control approach demonstrated precise posi-
tion results, exhibiting errors of less than 20 mm. This achievement can be applied for
ship rust removal and painting processes. Precise pneumatic control heavily relies on a
well-designed proportional servo valve. Zhang et al. [14] proposed positioning strategies
based on parameter tuning and optimization control techniques to enhance the accuracy,
speed, and versatility of pneumatic control valves. This approach shortened the system
adjustment time and improved valve position accuracy. Wang et al. [15] established a
finite element dynamic mathematical model and conducted finite element analysis on
the magnetic field inside a pneumatic proportional servo valve; they optimized the valve
through analysis, thereby reducing the hysteresis phenomenon within the working pres-
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sure range and achieving high performance for step signals. Zhu et al. [16] introduced a
fractional-order model for the pneumatic control valve. The experiments demonstrated
excellent adaptability and effectiveness for position control.

Sliding mode control (SMC) is extensively used in nonlinear control systems and is
known for its robustness. Ding et al. [17] developed a novel second-order SMC algorithm
for output-constrained problems by constructing a new barrier Lyapunov function and
applying the technique of adding power integrators; their proposed algorithm ensured that
the output variable remained within the boundary of the constraint region, whereas the
sliding variable could be stabilized to zero within a finite period. Fei et al. [18] devised an
adaptive fractional order sliding mode controller for a micro-gyroscope and a dual-loop re-
cursive fuzzy neural network to approximate uncertainties and disturbances of the system;
their simulation results indicated that the proposed control strategy exhibited excellent
performance in terms of trajectory tracking control. Li et al. [19] proposed a fuzzy SMC
technique based on a saturation function for a pneumatic muscle actuator to simulate the
actual motion of the human upper arm; they used fuzzy control and saturation function
adjustment for a robust term to improve tracking accuracy, reduce high-frequency oscilla-
tions, and achieve excellent performance in trajectory tracking experiments. Yu et al. [20]
investigated and analyzed seven SMC methods, the boundary layer method, the reaching
law method, SMC based on a disturbance observer, terminal SMC, hypertwisting SMC,
adaptive SMC, and intelligent SMC. Chen et al. [21] developed an improved sliding mode
controller with active disturbance rejection to enhance the vertical stability of unmanned
ground vehicles, coupled with an extended state observer to estimate disturbances arising
from the model’s nonlinear height and uncertainty; they validated the effectiveness of the
proposed controller and its robustness to load parameter uncertainty through simulations.
Sun et al. [22] presented a fuzzy adaptive recursive terminal sliding mode control tech-
nique for an agricultural omnidirectional mobile robot to balance tracking accuracy and
control smoothness. Kinematic and dynamic models comprise four control inputs and
three states. They reported that the proposed control strategy successfully completed a
trajectory tracking task in agricultural product transportation.

In this study, we reviewed previous studies regarding the development of pneumatic
seeders, pneumatic systems, and control technologies. Using the software SolidWorks
developed by Dassault Systems, we designed a precision pneumatic plug tray seeder with
a rod-less pneumatic cylinder and a pneumatic servo system, which achieved more precise
seeding compared with traditional motor-powered methods. Optical encoders are used
to precisely measure positions of the plug tray loading platform. We also established
dynamic models for the developed pneumatic system and conducted adaptive sliding
mode control simulations on MATLAB. In addition, we used MATLAB/SIMULINK to
establish a PC-based real-time trajectory tracking control environment. The performances
of the proposed controller were analyzed by comparing various control methods [23,24].
We then evaluated the developed pneumatic seeder using multiple cruciferous seeds to
achieve precise seeding.

This paper is organized as follows: In Section 1, the research background and a
review of the relevant literature concerning plug tray seeding and pneumatic systems are
introduced. Section 2 outlines the experimental methods and materials used to develop
the precision pneumatic plug tray seeder. Section 3 presents the established mathematical
models and the design of an adaptive sliding mode controller for the seeder. In Section 4,
simulation and experimental results are presented for evaluating the seeder’s performance
in seeding and germination. Finally, Section 5 summarizes the achievements of the precision
pneumatic plug tray seeder.

