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Abstract: Vibration-control techniques generally fall into two categories: passive methods that
optimize the structure of the suspension to absorb any impact from the ground, and active methods
that directly control the vertical force of the suspension by hydraulic or electric actuators when
the vehicle traverses a bumpy road. In this study, a vibration-control method is described that
employs both an optimal controller and suspension parameter optimization. Continuous speed
bumps are implemented to simulate more complex and realistic driving conditions. First, a vehicle
system is modeled using a semi-recursive multibody formulation, which allows for a more precise
description of the longitudinal–vertical dynamics. Then, an optimal control method for vehicle
vibration control is introduced. Second, the Latin hypercube design is utilized to analyze the response
surface methodology (RSM) model. For suspension optimization, the RSM model and the non-linear
programming with a quadratic Lagrangian (NLPQL) algorithm are employed. Thirdly, both passive
suspension optimization and active motion control are employed for vibration control. The results
indicate that the presented method can effectively control vehicle vibration, decreasing the average
vibration by 30.8%. The results suggest that the novel approach can also enhance the ride comfort in
autonomous vehicles traversing, e.g., a series of speed bumps.

Keywords: vehicle multibody dynamics; design optimization; vibration control; response surface
method; non-linear programming; suspension system

1. Introduction

Vibration control is a common method for enhancing travel comfort in vehicles and is
one of the most important evaluation criteria. The vibration affects the driver’s confidence
and the passengers’ well-being and safety. The irregularity of the road is typically correlated
with the vibration of a moving vehicle. In order to increase safety, speed bumps are
frequently placed near essential buildings and specific areas, such as intersections with
heavy traffic, tunnel entrances and exits and school and community entrances. Besides
slowing down vehicles, they also tend to increase vehicle vibrations and significantly
reduce ride comfort, even at safe/legal (slower) velocities. Consequently, the comfort of
vehicle drivers and passengers could be enhanced by investigating how to reduce the
vibration of, e.g., “smart” vehicles on roads with frequent speed bumps [1–5].

Commonly used vibration-control methods tend to primarily optimize the suspension
parameters, such as the spring and damping characteristics. Song presented a new fuzzy

Actuators 2023, 12, 297. https://doi.org/10.3390/act12070297 https://www.mdpi.com/journal/actuators

https://doi.org/10.3390/act12070297
https://doi.org/10.3390/act12070297
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/actuators
https://www.mdpi.com
https://orcid.org/0000-0002-2521-5644
https://orcid.org/0000-0002-8271-9208
https://doi.org/10.3390/act12070297
https://www.mdpi.com/journal/actuators
https://www.mdpi.com/article/10.3390/act12070297?type=check_update&version=1


Actuators 2023, 12, 297 2 of 17

sliding mode controller for vibration control of semi-active automotive suspension sys-
tems with magnetorheological dampers [6]. Xu presented a hybrid controller with hybrid
acceleration driven damping algorithms to reduce the suspension spring mass and the
vibration of the electric vehicle motor [7]. To capture the vibration response needed to
optimize suspension parameters, accurate full-vehicle dynamics models are essential. The
multibody dynamics model of a vehicle (with a detailed description of all suspensions and
road/tire interactions) is well-suited to analyze the problem [8–10]. However, the majority
of multibody-dynamics models are computationally expensive for this type of optimiza-
tion [11–13]. Hence, the computational cost for real-life problems could be reduced by
developing real-time and efficient multibody-dynamics models (e.g., recursive or semi-
recursive models that use a system-tree-topology). The semi-recursive multibody model
is typically more efficient than the multibody models used by the majority of commercial
software applications. Pan developed a vehicle model using semi-recursive dynamics
equations and validated it against commercial software solutions [14,15]. In this study,
an efficient semi-recursive multibody formulation is introduced to model the vehicle dy-
namics [16–18]. This model takes each component’s dynamic properties into account and
enables precise dynamic responses.

