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Abstract: A new approach to model the motion of floating bushings in external gear pumps is
presented in this article, where lubrication conditions have been introduced using dimensional
analysis. This model is based on Bond Graph diagrams and has been experimentally validated in
lab tests measuring the movement of the floating bushing inside the gear pump by means of laser
micrometers. The novelty of this research is the creation of a simple and experimentally validated tool
for the behaviour study of these types of pumps, which allows the simulation of a dynamic rigid solid
in a fluid boundary with clearances of the order of microns, without using powerful CFD tools, with
very short execution times, and using conventional computational tools. The qualitative behaviour of
the model with respect to the experimental results is very similar, adjusting the numerical values with
very acceptable accuracies by taking into account the precision of the experimental measurements,
and allows us to use the model to interpret the volumetric and mechanical efficiency variations
according the operating conditions.

Keywords: gear pump; floating bearing bushings; bond graph; lab tests; dimensional analysis

1. Introduction

The behaviour of an external gear pump (EGP) is totally related to the movement
of its floating bushing bearings (FBB). Therefore, a model is needed to understand these
dynamics and explain the fluid dynamic phenomena which can be studied by means of ISO
tests [1]. It can also be used to understand the motion of FBB in long real cycles, and hence,
the fact that the simulation time would be fast is a great advantage to make it easily usable.
For these reasons, the technique used to build the model is Bond Graph diagrams [2], which
allow for the integration of the FBB model presented in this article within a pump model,
creating a macro model, as was used in the work of Torrent et al. [3].

In Figure 1 the internal configuration of the reference EGP is shown. The FBBs are
pressed against the gears by the outlet pressure acting on the rear area in red. In this way, the
clearance between the gears and the FBBs decreases as the pressure increases, keeping the
unit’s performance fairly high and constant. Lubrication studies in such complex domains
are usually carried out using powerful CFD tools, with considerable computing equipment
and very long simulation times. Examples include the work of Corvaglia et al. [4] on a
three-dimensional model to measure pulsating flow, Thiagarajan et al. [5] on the effect of
component surface roughness on lubrication, and Mithum et al. [6] on cavitation. A notable
example of research on the complex interaction between fluid dynamics and the dynamics
of the surrounding solid rigid under highly variable boundary conditions is the HYGESim
software developed by Vacca and Guidetti [7].

However, this type of CFD simulation is not the route taken to create our FBB motion
model. By applying dimensional analysis to the Reynolds equation, an analogy is made
between the gear side gap lubrication and the sum of the effects of fixed-incline sliding
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bearing and parallel-surface thrust bearing. Undoubtedly, the originality of this work lies
in this application of similarity. The calculation of lubrication in this domain obviously
has no analytical solution, and powerful computational tools are required for detailed
simulation. It is very difficult to solve the fluid dynamics when the contour is changing
at high speed, with clearances in the order of microns. So, as in other similar cases in
engineering, dimensional analysis is used to create a model. This is a method that makes
it possible to reduce the number and complexity of the variables involved in describing
a physical phenomenon, thus greatly facilitating its representation in experimental data,
without losing relevant information. The application of this technique to gear pumps can
be found in the study of the flow through very small grooves between curved surfaces
in external and internal gear pumps by Rituraj and Vacca [8]. For example, solving the
flow through two teeth in contact is difficult to address even with CFD tools. In this work,
an identification of the dimensionless variables involved is carried out in order to create
analytical models to be introduced in numerical studies.

As with any numerical model, and particularly in view of the hypotheses made during
the model development, before using the model in real working cycles, it is necessary to
validate it by comparing the results of the experimental tests in the laboratory (Figure 2)
with the numerical simulation of identical working cycles. The pioneer of this type of
measurement, Koç [9], used a capacitive transducer installed in a tooth to measure the
clearance between the gear and the side plate. Based on the expertise of our laboratory,
laser transducers are used to measure hydrodynamic film clearances by inserting small
rods into the shaft and bearing bushing. This method, developed by Gutés [10] and
Castilla et al. [11] to realise the journal bearing clearances, has been adapted to measure
the lateral gap between the FBB and the gears, described in Torrent’s Ph.D. Thesis [12] and
in the article by Torrent et al. [3].

In the experiments carried out, the thicknesses are always greater than 1 µm, an
approximate value above which lubrication can be considered to be fully hydrodynamic,
a hypothesis taken into account in the developed model. When working at very high
pressures and low speeds, the minimum thickness between the FBB and the gears could
be so small that it enters the area of elastohydrodynamic lubrication regime (order of
0.1 µm). In this case, it is necessary to take into account the superficial deformation of
the lubricated surfaces. The film does not break and the load carrying capacity increases
considerably with increasing oil viscosity. When the oil film breaks, partially or completely,
it enters the boundary lubrication regime, creating contact between the asperities. Friction
is independent of viscosity and depends on the chemical and physical properties at the
molecular level of the surfaces. The wear caused by the fracture of these asperities is
considerable, but the pump can operate for several milliseconds without total fracture.
Eventually, as the load continues to increase, conditions of no lubrication are reached,
causing the “metal-to-metal contact” and the consequent total failure of the unit. Good
references for investigations beyond the purely hydrodynamic regime are Dhar et al. [13,14]
and Thiagarajan and Vacca [15].

With respect to the previously published article of Torrent et al. [3], two notable
novelties are introduced in this work. The first is to deepen into the dimensional analysis
to consider the lubrication between gears and FBB as the sum of the effects of a sliding and
a thrust bearing. The second is to include tilting modelling of the FBB in the Bond Graph
instead of using experimental correlations.
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Figure 1. Gear pump configuration (Source: Rundo [16]). 

  

(a) (b) 

Figure 2. Experimental setup of laser micrometres to measure the motion of the FBB (a) longitudinal 

position; (b) tilting position. 

2. Solid Rigid Model 

As can be seen in Figure 3, the floating bushings are balanced by the hydrostatic force 

due to the impulsion pressure on an effective surface Fp, the force due to the compression 

of the seal Fj and the force due to the viscous friction between the bushing and the housing 

Fr. In order to achieve equilibrium, the hydrodynamic forces due to the rotation of the gear 

face against the inclined face, named sliding force Wzhydr, and those due to the approach 

between the two surfaces, named thrust force Wzthrust, appear. In addition, there are the 

shaft forces supported by the journal bearings inserted in the bushing, which are not the 

same for the driver shaft Fe and the driven shaft Fe’. 