2. Experimental Method
2.1. Structural Design of the Precision Pneumatic Plug Tray Seeder

In this study, a precision pneumatic plug tray seeder was developed to automate
the seeding process in plug trays. As shown in Figure 1, the precision pneumatic plug
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tray seeder contained a plug tray loading platform, a soil drilling mechanism, a needle
seeding mechanism, and a seed grove. It also contained a rod-less pneumatic cylinder, an
auxiliary pneumatic cylinder, a pneumatic servo valve, guided drives, solenoid valves,
vacuum generators, and an optical encoder. These components formed a reciprocating
conveying mechanism that enabled automatic seeding in plug trays. Figure 2 shows the
suction needles with inner diameters of 0.21, 0.26, 0.33, 0.41, 0.51, 0.6, 0.65 and 0.84 mm
which were used for the experiments.
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Figure 2. Suction needles with inner diameters of 0.21, 0.26, 0.33, 0.41, 0.51, 0.6, 0.65 and 0.84 mm
were used for experiments.

2.2. Precision Pneumatic Plug Tray Seeder Layout and Real-Time Control System

Figure 3 shows the layout of the precision pneumatic plug tray seeder and the PC-
based real-time control system, which was developed using MATLAB/SIMULINK R2018b.
Both the rod-less pneumatic actuator (model DGC-18-700-GF-PPV-A) and the auxiliary
cylinder (model DGC-18-700-FA-P), with a stroke of 700 mm, were manufactured by Festo
in Germany. The proportional directional control valve (model MPYE-5-1/8-HF-010-B;
Festo, Germany) was used to control the rod-less actuator. Input voltages of a pneumatic
valve was set to 0–10 V, with a median voltage of 5 V. Three guided drives (DFM-12-
50-B-P-A-GF-AJ; Festo, Germany) with a stroke of 50 mm were used to drive the soil
drilling and needle seeding mechanisms. Solenoid valves (VUVG-L14-M52-AT-G18-1P3;
Festo, Germany) were used to control the aforementioned guided drives. Three vacuum
generators (VN-10-L-T3-PQ2-VQ2-RO1-B; Festo, Germany) were used to provide a negative
pressure for the needle seeding mechanism through needles with a length of 30 mm, an
internal diameter of 0.51 mm, and an external diameter of 0.82 mm. Figure 4 demonstrates
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vacuum Pu as a function of operating pressure P1. The relationship between vacuum Pu
and operating pressure P1 for vacuum generators that we adopted is line 9. So, in the
operating pressure set at 6 bar, vacuum generators can produce a negative pressure of
−0.6 to −0.7 bar. An optical encoder (model LIA20; Numerik Jena, Jena, Germany) was
used to determine the position of the plug tray loading platform according to the receiver
module which receives the A and B phase signals with a phase difference of 90 degrees to
determine the relationships between the A and B phases for directions of object movement.
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During signal transmission, a data acquisition (DAQ) card (PCI-1723; Advantech,
Taipei, Taiwan) was used to control the signals of the proportional directional control valve,
solenoid valves, and vacuum generators. A counter card (PCI-6221; National Instruments,
Austin, TX, USA) with a sampling frequency of 1 kHz was used to collect the feedback
signals of the optical encoder. Therefore, the position of a plug tray loading platform can be
obtained by counting the output pulses via a counter card. To drive the rod-less pneumatic
cylinder through the DAQ card, the control signals generated with MATLAB/SIMULINK
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were transmitted to the pneumatic servo valve. Subsequently, the displacements of the
cylinder were collected via the optical encoder and fed back to MATLAB/SIMULINK
through the counter card, and the reference trajectories were then compared to realize
real-time control. Because of the reasonable design of the controller and the continuous
correction of tracking errors, the plug tray loading platform was able to reach the designated
position with precision. Table 1 shows the specifications of the precision pneumatic plug
tray seeder and the PC-based real-time control system.

Table 1. Specifications of the precision pneumatic plug tray seeder and the PC-based real-time
control system.