To further reduce the computational cost and increase the efficiency of the suspension
optimization, several approximation- or meta-modeling methods were developed (based
on limited samples of vehicle dynamics). In addition, a semi-recursive multibody model
was devised to ensure that the samples represent the vehicle dynamics accurately. The
widely-used approximation methods include the response surface methodology (RSM)
model, the orthogonal polynomial model, and the Kriging model. They are widely used
for suspension optimization to improve the comfort level in vehicles [19–22]. The RSM
model approximates the function more precisely over a brief (local) range due to its use of
fewer experiments, simple algebraic expressions, and design optimization simplification.
In addition, the RSM model accommodates complex response relationships by choosing
appropriate regression models. Due to its high efficiency and minimal cost, the RSM model
was chosen as the approximation model for suspension optimization in this study.

There are two kinds of methods for engineering optimizations: (1) Stochastic methods,
like genetic algorithms [23–26]. Typically, a large initial population is required to discover
a (sufficiently) viable solution, unfortunately leading to make stochastic methods com-
putationally costly [27,28]. (2) Gradient-based optimization. For an appropriate iterative
refinement of the design space, these methods significantly rely on the initial starting
values and demand accurate gradient calculations [29–32]. Baumal, McPhee, and Calamai
compared the computational efficiency of a genetic algorithm with a gradient-based op-
timization algorithm for a pitch-plane vehicle model. The genetic algorithm converged
on an optimal solution that offered only a 4% performance advantage over the gradient-
based algorithm [33]. In addition, thousands more function evaluations are required. A
gradient-based optimization method that uses optimization criteria and the RSM model is
incorporated to find the optimal suspension parameters in this study.

On solving optimization problems with non-linear objective functions, Sun proposed
a system-level design optimization method based on the actual operating environment
and multi-objective optimization based on sequential subspace optimization to improve
the performance and efficiency of electric vehicle motors [34,35]. While Shi proposed
a Fuzzy-based sequential Taguchi robust optimization method to improve the motor’s
comprehensive performance and optimization efficiency [36]. The non-linear program-
ming with a quadratic Lagrangian (NLPQL) method is regarded as more suitable for the
vertical vibration problems (the single-objective optimization) caused by a rough road
surface addressed in this study than the previously mentioned optimization techniques.
Accordingly, the global optimal solution for the optimization parameters can be efficiently
and effectively found. In this study, an embedded active speed-control scheme and the (pas-
sive) optimization of the suspension parameters are combined. To the best of the author’s
knowledge, the method of this study, which employs both a response surface methodology
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and non-linear programming with a quadratic Lagrangian (NLPQL) algorithm (to suppress
the vehicle vibration), has rarely (if ever) been reported.

The highlights of this study can be summarized as follows:

– An efficient vehicle dynamics model was developed using a semi-recursive multi-
body dynamics approach, enabling an accurate description of the longitudinal and
vertical dynamic response of the vehicle. Building upon this model, an optimal
control algorithm for reducing vibrations when driving over frequent speed bumps
was devised.

– A Latin hypercube experimental design was utilized to increase the efficacy of simu-
lation data collection and reduce the number of required simulations. This method
assures efficient sampling across the input parameter space, enabling a thorough
investigation of suspension design possibilities. In addition, the Response Surface
Methodology (RSM) was applied to simulation data to construct a surrogate model
for the design optimization (vibration control) problem.

– Leveraging the quadratic RSM model developed in the previous step, a non-linear
programming using a quadratic Lagrangian algorithm was applied to determine
an optimal solution for the suspension parameters. The identification of the most
suitable suspension parameters that meet the intended performance criteria is allowed
by taking into account both the goal of minimizing vibrations and the constraints
imposed by the vehicle’s maneuverability in this algorithm.

Overall, an effective and systematic approach for optimizing suspension parameters
and achieving superior vibration control in vehicles is provided by the combination of the
efficient vehicle dynamics model, the Latin hypercube design of experiments, the quadratic
RSM model, and the non-linear programming algorithm.