The leakage of the pump is related to the clearance between the gear and the FBB, 

among others, and that this is defined by the longitudinal displacement of the plate and 

its inclination, as shown in Figure 4. Looking at Figure 5a, we can see that the movement 

of the FBB is completely three-dimensional. The hydrostatic force pushes the bushing to-

wards the gear with a velocity uz and at the same time towards the suction zone with a 

velocity ux. As this force is not centred on the centre of gravity, it is tilted with respect to 

the y-axis, so that the clearance between the bushing and the gear is a priori smaller in the 

pressure zone than in the suction zone. Moreover, as the radial forces on the shafts are 

asymmetrical, the bushing tends to move in the direction of the y-axis at a speed uy, just 

as it tilts with respect to the z-axis at an angular speed ωz. Finally, the pressure distribution 

in the gap between the gear and the bushing is not symmetrical with respect to the x-axis, 

so it tends to tilt with an angular velocity ωx. Modelling this motion is therefore particu-

larly complex. 
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Figure 2. Experimental setup of laser micrometres to measure the motion of the FBB (a) longitudinal
position; (b) tilting position.

2. Solid Rigid Model

As can be seen in Figure 3, the floating bushings are balanced by the hydrostatic force
due to the impulsion pressure on an effective surface Fp, the force due to the compression
of the seal Fj and the force due to the viscous friction between the bushing and the housing
Fr. In order to achieve equilibrium, the hydrodynamic forces due to the rotation of the gear
face against the inclined face, named sliding force Wzhydr, and those due to the approach
between the two surfaces, named thrust force Wzthrust, appear. In addition, there are the
shaft forces supported by the journal bearings inserted in the bushing, which are not the
same for the driver shaft Fe and the driven shaft Fe

′.
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The leakage of the pump is related to the clearance between the gear and the FBB,
among others, and that this is defined by the longitudinal displacement of the plate and its
inclination, as shown in Figure 4. Looking at Figure 5a, we can see that the movement of
the FBB is completely three-dimensional. The hydrostatic force pushes the bushing towards
the gear with a velocity uz and at the same time towards the suction zone with a velocity
ux. As this force is not centred on the centre of gravity, it is tilted with respect to the y-axis,
so that the clearance between the bushing and the gear is a priori smaller in the pressure
zone than in the suction zone. Moreover, as the radial forces on the shafts are asymmetrical,
the bushing tends to move in the direction of the y-axis at a speed uy, just as it tilts with
respect to the z-axis at an angular speed ωz. Finally, the pressure distribution in the gap
between the gear and the bushing is not symmetrical with respect to the x-axis, so it tends
to tilt with an angular velocity ωx. Modelling this motion is therefore particularly complex.
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Taking into account that it is often not necessary to consider any motion other than
the tilting with respect to the y-axis (α) and the longitudinal movement with respect to the
z-axis (h0m), the final kinematics to be studied are therefore shown in Figure 5b, the sum of
a linear movement and a tilting, corresponding to those observed experimentally in the
laboratory (described in Torrent et al. [3]). In fact, this simplification corresponds to most
of the research on the subject.

The most interesting additional movement to include in the model in the future would
be the movement of the FBB towards the suction zone as the pressure increases, this is the
movement in the direction of the x-axis. Pressing the bushing against the housing causes
an increase in the hysteresis of the movement of the plate in the direction of the z-axis, as
explained by Thiagarajan et al. [5], and also the internal leaks in the unit are mostly in the
turbulent regime at low temperatures, Torrent et al. [12]

Looking at Figure 2, the linear motion is determined by the balance of forces acting in
the z-axis,

∑ F = m
duz

dt
(1)
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while the tilting movement is determined by the balance of torques

∑ M = Ip
dω
dt

(2)

These are Mp (hydrostatic torque due to the hydrostatic force), Mj (torque due to the
compressive force of the seal), Mr (torque due to the friction between the bushing and the
casing), Mzhydr (hydrodynamic torque due to the force as a sliding bearing), and Mzthrust
(hydrodynamic torque due to the force as a thrust bearing). If the face on the side of the
gear is symmetrical to the y-axis, this torque is zero.

The model has been created using a Bond Graph diagram. This is a graphical represen-
tation of energy transfer and storage that can be applied to any physical system. Regarding
hydraulic systems, which are basically treated with a model of concentrated parameters,
a good summary can be found in De Las Heras and Codina [17]. A more comprehensive
general work can be found in a complete classic such as Thoma [18].

Figure 6 shows the basic BG diagram of the bushing dynamics. As far as the balance
of forces of the linear motion is concerned, all the elements of the upper node 1 share the
flow variable, in this case the linear velocity, while the sum of all the efforts, in this case the
acting forces, is equal to the product of the mass and the acceleration. The hydrostatic force
is determined by the product of the impulsion pressure introduced by a modulated effort
element MSe and the effective area Ae in the EfecArea transformer.
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As far as the balance of torques is concerned, all the bonds of the lower node 1 share the
flow variable, in this case the angular velocity, while the sum of all the efforts, in this case
the acting torques, is equal to the product of the inertia with respect to the y-axis and the
angular acceleration. It should be noted that all the torques are obtained by multiplying the
forces by the distance from their centre of pressure to the axis passing through the bearing
centres, operations carried out on the TF HydrostTorq, TF SealTorq and MTF HydrodinTorque
transformers. The resistive torque due to the viscous friction between the bushing and
the casing is represented by its own resistance Rtorque. Finally, a capacitive element C is
considered to introduce into the system the tilting limitation due to the adjustment of the
hydrodynamic bearings and shafts.
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3. Forces and Moments Acting on the Rigid Solid
3.1. Hydrostatic Force and Torque Due to the Impulsion Pressure

Assuming that the suction pressure is zero, the areas directly affected by the impulsion
pressure are analysed. The sum of all these areas gives us the so-called effective area
Ae. Areas where the resulting force contributes to moving the FBB closer to the gears are
considered positive, while areas where the resulting force contributes to moving it away
are considered negative. Being that p is the pressure at the impulsion,

Fp = pAe (3)

The zones to be considered are the following: the area above the seal that separates
the output from the suction, shown as S1 in Figure 7a; the internal area between the teeth
exposed to the impulsion pressure, shown as S2 in Figure 7b; the internal area between
the teeth exposed to the pressure gradient, shown as S3 in Figure 7c; and finally, the area
between the gears and the bushing side exposed to the pressure gradient, shown as S4 in
Figure 7d. It is difficult to estimate the average pressure in this area, but in any case, the
modelling carried out by Houzeaux and Codina [19] suggests that the average pressure
may be of the order of a quarter of the working pressure. The resulting hydrostatic force on
the FBB is therefore given by