Component Specification

Rod-less pneumatic actuator Piston diameter: 18 mm
Stroke: 700 mm

Auxiliary cylinder Stroke: 700 mm

Guided drive
Piston diameter: 12 mm

Stroke: 50 mm

Pneumatic servo valve
5/3-way function

Input voltage: 0–10 V

Solenoid valve 5/2-way function

Vacuum generator 2/3-way function

Optical encoder Range: 700 mm
Resolution: 1 µm

DAQ card 16-bit, 8-ch., non-isolated analog output card
Output range: ±10 V, 0–20 mA, 4–20 mA

Counter card Analog I/O, correlated digital I/O, two 32-bit
counters/timers, and digital triggering

Needle
Inside diameter: 0.51 mm

Outside diameter: 0.82 mm
Length: 30 mm

Plug tray 104 cells, 42 mm for cell diameter

2.3. Experimental Setup

Experiments were conducted on the precision pneumatic plug tray seeder using
104-cell plug trays and cruciferous seeds, whose properties are listed in Table 2. Seeder
performance was evaluated by measuring the single-seeding, multiple-seeding, and missed-
seeding rates. Displacement of the plug tray loading platform was measured using an
optical encoder, and system performance was evaluated using the root mean square error
(RMSE) and single-seeding rate.

Table 2. Properties of cruciferous seeds.

Crop Length (mm) Width (mm) Aspect Ratio Weight of 1000 Seeds (g)

Brassica rapa subsp. pekinensis 1.977 ± 0.133 1.713 ± 0.124 1.154 3.27
Brassica rapa subsp. chinensis 1.969 ± 0.119 1.727 ± 0.119 1.140 3.43

Brassica parachinensis 1.902 ± 0.112 1.668 ± 0.090 1.292 2.41
Brassica oleracea var. botrytis 1.792 ± 0.130 1.509 ± 0.099 1.188 1.74
Brassica oleracea var. capitata 2.505 ± 0.183 2.088 ± 0.201 1.200 4.39

3. Mathematical Model and Controller
3.1. Mathematical Model of the Precision Pneumatic Plug Tray Seeder [26,27]

The precision pneumatic plug tray seeder developed in this study is driven by air
pressure and can be precisely controlled with voltage signals that control the pneumatic
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valve. However, because of the compressibility of gas, pneumatic systems exhibit strong
nonlinearity, which necessitates prior simulation to ensure system validity. In this section,
we describe the mathematical model established for the proposed system. The mathematical
model of this system is derived from my previous studies [23,24]. More details of fluid
dynamics were considered, such as the frequency response of the pneumatic servo valve
and specific heat capacities of heat conduction in the Mayer’s equation. Figure 5 shows
a schematic of the rod-less cylinder with a pneumatic valve. With the motion model of
the rod-less cylinder, we can derive the following equations in accordance with Newton’s
second law:

Av(t)(P1(t)− P2(t))sgn
( .
y(t)

)
− Ff = m

..
y(t) (1)

Ff = µv
.
y(t) + ksy(t) + µcsgn

( .
y(t)

)
+ flsgn

( .
y(t)

)
(2)

where Av is the opening area of the pneumatic valve and P1,2 is the pressure inside the
chambers. In these equations, Ff is used to describe various friction forces in the rod-less
pneumatic cylinder, where µv is the viscosity coefficient, ks is the stiffness coefficient, µc
is the Coulomb friction force, fl is the external disturbance force, and m is the cylinder
payload. The following equation describes the relationships between the valve-opening
area Av and the control signal u:

Av(t) = Kvu(t) (3)

where Kv is the gain constant. Figure 6 illustrates the frequency response of the pneumatic
servo valve, comparing the input signal with the pressure variation, 0–6 bar. By examining
the Bode diagram, the utilized control signal u(t), 1 kHz, significantly exceeds the band-
width of the pneumatic servo valve. The mass flow rate

.
M1,2 of the rod-less pneumatic

cylinder can be expressed as follows:

.
M1,2(t) =

CdCmPi√
Ts

Av1,2(t) +
CdCm Av1,2(t)√

Ts
Pi(t) (4)

where Cd is the displacement coefficient, Cm is the mass flow rate parameter, Pi is the
working pressure, and Ts is the air source temperature. The following is the mathematical
expression for the volume V1,2 of chambers 1 and 2:

V1,2(t) = Vi + Av1,2(t)y(t) (5)

where Vi is the initial volume and where y(t) is the piston displacement. The continuity
equation is used to describe the relationship between mass flow rate and pressure changes.
The following is the continuity equation for chambers 1 and 2:

.
M1(t) +

.
M2(t) =

1
RTs

(
2Pi Av(t)

.
y(t) +

Vi
k

( .
P1(t)−

.
P2(t)

))
(6)

k =
Cp

Cv
(7)

where R is the ideal gas constant, k is the specific heat, and Cp and Cv are the specific
heat capacities at constant pressure and constant volume, respectively, which are related
through the Mayer’s equation, expressed as follows:

Cp − Cv = R (8)

From the aforementioned equation, the state equations of the pneumatic system can be
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derived as follows:

.
x1(t) = x2(t)

.
x2(t) =

Av(t)(x3(t)−x4(t))sgn(x2(t)−Ff )

m

.
x3(t) =

kRTs
CdCm Pi√

Ts
kvu(t)+kRTs

CdCm Av(t)√
Ts

x3(t)−kx3(t)Avx2(t)

Av(t)x1(t)+Vi

.
x4(t) =

−kRTs
CdCm Pi√

Ts
kvu(t)+kRTs

CdCm Av(t)√
Ts

x4(t)+kx4(t)Avx2(t)

Vi−Av(t)x1(t)

(9)

y(t) = x1(t) (10)

where x is the state vector of the system.
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3.2. Adaptive Sliding Mode Control [26,27]

To attain precise trajectory tracking control for a plug tray loading platform via the rod-
less pneumatic cylinder, an adaptive sliding mode controller was devised. This controller
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employed Fourier series approximation techniques as the orthogonal function sets to
effectively handle nonlinearities, uncertainties and time variations in the mathematical
models of the precision pneumatic plug tray seeder system. Any function that satisfies the
Dirichlet conditions in the interval [−P, P] can be expanded into a Fourier series as follows:

f (t) = a0 +
∞

∑
n=1

[
ancos

nπt
P

+ bnsin
nπt

P

]
(11)

where a0, an, and bn are Fourier coefficients, which can be expressed as follows:
a0 = 1

2P
∫ P
−P f (t)dt

an = 1
P
∫ P
−P f (t)cos nπt

P dt, n = 1, 2, 3, . . .
bn = 1

P
∫ P
−P f (t)sin nπt

P dt, n = 1, 2, 3, . . .

(12)

The function f (t) can be approximated by products of a coefficient vector and an
orthogonal function vector as follows:

f (t) ≈WTZ(t) (13)

W = [w1w2 . . . wn]
T (14)

Z(t) = [Z1Z2 . . . Zn]
T (15)

In SMC, the sliding plane must first be established. The tracking error e(t) of a
pneumatic system trajectory is defined as follows:

e(t) = ym(t)− y(t) (16)

where y(t) is the system output and ym(t) is the reference trajectory. The sliding surface s
is defined as follows:

s = a1e(t) + a2
.
e(t) +

..
e(t) (17)

where a1 and a2 are the parameters of the designed sliding surface. Given the aforemen-
tioned sliding surface and state equations of the pneumatic system, represented with a
function approximation method, the control input of the designed adaptive sliding mode
controller can be expressed as follows:

u(t) =
−ŴF

T
ZF(t)− e(t)− a1

.
e(t)− a2

..
e(t)− p21e(t)− p22

.
e(t) +

...
y m(t)− s

2ρ2

Ŵg
T

Zg(t)
(18)