The rest of the manuscript is organized as follows. In Section 2, a semi-recursive multi-
body method and an optimal vehicle controller is described. In Section 3, a metamodel
based on the optimal Latin hypercube experimental design and surface response method-
ology is introduced. The accuracy of the metamodel is also investigated. In Section 4,
the parameters for the suspensions via non-linear programming with a quadratic La-
grangian algorithm are optimized, in accordance with better control of the vehicle vibration.
Finally, in Section 5, the outcomes of this study are summarized.

2. Vehicle-Vibration Suppression Using an Optimal Control Algorithm
2.1. Multibody Model of the Vehicle

This study modeled vehicle dynamics with an efficient semi-recursive multibody
method. The virtual power principle was used at each body’s center of gravity (C.G.) to
formulate the dynamic equations of the whole system. Consider an open-loop multibody
system in which the first velocity transformation is used to characterize the Cartesian
velocities and accelerations relative to one another in order to reduce dimensionality. It is
important to note that the tree-topology of an open-loop system was used, including its
connectivity and path matrix. The equations of motion of the open-loop system, in turn,
can be expressed as [37,38]:

RT
dTTM̄TRdz̈ = RT

dTT(Q̄− M̄TṘdż) (1)

where, T denotes the path matrix, which is an upper triangular matrix that represents the
system connectivity, and Rd contains the first velocity-transformation matrix. M̄ and Q̄,
respectively, denote the generalized mass matrix and external forces. ż and z̈, respectively,
denote the relative (joint) velocities and accelerations.

Typically, the vehicle system is a medium-scale closed-loop multibody system com-
prising numerous closed-loop structures, such as suspension systems. Therefore, direct
modeling of this system using a recursive formulation is not possible, and preprocessing
procedures are necessary to convert it into open-loop structures. Several mechanical joints
were severed or a few thin rods were removed to break open the closed chains in the first
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stage. Subsequently, an open-loop system can be established to fully use Equation (1).
However, consideration must be given to the loop-closure constrained equations that result
from the cut joints and removed rods. A closed-loop multibody system’s differential-
algebraic equations of motion can be obtained by introducing Lagrange multipliers. A
second velocity transformation employing the Jacobian of the loop-closure constraints is
introduced to eradicate the Lagrange multipliers and further reduce the dimension of the
equations of motion. It is capable of describing the relative coordinates using a minimal
set of independent relative coordinates. The equations of motion of closed-loop multibody
systems, in turn, can be formulated as [15,39–41]

RT
z RT

dM̄ΣRdRzz̈i = RT
z RT

d

[
Q̄Σ − TTM̄

d(TRdRz)

dt
żi
]

(2)

where, Rz contains the second velocity-transformation matrix. M̄Σ and Q̄Σ denote the
accumulated mass matrix and external force, respectively. żi and z̈i denote the independent
velocities and accelerations, respectively.

In vehicle multibody systems, Equation (2) can be used for real-time simulation
because the length of the independent relative acceleration vector z̈i equals the degrees of
freedom of the vehicle system. The variables (independent relative accelerations) include
the accelerations along the X-, Y-, and Z-axis, and the angular accelerations around the
X-, Y-, and Z-axis. Thus, the equations of motion can be used to accurately describe
the lateral–longitudinal–vertical coupling dynamics. This vehicle dynamics model was
verified and validated by multibody system dynamics theory and commercial software
applications, respectively [14,42]. In addition, a standard differential form is adopted
through the equations of motion while allowing stable integration for closed-loop vehicle
multibody systems by utilizing a variety of numerical integrators. The explicit 4th-order
Runge–Kutta method, a good trade-off between computational efficiency and solution
accuracy, is widely employed for long-term simulations.

The parameter information of the vehicle, which is studied in this paper, is shown
in Table 1. The essential characteristics of the vehicle, including vertical acceleration and
displacement and longitudinal velocity and displacement, can be obtained in real-time
based on Equation (2). In the following section, an active speed-control scheme was
incorporated into the optimized controller to reduce vehicle vibration.