Fp =
(

pS1 − pS2 −
p
2

S3 −
p
4

S4

)
·10−6 = 57.95·10−6p (4)

Ae = 57.95·10−6 (m2) (5)
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maximizes the thrust against the gears will make a highly efficient pump by reducing the
leakage, but at the same time may result in thickness values so low that the pump is very

Figure 7. Areas and centres of pressure of the FBB under hydrostatic pressure: (a) S1 area above the
seal that separates the output from the suction, (b) S2 internal area between the teeth exposed to the
impulsion pressure, (c) S3 internal area between the teeth exposed to the pressure gradient, (d) S4
area between the gears and the bushing side exposed to the pressure gradient.
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This effective area is completely determined by the design of the FBB. A design that
maximizes the thrust against the gears will make a highly efficient pump by reducing the
leakage, but at the same time may result in thickness values so low that the pump is very
susceptible to oil film break-up due to pressure fluctuations, high temperatures, or the
presence of dirt in the oil.

The calculation of this effective area is approximate because the areas S2, S3, and S4
vary as the gear point changes. A graphical calculation of these areas in different positions
of the gears has shown that the variation is less than 5%. This variation of the internal
surface also means that its centre of pressure is not on the x-axis, causing a tilt with respect
to this axis that has not been taken into account as previously argued.

In order to calculate the hydrostatic torques, the centres of pressure of each of these
areas (e1, e2, e3, e4) are taken into account. These distances have been calculated graphically,
as shown in Figure 7. The resulting expression is therefore given by

Mp =
(

pS1e1 − pS2e2 +
p
2

S3e3 −
p
4

S4e4

)
·10−9 = 741.55·10−9p (6)

3.2. Force and Torque Due to the Seal

It has been considered constant because the movement of the bushing (of the order of
30 µm at most) is negligible compared to the deformation of the seal during pump assembly
(of the order of 0.5 mm). If the force required to compress the elastomer per unit length is
18 N/cm and the length of the seal is 108.4 mm, the resulting force is 195.1 N, as shown in
Figure 8. The centre of pressure of this profile is 2.6 mm above the centre of the FBB. The
torque is therefore positive, with a value of

Mj = Fjej = 0.507 Nm (7)
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3.3. Friction Force and Torque Due the Bushing-Housing Clearance

Under normal lubrication conditions, the FBB floats in the housing and its movement
is therefore damped by the corresponding viscous friction. Looking at Figure 9, the average
clearance is approximately 15 µm, and the perimeter in red line has a length of 150.14 mm
and a width of 20 mm. The surface S to be considered is therefore 3002.8 mm2. The linear
resistance Rforce is always negative and can be calculated as follows

Fr = Sµ
v
e
= Rforcev (8)

Rforce =
Sµ
e

(9)

With regard to the torque damping the tilting movement, the effect of two forces equal
to half of Fr applied to the outer radius has been considered. Considering the outer radius
De, the speed at the periphery when FBB is only tilting is

v = ω
De

2
(10)
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and the resistive torque is proportional to the angular velocity of the bushing.

Mr = 2
Fr

2
De

2
= Sµ

ω

e

(
De

2

)2
= Rtorqueω (11)

Rtorque = Sµ
De

2

4e
(12)

This uniform gap around the circumference could be questionable as the FBB is
pushed to the suction zone by the outlet pressure. This effect, not considered in this study,
is discussed in detail by Thiagarajan et al. [20].
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3.4. Hydrodynamic Forces and Torques

Both the hydrostatic and seal forces move the FBB towards the gears, with a minimum
clearance in the output zone due to the inclination. Obviously, considering only the
hypothesis of hydrodynamic lubrication, the load carrying forces must be generated by the
pressurisation of the space between the FBB and the gears.

3.4.1. Reynolds Equations

Equations developed by Reynolds [21] govern these types of phenomena and are
derived by applying the principles of conservation of mass and momentum to a control
volume. Figure 10 shows the two-dimensional motion of an inclined surface with respect
to another plane. Neglecting flow perpendicular to the plane of the paper and assuming
zero leakage, the Reynolds equation is expressed as Equation (13).
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A good explanation of these mechanisms can be found in Hamrock et al. [22]. Basically,
the pressure within the film increases to maintain continuity of flow. The density wedge
term and the local expansion in Equation (13) are not considered in this research as the
density is assumed to be constant. However, the temperature variation within the film is
taken into account when calculating the viscosity. When considering rigid solids, there are
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no changes in the surface velocity, and therefore the stretch term is not considered either.
Therefore, the analogy leads to the dominant lubrication mechanisms at the gear-bushing
interface being due to the motion of a flat surface relative to an inclined surface (physical
wedge term) and the normal motion of both surfaces (normal squeeze term). Both cases
have analytical solutions, termed the fixed-incline sliding bearing and the parallel-surface
squeeze film bearing (thrust bearing), which are incorporated into the developed model.
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3.4.2. Identification of Parameters

Looking at Figure 11a and taking into account an area differential dS of the flat side
of the gear, the hydrodynamic pressure generated by the physical wedge is due to the
relative speed with respect to the inclined side of the FBB. The calculation of the carrying
capacity is obtained by integrating the product of the pressure and the area differential.
Therefore, each dS can be treated as a sliding bearing between two flat surfaces with a
relative inclination, as shown in Figure 11b. The lift force wz per unit width for a pad length
l depends on the oil viscosity µ, the relative speed between the surfaces ub, the height of
the wedge sh, and the minimum thickness h0. Then,

wz = f(µ, ub, sh, h0) (14)
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Considering that the oil film is governed by this phenomenon, the similarity between
this domain and two hydrodynamic sliding bearings is made as shown in Figure 12. The
principle of dimensional homogeneity states that if f is a force per unit length, the variables
involved must be combined to make it so. Buckingham [23] showed through the π theorem
that the only way this can happen is if each term of f is a monomial formed by the product
of the powers of the variables.

wz = kdµ
aub

csh
dh0

e (15)

where the proportionality constant kd is dimensionless and a, c, d, and e are constants to be
determined. Considering that the analytical study of the sliding bearing is usually carried
out per unit width, and therefore wz has dimensions of {FL−1} = {MT−2}, the dimensioning
of the equation must satisfy

{MT−2} = {ML−1T−1}a{LT−1}c{L}d{L}e (16)
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The original problem is defined by five variables. Applying the π-theorem and con-
sidering that three fundamental quantities (M, L, T) are involved, it can be reduced to
5 − 3 = 2 dimensionless variables. This equation is solved by searching for the most com-
mon solutions in the tribology bibliography. The two dimensionless variables obtained are

wz = kdµ
1ub

1sh
(−e)h0

e = Kdµub
l2

sh
2

(
h0

sh

)e
(17)

H0 =
h0

sh
(18)

wzsh
2

µubl2 = KdH0
e (19)

Wz = Kdf(H0) (20)

where H0 is the minimum dimensionless thickness and Wz is the dimensionless load-
bearing capacity.