This controller aims to minimize tracking errors and stabilize the system. Figure 7
shows a block diagram of an adaptive sliding mode controller. In (18), ŴF and Ŵg are the
coefficients calculated using the function approximation method to estimate the pneumatic
system, ZF and Zg are the orthogonal function sets calculated using the function approxi-
mation method to estimate the pneumatic system, ρ is a positive parameter, and p21 and
p22 are the elements of the adaptive parameter p, which can be expressed as follows:

A =

[
0 1
a1 a2

]
, AT p + pA = −Q, Q ∈ positive de f inite matrix (19)
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To demonstrate the stability of the controller, a Lyapunov candidate function V was
introduced as Equation (20), and intelligent parameter adjustments were employed to
adapt the controller. The derivative of the Lyapunov candidate function showed that the
energy of the system decreased over time, indicating the stability.

V =
1
2

(
s2 + eT pe +

∼
WT

F Y−1
1

∼
WF +

∼
WT

g Y−1
2

∼
Wg

)
(20)

where V is the total energy of the system, s2 is the sliding surface, eT Pe is the system

error, and
∼

WT
F Y−1

1

∼
WF and

∼
WT

g Y−1
2

∼
Wg are the system states. Here,

∼
WF = ŴF −WF, and

∼
Wg = Ŵg −Wg, and an intelligent parameter adjustment is employed as follows:

.

ŴF = γ1sqF(t) (21)

.

Ŵg = γ2sqg(t) (22)

where γ1 > 0 and γ2 > 0 are gain matrices. The derivative of V can be obtained as follows:

.
V = s

.
s +

1
2

.
eT pe +

1
2

eT p
.
e +

∼
WT

F γ−1
1

.
∼

WF +
∼

WT
g γ−1

2

.
∼

Wg (23)

By substituting (20)–(22) into (23), we obtain the following expression:

.
V = −1

2

(
eTQe +

(
s
ρ
− ρwt

)2
− ρ2w2

t

)
≤ −1

2

(
eTQe − ρ2w2

t

)
(24)

Then, by integrating (24), we obtain the following expression:

V(t) ≤ V(0)− 1
2

∫ T

0

(
eTQ e− ρ2w2

t

)
dτ (25)

where wt is the actual upper limit of the approximation errors. According to Barbarlat’s
lemma,

.
V(t) is bounded for t ≥ 0, indicating that s→ 0 and e→ 0 when t→ ∞ . When

s→ 0 , the system will tend to be stable through the sliding surface. When s = 0, the
sliding surface can be described as follows:

a1e(t) + a2
.
e(t) +

..
e(t) = 0 (26)
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Using Laplace transform, (26) can be converted to s-domain:

a1E(s) + a2sE(s) + s2E(s) = 0 (27)

The open-loop transfer function G(s) can be described as follows:

G(s) =
a2s + s2

a1
(28)

With final value theorem

lim
t→∞

g(t) = lim
s→0

sG(s) (29)

(28) can be converted as follows:

lim
t→∞

e(t) = lim
s→0

s
(
a2s + s2)

a1
= 0 (30)

According to (30), the tracking errors e would tend to 0 when t→ ∞ can be proven.
By applying the final value theorem, it was proven that the tracking errors would tend to
zero as time approached infinity, confirming the system to stabilize and accurately track
the reference trajectory through the designed adaptive sliding mode controller.

4. Results and Discussions
4.1. Simulations

To ensure the feasibility of the precision pneumatic plug tray seeder, trajectory tracking
simulations of the proposed pneumatic system was conducted using MATLAB. A fifth-
order polynomial trajectory was used as the reference trajectory for trajectory tracking
control, which was combined with the established mathematical model and the proposed
controller described in Section 3. To objectively evaluate the performance of the controller,
the RMSE was defined as follows:

RMSE =

√√√√ 1
N

N2

∑
k=N1

e2
k (31)

where N = N2 − N1, with N1 representing the starting time and N2 representing the
ending time.