Table 1. Important parameters of the vehicle model.

Parameter Value

Degrees of freedom 16
Vehicle mass 2519 kg
Front suspension mass 38.78 kg
Rear suspension mass 188.53 kg
Tire rolling radius 0.3495 m
Distance from center of gravity (C.G.) to front axle 1767 mm
C.G. height 1200 mm
Distance from C. G. to rear axle 2333 mm
Wheelbase 4100 mm
Stiffness of front absorber (4400, 5300) Nm/rad
Damping of front absorber (3400, 5400) N/(m/s)
Damping of rear absorber (5800, 9000) N/(m/s)

2.2. Optimal Control Algorithm

In this study, speed bumps or humps were used to imitate a continuous bumpy road,
according to Chinese national and industry standards. The speed bumps were usually
300 mm to 600 mm in width and 30 mm to 60 mm in height. The arc-shaped bumps with
a height of 50 mm or 60 mm have better speed-control effects [43]. In this work, the road
profile consists of five continuous speed bumps (with a height of 60 mm and a width of
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400 mm). The bumpy road is illustrated in Figure 1. Due to the fact that the vehicle speed
is below the speed threshold of the speed bumps, this investigation was conducted to
ensure safe driving. In order to enhance riding comfort, vertical vibration control was
subsequently implemented.

Figure 1. Structure of the speed bumpy road.

The optimal control methods include the dynamic programming method, the varia-
tional method, and the linear quadratic programming method. Due to its simplicity and
reliability, the linear quadratic programming method was utilized for controller design
in this study. It is critical to formulating the state-space equation between the inputs and
outputs of the system to enable optimal control. Because the bumpy road results in the vari-
ation of longitudinal velocity and vertical vibration, a longitudinal–vertical coupling model
is constructed based on the kinematics of actual road bumps, as described in Figure 2 [44].

Figure 2. Longitudinal–vertical coupling model in optimal controller.

In Figure 2, r1 and r2 represent, respectively, the radius of the tires and speed bumps.
The speed bumps, δr, and δrc represent the vertical variation of the C.G. of the tire and
the vehicle when passing the speed bumps, and δθ represents the rotation angle for the
tire at each time-step during the numerical integration process. The vertical displacement
of the tire created by the wheel passing through the arc profile of the speed bumps is
converted into the vertical vibration displacement of the vehicle, thereby linking the
longitudinal velocity and vertical vibration. In the modeling process, the deformation of
the tire is negligible since it has little effect on the vehicle vibration. The vehicle suspension
is represented by the rigidity and damping coefficients. The system state equation is
described as follows:

ẋ = Ax + Bu + Γw (3)

y = Cx (4)

where, x represents the state space vector, which is defined as x = [vx, xz, vz]T. y represents
the control output, which is defined as y = vx. u represents the control inputs, which
is defined as u = ax. vx and ax denote the longitudinal velocity and acceleration of the
vehicle, respectively. xz and vz denote the vertical displacement and velocity of the vehicle,
respectively. w represents the system disturbance. A, B, C, and Γ, respectively, represent
the coefficient matrices or vectors of the controller. They are not full rank in this work.
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The performance index of the optimal controller presented for vehicle control can be
described as follows:

J=
1
2

∫ ∞

0

[
xT(t)Q(t)x(t) + uT(t)R(t)u(t)

]
dt (5)

where, Q represents a positive semi-definite diagonal coefficient matrix. R represents a
symmetric positive definite matrix. Furthermore, the structure of the optimal controller
was developed—see Figure 3. The structure of the optimal controller was meticulously
developed and designed. The optimal controller is resulted through a thorough and
systematic approach that takes into account the controlled object (longitudinal–vertical
vehicle multibody system), system dynamics and control strategies (Linear Quadratic
Regulator, LQR). Under the condition that the system state equations (Equations (3) and (4))
of the controlled object are satisfied, the optimal control gain K is determined by minimizing
the value of the performance index J (Equation (5)). It aims to provide a robust and efficient
control output for the multibody system, ensuring that the requirement for suppressing
vertical vibration is met.