Dimensional analysis does not determine the form of the function f, which will be
found from the analytical solution of a fixed-incline plain bearing. Later, experimental
laboratory data will be used to determine the constant Kd, which is called the sliding
form factor.

The dimensional theory is not applied to the load bearing thrust bearing because there
is a simple analytical solution. In any case, we also use a thrust form factor, Kt, which has a
purely geometrical meaning.

3.4.3. Dimensionless Analytical Solution of Ideal Sliding Bearing

A carrying-load force acts as a physical wedge in the domain under consideration
due to the relative speed of the flat face of the gears with respect to the inclined face of the
bushing. An analogy is made between this phenomenon and an ideal sliding bearing, as
shown in Figure 11. Therefore, hydrodynamic pressures are generated between the two
surfaces, balancing the impulsion pressure on the effective surface and the compression
of the back seal. Below is a simplified representation of the analytical solution taken from
Hamrock et al. [22] which is used to calculate wz and determine the form of Equation (20).

The Reynolds Equation (13) can be simplified by taking the density constant into
account, leaving only the term due to the physical wedge. Considering an average velocity
between the surfaces ub

∂

∂x

(
h3∂p
µ∂x

)
= 12ub

∂h
∂x

(21)
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In order to be able to compare the results with other correlations, we will work with
the following dimensionless terms derived in Section 3.4.2. This allows the use of much
simpler expressions by minimizing the number of variables,

P =
ps2

h
µubl

H =
h
sh

Hm =
hm

sh
H0 =

h0

sh
X =

x
l

Xcp =
xcp

l
Wz =

wzs2
h

µubl2 (22)

and Equation (21) can be written as

dP
dX

= 6
(

H−Hm

H3

)
(23)

Solving it,

P =
6X(1− X)

(H0 + 1− X)2(1 + 2H0)
(24)

Then, the dimensionless carrying-load force is calculated as

Wz =
wzs2

h
µubl2 =

∫ 1

0
PdX (25)

with the following result

Wz = 6 ln
(

H0 + 1
H0

)
− 12

1 + 2H0
(26)

Taking into account that

wzxcp =
∫ l

0
pxdx =

µubl3

S2
h

∫ 1

0
PXdX (27)

the centre of pressure is calculated as

Xcp =
−6

Wz(1 + 2H0)

[
(H0 + 1)(3H0 + 1) ln

(
H0

H0 + 1

)
+ 3H0 +

5
2

]
(28)

The variation of Wz with respect to H0 is shown in Figure 13a, where it can be seen
that when H0 tends to 0, the bearing has a high capacity to support normal loads. This
decreases when assumptions such as negligible lateral flow, very smooth surface, s and
constant density are not perfectly met. The form factor Kd would take these effects into
account in our case.

Actuators 2023, 12, x FOR PEER REVIEW 12 of 25 
 

 

 
 

(a) (b) 

Figure 13. (a) Dimensionless carrying-load force, (b) dimensionless centre of pressure, versus H0 

(Source: Hamrock et al. [22]). 

3.4.4. Dimensionalization of Force and Torque as Sliding Bearing 

From Equation (25), the dimensional load capacity can be calculated as 

wz =
μub𝑙2

sh
2  Wz (29) 

Assuming that the dimensionless force per unit length is uniform, Figure 14 shows 

different areas of the space between a gear and the side of the bushing. Zone 1, the annular 

surface between the shaft and the foot of the gear, and zone 2, the lateral surface of the 

teeth, contribute to the load carrying force because the surface of the gear moves in the 

convergent direction of the wedge. This does not happen in zone 3, which moves in a 

divergent direction, so it does not contribute to the load capacity, while in zone 4, located 

in the lateral grooves, there is no lubricating film. Not all the surfaces of zones 1 and 2 

have the same inclination in the direction of speed, since near the impulsion and suction 

ports the relative speed of the gear is perpendicular to the direction of inclination, and 

therefore, no hydrodynamic pressure is generated. For example, teeth 1 and 7 do not gen-

erate any lift, while 4 generates the maximum load carrying force. In the drawing, the path 

of a surface differential dS in zone 1 and zone 2 is indicated with a black line, while the 

red line indicates the average inclination. The first behaves like a continuous bearing, 

while the second corresponds to a series of interlocking bearings. 

For zone 1 in Figure 14, if the wedge height is varied as shown by the red line, the 

force differential made by the surface differential dSz1 is 

dwzT1 =
μub𝑙2

shz1
2  Wzdr (30) 

where shz1 is the height of the wedge in zone 1. Considering a 180°, the length and speed 

of this bearing differential is 

l= πr       ub = ωr (31) 

where ω is the angular velocity of the gears. So 

dwzT1 =
μωπ2

shz1
2  Wzr3dr (32) 

The dimensionalized force generated by the two gears can be written as 

wzT1 = 2
μωπ2

shz1
2  WZ ∫ r3

Rpeu

Ri

dr (33) 

Figure 13. (a) Dimensionless carrying-load force, (b) dimensionless centre of pressure, versus H0
(Source: Hamrock et al. [22]).



Actuators 2023, 12, 338 12 of 25

Figure 13b shows the effect of the dimensionless minimum thickness H0 on the di-
mensionless centre of pressure Xcp. It can be seen that for high dimensionless minimum
thicknesses, i.e., with a wedge height reduced with respect to the minimum thickness, the
centre of pressure is almost in the centre of the bearing. Translated to the case studied, if
the bushing is slightly inclined, the tilting capacity of the oil film due to the hydrodynamic
pressure generated as a plain bearing is minimal. The characteristic length of the equivalent
bearing for calculating the centre of pressure is the outer diameter of the gear De.