Figure 8 shows the open-loop experimental results of the rod-less pneumatic cylinder
at an input signal of 6 V. The blue line and the red line in Figure 8a represent cylinder
trajectories of the simulation and the experiment, respectively. To increase the consistency
between the simulation and experimental results, the simulation parameters were adjusted
in the open-loop experiment. Figure 9 depicts the trajectory tracking simulation results
of the proposed adaptive sliding mode controller with a reference fifth-order polynomial
trajectory of 200 mm/4 s. According to these simulation results, the proposed controller
exhibited excellent trajectory tracking performances, with an RMSE of 0.185 mm and a
maximum error of 0.874 mm.

Figures 10 and 11 illustrate the sliding surface s and the phase plane of e(t) and
.
e(t)

based on the trajectory tracking simulation results in Figure 9, respectively. It is seen that
the sliding mode is in the reaching phase for the first 0.3 s, and then enters the sliding
phase. When the tracking error is smaller, the sliding surface is closer to 0. In the phase
plane, tracking errors successfully converge to the origin, confirming the stability of the
system [28].
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4.2. Experiments

The precision pneumatic plug tray seeder developed in this study is compatible with a
variety of plug trays, and the proposed plug tray loading platform primarily consists of rod-
less pneumatic cylinders. To ensure that the seeds fall at the center of the tray cell, precise
control of the pneumatic cylinder’s trajectory is required. In this study, a PC-based real-
time trajectory tracking control platform was established using MATLAB/SIMULINK, and
an adaptive sliding mode controller was proposed. Controller performance was verified
through trajectory tracking experiments with varying strokes and speeds. Figures 12 and 13
depict the experimental results of the plug tray loading platform for both a fifth-order
polynomial trajectory at 500 mm/10 s and a hybrid trajectory, which was a combination of
a fifth-order polynomial trajectory at 500 mm/10 s and a 25 × sin(2π × 0.32 × t) trajectory,
with RMSEs of 0.769 and 0.570 mm and maximum errors of 2.729 and 2.107 mm, respectively.
Figure 14 shows the experimental results of the seeding trajectory for the plug tray loading
platform, with an RMSE of 0.436 mm and a maximum error of 2.357 mm. The seeding
trajectory was established using a 104-cell plug tray with a center distance of 42 mm and a
seeding speed of 60 s/tray. Figure 15 display the operational status of various components
in the precision pneumatic plug tray seeder. Solenoid valves were used to control the
guided drives of each component by 0–5 V control signals. In coordination with speeds of
the plug tray loading platform, the lengths of operation time for the soil drilling mechanism
are 2.15 s. After soil drilling, the seed picking mechanism was used for 1.7 s to pick up seeds.
Finally, the seeding mechanism operated for 1.35 s, with vacuum generators operating for
3.125 s to drop seeds. The success of seed suction directly affects seeding performances.
In the trajectory experiments, all RMSEs were less than 1 mm, and none of the maximum
errors exceeded 3 mm. This process ensured the accuracy of the precision pneumatic plug
tray seeder during seeding and also guaranteed its adaptability to different plug tray sizes
and seeding speeds. Table 3 compares multiple control methods with trajectory tracking
experiments involving pneumatic cylinders for fifth-order polynomial trajectory, hybrid
trajectory and seeding trajectory comparing with the control methods in [23,24], and smaller
RMSEs of our control methods were achieved. Also, Figure 16 shows the scatter plot of
reliabilities for RMSE-Maximum errors via ten replicates in three different trajectories we
proposed in this study. Experimental results show that the proposed controller exhibited
satisfactory performances.
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Table 3. Comparisons of control methods.