Figure 3. The structure of the optimal controller.

In general, this optimal control will not increase the change in longitudinal acceleration
rather than suppressing vertical vibration because the driving torques are controlled and
updated every 100 ms smoothly in this work. The vehicle speed based on the real-time
vehicle states obtained using the multibody dynamics model is modified via the optimal
control. The time phase of the optimal controller can be customized or updated based on
specific needs. Thus, the vehicle’s pace can be prevented from fluctuating too abruptly or
frequently, allowing for more stable regulation.

In addition, the longitudinal acceleration control will no longer be implemented. The
vertical vibration amplitude and peaks determine whether or not longitudinal acceleration
should be regulated. The control process and the threshold are defined with precision by
the optimal control strategy. After traversing the speed bumps, the vehicle’s ultimate speed
remains nearly constant, thereby reducing the effect of speed on vibration suppression. As
a consequence, a clear and effective vibration suppression effect is obtained.

3. Metamodels Based on the Response Surface Method

For extra suppression of the vehicle vibration, a suspension-parameter optimization
was carried out based on the presented vehicle multibody model and optimal control strat-
egy. Within the fluctuation range of the initial suspension parameters (rigidity and damp-
ing), the design was optimized. The vehicle was equipped with front double-wishbone
suspensions and rear leaf-spring suspensions. The front double-wishbone suspension is
suspended by a torsional spring, which is always used in vehicles due to ample assembly
space. Due to their rigidity, the leaf springs’ deformation excitation is minimal when the
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vehicle travels over a rocky road. Consequently, the spring’s rigidity is not defined as a
design variable during optimization. The optimization procedure is illustrated in Figure 4.

Figure 4. Schematic of the design optimization.

3.1. Optimal Latin Hypercube for the Metamodels

Design of experiment (DOE) is a systematic and efficient method for examining the
relationship between the factors that affect a system and the response of that system. Fewer
experiments, less time, and less expensive calculations are necessitated. In engineering and
scientific investigation, more precise characteristics are typically employed. The principal
experimental design methods include complete factorial design, partial factorial design,
orthogonal experimental design, uniform experimental design, Latin hypercube design,
and optimal Latin hypercube design.

The experimental design of the Latin hypercube has a sufficient capacity for occupying
space. A lower experimental cost and a looser level classification for the impact factor are
reached compared to a complete factorial design. By choosing suitable sampling points,
this method can be adapted to various design-optimization problems. In actual situations,
however, there is a great deal of sampling uncertainty regarding spatial uniformity. This
issue is addressed by developing the optimized Latin hypercube experimental procedure. It
makes it possible that all experimental points can be distributed as evenly as possible in the
design space [45]. This is due to the fact that the space-filling capacity and equilibrium of the
optimized Latin hypercube experimental method are superior. In the vehicle suspension,
the main design parameters are the front suspension stiffness k f , the front suspension
damping c f , and the rear suspension damping cr. The optimization factors and levels
are represented in Table 2. Suspension’s design parameters, which were all divided into
40 different levels and each level appeared once in different experiment, in order to ensure a
balanced and uniform distribution of each factor level, are regarded as the design variables
of the Latin hypercube experimental. Since the large variation interval of the suspension
parameters can lead to numerical instability during the integration process, the values
of the levels chosen here range within a stable set that guarantees a stable integration
for computing and controlling vehicle dynamics based on the numerical experiments,
i.e., primarily using percentage boundary constraints, centered on the initial values with
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upper and lower limits floating by 10% (k f ) and 20% (c f and cr). The experimental design
matrix and the dynamic response results for each sample are shown in Table 3. A Latin
hypercube matrix with dimensions is generated basing on the number of factors and the
desired number of samples. Each row in the matrix represents a sample and each column
represents a factor. In this experiment, there were 40 experimental samples and each with
three factors. In the Latin hypercube matrix, it is ensured that each level of each factor occurs
exactly once in each column and row, resulting in a balanced and stratified sampling design.
The semi-recursive vehicle multi-body model constructed in the preceding section was used
to simulate each sample, and the corresponding response variable values (displacement
and acceleration) for each sample were recorded.