3.4.4. Dimensionalization of Force and Torque as Sliding Bearing

From Equation (25), the dimensional load capacity can be calculated as

wz =
µubl2

s2
h

Wz (29)

Assuming that the dimensionless force per unit length is uniform, Figure 14 shows
different areas of the space between a gear and the side of the bushing. Zone 1, the annular
surface between the shaft and the foot of the gear, and zone 2, the lateral surface of the
teeth, contribute to the load carrying force because the surface of the gear moves in the
convergent direction of the wedge. This does not happen in zone 3, which moves in a
divergent direction, so it does not contribute to the load capacity, while in zone 4, located
in the lateral grooves, there is no lubricating film. Not all the surfaces of zones 1 and 2 have
the same inclination in the direction of speed, since near the impulsion and suction ports
the relative speed of the gear is perpendicular to the direction of inclination, and therefore,
no hydrodynamic pressure is generated. For example, teeth 1 and 7 do not generate any
lift, while 4 generates the maximum load carrying force. In the drawing, the path of a
surface differential dS in zone 1 and zone 2 is indicated with a black line, while the red line
indicates the average inclination. The first behaves like a continuous bearing, while the
second corresponds to a series of interlocking bearings.
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For zone 1 in Figure 14, if the wedge height is varied as shown by the red line, the
force differential made by the surface differential dSz1 is

dwzT1 =
µubl2

s2
hz1

Wzdr (30)

where shz1 is the height of the wedge in zone 1. Considering a 180◦, the length and speed
of this bearing differential is

l = πr ub = ωr (31)
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whereω is the angular velocity of the gears. So

dwzT1 =
µωπ2

s2
hz1

Wzr3dr (32)

The dimensionalized force generated by the two gears can be written as

wzT1 = 2
µωπ2

s2
hz1

WZ

∫ Rpeu

Ri

r3dr (33)

where Rpeu is the gear foot radius and Ri is the shaft radius. Integrating it,

wzT1 =
µωπ2

s2
hz1

WZ

(
R4

peu

2
− R4

i
2

)
(34)

while the height of the wedge in zone 1 is given by

shz1 = sh

2
(

Rpeu+Ri
2

)

2Re
= sh

Rpeu + Ri

2Re
(35)

Therefore, if Equation (35) is substituted into Equation (34), the total load capacity in
zone 1 is given by

wzT1 = 2
Re

2
(

R4
peu − R4

i

)
π2

(
Rpeu + Ri

)2
µωWZ

sh
2 (36)

Regarding zone 2 in Figure 15, the load carrying differential of force generated by the
tooth 4 of zone 2 is

dwz4T2 =
µub4l2

d4
s2

h4
Wzdr (37)

where for a radius r, Ldi, and ubi have the same value for any tooth. So

Ldi = Ld ubi = ωr (38)
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The wedge height of dSz2 could be determined by the ratio between the tooth thickness
and the outside diameter of the gears multiplied by the wedge height of the similar
bearing considered.

sh4 =
Ld

2Re
sh (39)
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Equation (37) can then be written as

dwz4T2 =
µub4L2

d(
Ld
2Re

sh

)2 Wzdr =
4Re

2µωWz
sh

2 rdr (40)

and integrating

wz4T2 =
4Re

2µωWz
sh

2

∫ Re

Rpeu
rdr =

4Re
2µωWz
sh

2

(
Re

2

2
− Rpeu

2

2

)
(41)

Simplifying

wz4T2 = 2Re
2
(

Re
2 − Rpeu

2
)µωWz

sh
2 (42)

Assuming that the load capacity is linearly dependent on the inclination,

wz2T2 = wz6T2 =
1
3

wz4T2 wz3T2 = wz5T2 =
2
3

wz4T2 (43)

The contribution of all the teeth in zone 2 of the two gears to the load capacity is

wzT2 = 2(wz2T2 + wz3T2 + wz4T2 + wz5T2 + wz6T2) = 2
(

2
3

wz4T2 +
4
3

wz4T2 + wz4T2

)
(44)

The final expression is therefore

wzT2 = 10Re
2
(

Re
2 − Rpeu

2
)µωWz

sh
2 (45)

Considering zone 1 and zone 2, and not taking into account the divergent film of
zone 3, the total load capacity is given by

wzT = wzT1 + wzT2 = 2
Re

2
(

R4
peu − R4

i

)
π2

(
Rpeu + Ri

)2
µωWZ

sh
2 + 10Re

2
(

Re
2 − Rpeu

2
)µωWz

sh
2 (46)

Considering that Re=18.7·10−3, Rpeu=14.09·10−3, and Ri=10·10−3 metres,

wzT = 3.5·10−7µωWZ
sh

2 + 5.28x·µωWz
sh

2 = 8.78·10−7µωWz
sh

2 (47)

To apply the similarity with two ideal sliding bearings, a form factor Kd is considered
according to Equation (20), which includes, for example, the effects of radial leakage. This
factor allows the model to be defined on the basis of experimental results, a strategy used
in engineering when dimensional analysis is applied. Therefore, in the final model, the
load carrying force is calculated as

wzhydr = Kd8.78·10−7µωWz
sh

2 (48)

and the torque exerted by this force against the tilting tendency is

Mzhydr = wzhydr
(
xcp − Re

)
(49)

3.4.5. Hydrodynamic Force as a Thrust Bearing

As the FBB moves axially, hydrodynamic pressure is generated to force the fluid
out of the film (normal squeeze in Equation (13)). Although this force does not exist in
the equilibrium position, its effect makes it difficult both to approach the gear when the
working pressure increases and to move away from it when it decreases, and it is therefore
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important to take it into account when studying the movement of the FBB. Applying a
similar point of view to the sliding bearing, the analogy is shown in Figure 16. This is a
bearing with parallel flat surfaces without lateral leakage, where surface A corresponds
to the side of the stopped gears and surface B corresponds to the lateral surface of the
FBB moving orthogonally. This configuration also has an analytical solution, which can be
derived from the Reynolds equation.