Control Method Trajectory RMSE (mm) Max. Error (mm)

Proposed method Fifth-order polynomial trajectory 0.769 2.729
Proposed method Hybrid trajectory 0.570 2.107
Proposed method Seeding trajectory 0.436 2.357

Method in Ref. [23] Sine trajectory 1.037 -
Method in Ref. [23] Multi-frequency sine trajectory 0.831 -
Method in Ref. [24] Sine trajectory 9.82 -
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4.3. Seeding Rate Analysis

Seeding one seed per cell of a plug tray is the optimal method for seedling develop-
ment. In this study, seeding rates were analyzed to investigate the performance of the
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proposed precision pneumatic plug tray seeder. While, single seeding is defined as seeding
only one seed in a plug tray cell, multiple seeding is defined as seeding two or more seeds
in a plug tray cell, and missed seeding is defined as not seeing any seeds in a plug tray cell.
The optimal conditions for seed suction have been verified through experiments. The main
influencing factor is the inner diameter of the suction needle; needles of 0.51 mm inner
diameter were selected in this study. Providing enough vacuum pressure can ensure that
seeds are stably adsorbed. Table 4 lists the seeding experimental results of the precision
pneumatic plug tray seeder, which were obtained by conducting the experiment three times
under the same conditions. Through these repeated experiments, the optimal experimental
conditions were determined to be a seeding speed of 60 s/tray, a vacuum pressure of
−0.65 bar, and a needle inner diameter of 0.51 mm. Multiple cruciferous seeds were tested.
The single-seeding rates were all above 94%, with multiple-seeding rates not exceeding
5%. However, compared with the multiple-seeding rate, the missed-seeding rate was more
concerning. According to the experimental results, the missed-seeding rates of the precision
pneumatic plug tray seeder did not exceed 4%.

Table 4. Comparison of Seeding methods.

Seeding Method Crop Single-Seeding
Rate (%)

Multi-Seeding
Rate (%)

Missed-Seeding
Rate (%)

Germination
Rate (%)

Proposed method Brassica rapa subsp. pekinensis 94.23 0.32 3.21 94.23
Proposed method Brassica rapa subsp. chinensis 94.87 4.49 0.64 83.01
Proposed method Brassica parachinensis 97.12 0.96 1.92 95.83
Proposed method Brassica oleracea var. botrytis 95.20 1.92 2.88 87.18
Proposed method Brassica oleracea var. capitata 96.48 2.56 0.96 91.35
Method in Ref. [1] Capsicum 92.46 5.23 2.31 -
Method in Ref. [1] Tomato 90.12 6.4 3.48 -

The proposed precision pneumatic plug tray seeder not only offered precise seeding
but also demonstrated excellent results in the seeding rate experiments. Therefore, to deter-
mine whether seeding with the proposed precision pneumatic plug tray seeder affected
seed growth, a germination experiment was conducted. Table 4 shows the results of this
germination experiment, which was conducted three times under the same conditions. Af-
ter the proposed precision pneumatic plug tray seeder was used for seeding, the plug trays
were placed in a well-illuminated space for cultivation and watered twice a day with 5 mL
of water per cell. Figure 17 shows the results of the germination experiments for Brassica
rapa subsp. pekinensis, Brassica rapa subsp. chinensis, Brassica oleracea var. botrytis, Brassica
oleracea var. botrytis, and Brassica oleracea var. capitata. According to the experimental results,
the germination rate of all the crop seeds exceeded 95%, which is almost identical to that of
manual seeding; this result confirmed that the precision pneumatic plug tray seeder did
not affect seed growth.
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5. Conclusions

In this study, a precision pneumatic plug tray seeder was developed by applying a
pneumatic servo system to an automatic plug tray, which consisted of a plug tray loading
platform and a seeding system. A PC-based real-time control platform was established for
trajectory tracking through MATLAB/SIMULINK, and an adaptive sliding mode controller
was proposed to precisely control the trajectory of the pneumatic cylinder. The performance
of the system was then evaluated through trajectory tracking experiments with multiple
strokes and speeds. According to the experimental seeding results, all single-seeding rates
exceeded 97%, while missed-seeding rates did not exceed 4%. The system exhibited high
adaptability to different plug tray sizes and seeding speeds, thereby confirming its accuracy
during seeding.

Overall, the proposed adaptive sliding mode controller exhibited high trajectory
tracking performance, with an RMSE of 0.436 mm and a maximum error of 2.107 mm.
Compared with other control methods, the proposed controller exhibited satisfactory
performance. Therefore, the proposed controller appears to be suitable for agricultural
production, especially in the plug tray seeding industry.
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