Table 2. Factors and levels of the design variables.

Factor Number of Levels Levels (mm) Original Level (mm)

k f (Nm/rad) 40 4400, 4422.5, 4445, . . . ,
5255, 5277.5, 5300 4900

c f (N/(m/s)) 40 3400, 3450, 3500, . . . ,
5300, 5350, 5400 4400

cr (N/(m/s)) 40 5800, 5880, 5960, . . . ,
8840, 8920, 9000 7400

Table 3. Experimental design matrix.

Run
Variables Responses (Vibration)

k f (Nm/rad) c f (N/(m/s)) cr (N/(m/s)) Acceleration (m/s2) Displacement (m)

1 5046.154 3502.564 6866.667 20.967 0.043
2 4492.308 4374.359 7523.077 20.788 0.05
3 4746.154 4938.462 8917.949 21.124 0.044
4 5207.692 4476.923 6292.308 20.921 0.042
5 4815.385 3451.282 7605.128 20.93 0.045
6 4700 4015.385 6948.718 20.771 0.048
7 4907.692 4425.641 5882.051 20.68 0.047
8 4792.308 4066.667 7933.333 20.981 0.045
9 5184.615 5143.59 6374.359 20.891 0.043
10 4446.154 4835.897 8425.641 20.944 0.049
. . . . . . . . . . . . . . . . . .
40 4538.462 4169.231 7523.077 20.988 0.047

When a vehicle travels over a continuous series of speed bumps, road vertical vibra-
tions can be produced owing to the excitation of the speed bump, which can be character-
ized by vibration displacements and accelerations. The peaks and averages of the vibration
displacements and accelerations are therefore defined as “responses”. They are also treated
as the design optimization problem’s optimization objectives. Using the optimized Latin
hypercube method, experimental samples and corresponding responses are collected in
order to develop a metamodel, which will be discussed next.

3.2. RSM Model for the Vibration Control

The metamodel model drastically improves the optimization process’s efficacy while
maintaining sufficient precision. In the past decade, several metamodels, such as the RSM,
Kring, and radial basis function models, were utilized extensively in engineering optimiza-
tions. With fewer experiments, the RSM model accurately approximates the function within
a local range, thereby facilitating the optimization process [46,47]. Furthermore, the RSM
model can be applied in complex response relationships by using suitable regression mod-
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els. In this work, the linear polynomial and quadratic polynomial expressions of the RSM
are used and compared in terms of accuracy, which can be described as:

y(x) =β0 +
k

∑
i=1

βixi (6)

y(x) =β0 +
k

∑
i=1

βixi +
k

∑
i=1

βiix2
i +

k

∑
1≤i<j≤k

βijxixj (7)

where, the factors xi (i = 1, 2, 3) are suspension’s design parameters k f , c f and cr, there-
fore the number of variables k is 3. The response variable y is the predicted vibration
acceleration, β0 is the intercept term, βi (i = 1, 2, 3) are the linear polynomial regression
coefficient associated with the factors xi. Equation (7) includes not only the linear terms,
but also the interaction and quadratic terms. The second term on the right-hand side of
the equation represents the quadratic terms, while the third term represents the interaction
terms. βij (1 ≤ i < j ≤ 3) represents the interaction terms coefficient. These regression
coefficients provide information regarding the effect of each factor and their interactions
on the response variable, enabling prediction and optimization of the response within the
experimental range.