d2p
dx2 = −12µv

h3
0m

(50)

where v is the relative axial speed and h0m is the distance between the two faces, taken at
the centre of FBB. Taking into account

p = 0 if x = ∓ l
2

; l = π

(
Re + Ri

2

)
(51)

w′z =
∫ l

2

− l
2

pdx =
µ
(
π
(

Re+Ri
2

))3
v

h3
0m

(52)

where wz
′ is the carrying load capacity per unit width. Considering two gears and a width

b is equal to the difference between the outer and inner radius,

w′zT = 2w′zb = 2
µ
[
π
(

Re+Ri
2

)]3
v

h3
0m

(Re − Ri) (53)
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Therefore, a thrust form factor Kt is considered, taking into account only the real
surface of the gear, the orange area in Figure 16a, and the surface ratio between the ideal
bearing on which the analytical solution was based, the green area in Figure 16b. The final
expression is

wzthrust = Ktw′zT (54)

Kt =
Areal

Aanalit
=

729.97
784.36

= 0.93 (55)

Due to the great symmetry of the lateral surface of the FBB with respect to the y-axis,
the hydrodynamic torque generated by this thrust force is not taken into account. Con-
sidering that Re = 18.7 × 10−3 and Ri = 10 × 10−3 metres, the expression 7.86 remains as

wzthrust = Kt1.59·10−6 µv
h3

0m
(56)
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It should be noted that this force only acts when the floating bushing moves towards
the gear, either in a positive direction, reducing the thickness, or in a negative direction,
increasing it. Therefore, in order to experimentally determine the percentage of the real
thrust force with respect to the theoretical one, it is not sufficient to compare the position
of the experimental position of the floating bushing with respect to the simulated one,
as was performed in the case of the sliding shape factor as sliding bearing. It would be
necessary, for example, to see how the movement of the floating bushing is damped in
case of a sudden increase in pressure, by monitoring its position vs. time. These types of
experimental results are not available and it would be very interesting in the future to carry
them out in order to find the true value of the shape factor as a thrust bearing Kt, as this is
the percentage of the real thrust force compared to the theoretical one.

4. Complete BG Diagram

Figure 17 shows the complete BG diagram of Figure 5, fully developed, taking into
account equations presented in the previous sections. The data are entered via an EXPDATA
file in .csv format, which the 20SIM software [24], a modelling package for mechatronic
systems widely used in the simulation of oleohydraulic systems, reads by temporarily
interpolating a working cycle of 3 s, in which the pressure is increased by 10 bar every 0.1 s
until it reaches 150 bar, and then reduced until it reaches 0 bar. In this way, the numerical
test corresponds to the experimental test carried out in the laboratory, making it possible to
compare the average distance h0m and the minimum clearance h0, as well as the angle of
inclination TILTgr1 (α) (in fact, the experimental cycle was not carried out so quickly, but a
longer experimental cycle does not affect the final results).
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An initial separation and inclination between the plate and the gear is introduced into
the model in the Xinitial and AnglinitGr constant blocks. Although the model will always
end up in equilibrium if the initial values entered are of the same order of magnitude as the
real ones, in order to make comparisons with the experimental results in each simulation
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from the first moment, we introduce initial values equal to those at the beginning of
the experiment. In this way, the minimum clearance h0 is determined by means of the
following expression

h0 = Xi − x− De

2
sin α (57)

where x is the displacement of the FBB from its initial position (obtained by integration in
the IntegrateLineal block) and α is the tilting angle (obtained by integrating the velocity of
node 1 in the IntegrateAngle block). The wedge height Sh is given by

Sh = l sinα (58)

and the mean distance between the FBB and the gear as

h0m = Xi − x (59)

4.1. Treatment of the Hydrodynamic Shaft Bearings

It should be noted that the inclination of the bushing also depends on the stiffness of
the hydrodynamic journal bearings, and it is therefore necessary to introduce the influence
of the corresponding oil cushion into the model. This motion is very complex and has been
discussed in detail by Gutes [10]. In the first simulations carried out, it was found that this
is the basic mechanism that limits the tilting of the plate, since the centre of pressure of the
lifting force as a sliding bearing is quite close to the centre of the FBB, due to a small value
of its inclination.

If we look at Figure 18, the clearance between the shafts and the journal bearings
can be represented as an oil cushion that prevents tilting by means of two forces Fc, each
caused by a compressibility between the radial hydrodynamic bearing of the FBB and the
gear shaft. By solving for the effect of the compressibility of the oil trapped in this small
clearance, it can be demonstrated that

Mc =
1
16
βDi

e
L3
∫
ωdt (60)
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Consequently, the compressibility introduced into the model is

C =
16e
βDiL

3 (61)

Taking a compressibility coefficient β = 1.5 × 109 Pa, a plate length L = 0.02 m, a
shaft diameter of Di = 0.02 m, and an average film thickness of e = 30 µm, we obtain an
equivalent compressibility of C= 6.6 × 10−7 s2/(kg·m2). In any case, considering that the
complexity of the phenomenon is much greater than the one mentioned above, this value
is only taken on as a reference, and can be modified by adjusting of the numerical and
experimental test results.
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4.2. Treatment of the Viscosity

The VISC block in Figure 17 calculates the dynamic viscosity within the film between
the gear and the bushing. The oil is of type HM VG32 and a regression of its viscosity value
as a function of temperature and pressure is carried out according to the following criteria
proposed by Barus [25],

µ = AT−BeCP (62)

where A, B, C are the terms of the viscosity versus temperature and pressure regression
fitted by minimizing the squared errors over the temperature and pressure range of our
experiments, i.e., from 20 ◦C to 50 ◦C and from 0 to 150 bar, respectively.

To find the increase in temperature of the oil inside the film ∆tm, the expression
derived in Hamrock et al. [22] is used by calculating the dimensionless temperature T0incr
in the sliding bearing, assuming that all the dissipated power is absorbed by the fluid in
adiabatic conditions.

ρCpS2
h

2µubl
∆tm =

2(1 + 2H0)

H0(1 + H0)
ln
(

H0 + 1
H0

)
− 3

(1 + H0)H0
= T0incr (63)

where ρ is the density of the oil (Kg/m3), Cp is the specific heat at constant pressure
(1670 J/kg·◦C), Sh is the height of the wedge (m), µ is the viscosity (Pa·s), ub is the sliding
velocity of the bearing (m/s), and l is its length (m). Therefore, in the T0incr block of the BG
diagram, the temperature rise in the film can be calculated as follows

∆tm =
2µubl
ρCpS2

h
T0incr (64)

Finally, in VISCblock, we have

µ = 19.35(T + ∆tm)−1.792e0.0022P (65)

5. Results

The first series of numerical experiments were carried out with the pump operating
under the same conditions as the experimental tests, with the basic aim of optimizing the
shape factor as a sliding bearing Kd. The minimum plate thickness h0 and its slope α
were plotted against the pressure at constant speed and compared with the experimental
results, in which data are entered in the EXPORT DATA file. The simulation is based
on the continuous increase and decrease in the pressure during the cycle, whereas in
the experimental test the pressure was varied in steps to allow the laser micrometers to
stabilise, but it has been verified that the equilibrium points of the FBB are the same both
with continuous variations and with steps, showing graphs without instabilities in the first
case. For this reason, the reproduction of the test cycle was carried out with a continuous
variation of the pressure. The tests are carried out at 1000, 1500, and 2000 rpm and at oil
temperatures of 20 and 50 ◦C.