The RSM model is founded on the “two replacements at a time” method to determine
whether all items can be replaced, beginning with a constant term. This is carried out to
identify coefficients that result in the smallest error. Using this method, the linear and
quadratic RSM models for vibration displacements and accelerations can be developed.
According to the Pareto analysis, both the front suspension stiffness k f and the rear suspen-
sion damping cr are the most significant parameters for vehicle vibration. Thus, the RSM
models are described making use of these two parameters—see Figure 5. The effect of the
main factors (suspension parameters) on the vibration responses is illustrated.

The overall accuracy of the RSM models can be evaluated and tested by error func-
tions. WT , WR and WE are the sum of squared deviations of the samples, the sum of
squared regression deviations and the sum of squared residual deviations, respectively.
The corresponding expressions are written as follows:

WT =
n

∑
i=1

(yi − ȳ)2 (8)

WR =
n

∑
i=1

(ỹi − ȳ)2 (9)

WE =
n

∑
i=1

(yi − ỹi)
2 (10)

ȳ =
1
n

n

∑
i=1

yi, (11)

where, yi represents the value of the responses of the i-th sample, ỹi represents the approxi-
mated value of the responses of the i-th sample, n represents the total number of samples,
and ȳ represents the mean value of the responses of the n samples. The accuracy of the
RSM models is evaluated using the R2 determination, which is expressed by the following
equation:

R2 = 1− WE
WT

(12)

where, the numerator component represents the sum of the squared differences between
the actual and predicted values, and the denominator component represents the sum of
the squared differences between the actual and mean values. The closer the value of R2

is to 1, the more accurate the RSM model is. The closer the value of R2 is to 0, the worse
the model’s fit is. Because the R2 determination is affected by the number of samples
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and cannot truly and quantitatively explain the accuracy of the RSM model. The R2
adj is

introduced to balance the effect of the number of samples. It can be expressed as

R2
adj = 1− (1− R2)(n− 1)

(n− p− 1)
(13)

where, p is the number of features, and the value range of the R2
adj is from 0 to 1.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Quadratic response surface models. (a) Vibration acceleration (first peak). (b) Vibra-
tion acceleration (second peak). (c) Vibration acceleration (third peak). (d) Vibration acceleration
(fourth peak). (e) Vibration acceleration (fifth peak). (f) Vibration acceleration (average peak).
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Table 4 describes the summary statistics of the R2 and R2
adj determination for the linear

and the quadratic RSM model. For the fourth and fifth peaks, the linear RSM model has a
relatively poor fit accuracy. This is because the characteristics of the vertical acceleration
responses for the fourth and fifth peaks are highly non-linear, and the vehicle dynamics
cannot be adequately described by the linear RMS model. In addition, the quadratic RSM
model has a higher overall fit accuracy, resulting in a superior fit for each acceleration peak.
This also indicates that the quadratic RSM model’s predicted responses are closer to the
actual responses. It can be seen from Table 4 that the minimum value for R2

adj is 0.942,
which approaches 1. This suggests that the quadratic RSM model is capable of producing
accurate outcomes. Consequently, it could be substituted for the actual physical model
for design optimization. However, the linear RSM model could be useful if focusing on
the minimum computational cost. There is a trade-off between computational cost and
approximation accuracy.

Table 4. Summary of RSM model statistics.

Linear Quadratic

R2 R2
adj R2 R2

adj

First peak 0.999 0.999 0.999 0.998
Second peak 0.994 0.994 0.999 0.998
Third peak 0.973 0.970 0.999 0.998
Fourth peak 0.537 0.484 0.960 0.942
Fifth peak 0.890 0.878 0.995 0.992
Average peak 0.981 0.979 0.999 0.998
Average displacement 0.999 0.999 0.999 0.999

4. Optimization of the Suspension
4.1. Non-Linear Programming Using the Quadratic Lagrangian (NLPQL) Algorithm

The vehicle system’s capacity to transport body mass and absorb the impact of rough
roads is determined through the suspension’s stiffness. Moreover, caused by suspension’s
damping, the vehicle vibration is reduced. The greater the damping coefficient, the greater
the effect on vibration suppression. Nonetheless, a negative effect on system rigidity is
realized when it is very large. In other terms, damping can diminish the effectiveness
of elastic components and damage vehicle components. Therefore, an optimization of
the suspension’s parameters is required to determine the optimal suspension rigidity and
damping. Given the constraints imposed by the vertical displacement of the center of
mass, the vibration acceleration is minimized in this manner when the vehicle traverses the
rough road.