In the graphs of Figure 19, the dark blue line corresponds to the numerical results of
the minimum thickness, while the red line corresponds to the experimental results. The
pink line corresponds to the numerical results of the inclination, while the light blue line
corresponds to the experimental results of it. The dimensionless minimum thickness and
the height of the wedge are monitored, an example of which is shown in Figure 20. Finally,
the forces and torques involved in the FBB balance can be observed in Figure 21.

The exercise of introducing the experimentally measured pulsating pressure into
the model was also carried out, both at 50 and 100 bar, and the results of the numerical
simulation at 70 ◦C are shown in Figure 22. The purpose of this analysis is to show that the
pulsating motion of the FBB is damped to the point where it is almost negligible. It can be
seen that the damping of the hydrodynamic thrust force, together with the viscous friction
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between the FBB and the casing, causes a damping in the conversion of pressure pulsation
into vibration of the solid rigid.
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6. Discussion

An original solution has been presented for modelling the lubrication between the
FBB and the gear, to monitor its movement in real time as the pump’s operating conditions
change. Therefore, by applying parameter identification based on dimensional analysis,
the analogy with the lubrication of a sliding bearing with inclined flat faces and that of a
thrust bearing with parallel flat faces has been considered. Based on the analytical solution
of these cases, a BG model has been created with the aim of making it work together with
the pump model presented in Torrent et al. [26]. The model fits exactly (bearing in mind
that the precision of the instruments used to experimentally measure the thickness of the
oil film is +/− 2 µm) and, most importantly, is used to illustrate specific behaviours such
as the hysteresis of the FBB motion observed in the experimental results, which translates
into a volumetric efficiency of the pump also with hysteresis. Note, for example, that in
the graphs of Figure 23, the value of the minimum thickness at P = 0 is not the same for
increasing pressure (time t = 0 s) as for decreasing pressure (time t = 3 s).
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For modelling, it is necessary to introduce two form factors. The thrust bearing form
factor is basically geometrically justified and was left fixed in all the tests due to the lack
of information to evaluate it. This lubrication mechanism operates only when there is a
normal relative speed between the plate and the gear, so it does not affect the balance
position. Figure 22 illustrates this behaviour, noting that at the beginning of the movement
there is an approach of the centre of the FBB to the gear (h0m), at the same time as its
inclination increases. Around the time of 1 s (50 bar), the position of the centre stabilises
and the minimum thickness (h0) decreases due to the effect of the inclination. The FBB also
tends to move its centre away from the gear as the inclination continues. From the time
of 2.5 s (50 bar depressurized), the FBB loses its inclination by increasing the minimum
thickness, but the mean thickness increases, creating a negative force that attaches the FBB
to the gear. Therefore, the damping of the motion due to the thrust bearing behaviour
occurs when there are pressure changes and these are not excessive, approximately below
100 bar. Above this pressure, the position of the FBB centre remains virtually constant and
the minimum thickness varies only as a result of the change in slope. At high pressures, a
very small thickness is not required because the inclination is greater, while at low pressures
the FBB is almost parallel to the gear. This effect is perfectly illustrated by the evolution
of the wedge height (Sh) and the dimensionless minimum thickness (H0) in the graphs of
Figure 20.

The behaviour of the shape factor Kd as a sliding bearing is difficult to explain. Ap-
proximate values of 0.07 (real load-carrying force is 7% of that of the analogue bearing
considered) correspond to the results of the tests at 20 ◦C, while values of 0.2 correspond
to the tests at 50 ◦C. The model includes accurate correlations of viscosity with pressure,
so that this dispersion can only be due to the fact that the viscosity inside the film is not
accurately known. Everything seems to indicate that the rise of temperature rise inside the
film is lower than the rise of temperature in the suction port.

Once the minimum thickness has been reduced as the pump is pressurized, small
variations in this will result in significant increases in the load carrying capacity. It should
be noted that the minimum thickness and the force as a sliding bearing show a remarkable
proportionality, which means that the equilibrium position is undoubtedly determined by
the lubrication in the area considered. This is not the case for the tilting of the FBB, since the
torque resulting from the displacement of the centre of pressure as a sliding bearing cannot
compensate for the torque exerted by the hydrostatic forces, so the tilting must be limited
by adjusting the shaft inside the journal bearings, whose rigidity is taken into account in
the model by means of a capacitor. Approximately 60% of the tilting lift is exerted by the
hydrodynamic force and 40% by the stiffness of the journal bearings. At pressures up to
approximately 120–140 bar at 20 ◦C and 70–80 bar at 50 ◦C, the lifting moment exerted
by the stiffness of the axles is greater than that exerted by the hydrodynamic force as a
sliding bearing.

The goodness of the model is confirmed by the good correlation between the measured
and simulated values of the thickness in different operating conditions. Furthermore, the
results are comparable with those obtained by other authors, although it must be taken
into account that the pumps are not always of the same size and that the same type of
oil is not used. The order of magnitude of the minimum thickness is approximately the
same (6–12 µm depending on the operating conditions), referring to the works of Borghi
and Zardin [27] and Koç [9]. While in the work of Borgui and Zardin the FBB is inclined
towards the suction side, in the experimental tests and the simulation of the reference pump
of this research, the inclination is towards the impulsion side, as in the study of Koç. This
is essential for the correct operation of the hydrodynamic wedge that forms the side face
of the gears with the FBB, since a decrease in the thickness of the film in the direction of
movement is necessary for a lifting force to appear, which does not happen if the FBB is
poorly compensated and the inclination is towards the suction side.

Similar to the experimental data, the model shows hysteresis in its behaviour. This
phenomenon is also present in the volumetric performance of the pump. Although a
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possible explanation would be to attribute it to the well-known “stick-slip”, it is considered
to be a new explanation. At the beginning of the movement, when the plate is flat, it tends
to tilt rapidly at the same time as its centre approaches the gear, as early explained. Above
a certain pressure value, this minimum thickness even begins to increase slightly as the
FBB continues to tilt. The speed in Equation (56) is negative and the force generated in the
lubricating film tends to cause the FBB to stick to the gear. The same phenomenon occurs
when the maximum pressure is reached and therefore the tilt is maximum. This decreases
as the FBB moves away from the gear, its centre remains approximately stationary and no
force is generated by the thrust bearing action until a pressure of about 50 bar is reached
(see Figure 22). Up to this pressure, the plate is supported only by the force generated as a
sliding bearing, which keeps the average thickness approximately constant. Therefore, the
inclination should be slightly greater and the minimum thickness smaller. The equilibrium
position is different depending on whether the pressure is increasing or decreasing. This
phenomenon would explain the fact that when the pump is suddenly depressurized, there
is a peak flow (Torrent et al. [26]). Due to the hysteresis explained above, the FBB remains
attached to the gear instead of separating, significantly reducing leakage and increasing
the volumetric efficiency of the pump. In any case, as shown by Thiagarajan et al. [20], it
also seems clear that the fit of the FBB to the casing generates frictional forces that create
hysteresis in the axial compensation system. This is a phenomenon that should be evaluated
in future extensions of this Bong Graph model.

7. Conclusions

A simple, accurate, and most importantly, very fast tool, has been constructed to
determine the movement of the floating bushing bearings (FBB) in order to interpret the
behaviour of an external gear pump in different working cycles. The theory of dimensional
analysis has been used to make an analogy of the lubrication in the space between the
FBB and the gears with the effects of a sliding bearing with inclined faces and a thrust
bearing with parallel faces. The results of the numerical simulation were compared with
the experimental results in order to validate the model, and the qualitative behaviour is
very similar, adjusting the numerical values with accuracies between 5 and 10%, and thus
more than acceptable taking into account the precision of the experimental measurements.

The usefulness of the proposed model has been widely demonstrated. The first
example was to explain the hysteresis of the movement of the FFB due to the appearance of
a force as a thrust bearing which cushions the separation or approach of the FFB to the gears
in the event of a sudden depressurisation or pressurisation of the pump. Another notable
example of its applicability has been the demonstration that the pulsating component of
the working pressure has a minimal effect on its movement and does not cause it to vibrate.
It has also been shown that a relative inclination between the side face of the gears and
the FBB is necessary to create the hydrodynamic wedge required to generate the lifting
force that keeps them apart. If there is no wedge, there is no load-carrying hydrodynamic
capacity. Finally, it has also been shown that the centre of pressure of the hydrodynamic
forces as a sliding bearing is very close to the line between the shaft centres, due to the
small inclination of the FBB, as evidenced by the drastic reduction in the height of the
hydrodynamic wedge as the pressure increases, and the corresponding hydrodynamic
torque is not sufficient to prevent the FBB from tilting. It is necessary to take into account
the stiffness of the shafts in their journal bearing to achieve the balance of the FBB. The
simulation of specific operating conditions of interest to positive displacement pumps, such
as cold starts, pressure peaks, or overheating, are a number of tasks to exploit the model.

The extensibility of the proposed model is one of its main advantages. For example, it
could include the introduction of lubrication conditions that are not fully hydrodynamic.
Although the orders of magnitude of the minimum thickness at 150 bar do not suggest
mixed lubrication, they could make it necessary in the case of simulations at high tem-
peratures and very high pressures. Although taking into account the two-dimensional
translation of the FBB towards the gears and its tilting has been sufficient to adapt the
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behaviour of the model to the experimental results, it could also be very interesting to
include the movement towards the suction zone when the working pressure is increased,
since this movement can condition the hysteresis of the translation movement towards the
gears. Another example of future extension could be the experimental monitoring of the
movement of the FBB versus time as a result of a sudden increase in pressure. This would
lead us to experimentally determine the real value of the shape factor as a thrust bearing.
Finally, it has been shown that the calculation of the temperature of the film between the
FBB and the gear may not be entirely accurate without experimental measurements of
these data to verify the goodness of the model. A future line of research in this area should
include this experiment.
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Nomenclature

Symbol Description Units
F Generic force N
m Mass kg
u Generic linear speed ms−1

t Time s
M Generic torque Nm
Ip Inertia of the bushing kgm
p Pressure Pa
P Dimensionless pressure -
Ae Effective area m2

S Generic surface m2

e Thickness of the oil film between bushing and casing m
Sh Wedge height m
R Generic resistance Nsm−1

h Thickness of the oil film m
H Dimensionless thickness of the oil film -
h0 Minimal thickness of oil film m
H0 Dimensionless minimal thickness of oil film -
hm0 Mean thickness of oil film m
hm Thickness in the sec tion where dp/dx = 0 m
Cp Specific heat at constant pressure, JN−1 ◦C−1

De External diameter of the gear m
Di Diameter of the shaft m
l Length of the bearing m
T Oil temperature ◦C
ub Slide speed in a fixed-incline slide bearing ms−1

v Relative speed between bushing and side face of gear ms−1

wz Load carrying capacity as slide bearing per unit width Nm−1

Wz Dimensionless load carrying capacity as slide bearing per unit width -

https://www.pedro-roquet.com
https://www.pedro-roquet.com
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wzT Theoretical load carrying capacity as slide bearing N
wzhydr Real load carrying capacity as slide bearing N
w′z Load carrying capacity as thrust bearing per unit width Nm−1

w′zT Theoretical load carrying capacity as thrust bearing N
wzthrust Real load carrying capacity as thrust bearing N
x Displacement of bushing from initial position m
Xi Initial position of bushing m
xp Centre of pressure of wz m
Xp Dimensionless centre of pressure of wz -
Kd Shape factor of fixed-incline slide bearing -
Kt Shape factor of parallel-surface squeeze film bearing -
T0incr Dimensionless temperature raise inside the lubricating gap -
(Greek letters)
α Tilt of the bushing rad
∆tm Temperature raise inside the lubricating gap ◦C
ε Pressure–viscosity coefficient of the lubricant m2N−1

µ Dynamic viscosity Pa s
ρ Mass densityof of oil kgm−3

β Bulk modulus Pa
ω Rotational speed of the pump s−1
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