Several optimization methods (i.e., algorithms) can be used: numerical optimization,
direct search, global search, gradient optimization, etc. In this investigation, the NLPQL
gradient optimization algorithm is utilized. Based on the current solution, an updated
solution in the design space is determined by the gradient algorithm using a forward
approach and an appropriate search step. The concept underlying the NLPQL algorithm
is executed to express the objective function as the second-order Taylor equation and to
linearly process the constraints [48,49]. Thus, the problem of design optimization can be
transformed into a quadratic programming problem. Consistent with the prior quadratic
RSM model, a better convergence is achieved. The design optimization problem is now
defined, and the related pseudocode is described as Algorithm 1:
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Algorithm 1 Design optimization.

Require: Minimize vibration acceleration (min f (x), x = (k f , c f , cr))
Ensure: 4400 Nm/rad ≤ k f ≤ 5300 Nm/rad

3400 N/(m/s) ≤ c f ≤ 5400 N/(m/s)
5800 N/(m/s) ≤ cr ≤ 9000 N/(m/s)
zc≤ z0 + ε = 0.05 + 0.003 = 0.053 m
(Note: zc represents the average peak of the vibration displacements,
z0 represents the threshold of the vibration displacements.)

In the above algorithm, the design variables are the front suspension stiffness k f ,
front suspension damping c f , and rear suspension damping cr, which are defined for a
specific range using our numerical experiences to assure numerical stability. The objective
is optimization to minimize the vibration acceleration when the vehicle traverses a road
with speed bumps. Minimum ground clearance was also used as a design constraint in
consideration of the driving manoeuvrability of the vehicle. This represents that the con-
straint stipulates that the vehicle’s vertical displacement must not exceed a predetermined
limit, which can be defined by a threshold value and a variable interval ε.

For the purpose of analyzing the efficiency of the NLPQL algorithm and comparing
its optimal results, the large-cardinality full-factor method was utilized for verification
and comparison. Transversal analysis for all possible factor combinations at all levels is
necessitated in full-factor design. It is presumed that the effects of various factors on the
results of quantitative observation are equivalent. Each experiment has a distinct level for
each variable. Thus, a vast quantity of information covering the entire design space was
obtained. Nevertheless, while it can accurately assess the effects of each factor at all levels,
it is cumbersome and time-consuming for large-scale issues. In the NLPQL algorithm, each
factor is divided into 10 levels to ensure that the sampling density has sufficient spatial
coverage accuracy. The total number of samples is 1000 (groups), and the interval sampling
values for different levels are 100, 200, and 320, respectively. The optimization results (using
the RSM models and NLPQL algorithm) are illustrated in Figures 6 and 7. Due to space
constraints, it is essential to note that only the optimal stiffness and damping of the front
suspension are shown in Figures 6 and 7.
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Figure 6. Results using the RSM models and NLPQL algorithm: peak acceleration.
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Figure 7. Results using the RSM models and NLPQL algorithm: vertical displacement.

The optimization results for both the NLPQL and the full factor methods are shown in
Table 5. Optimized parameters that are consistent with the results of the full-factor method
are yielded through the NLPQL method. Any deviations occur within an allowable interval
that satisfies the design specifications. Nevertheless, compared to the time-consuming
full-factor method, the NLPQL method is significantly more efficient while maintaining
adequate precision.

Table 5. Suspension parameters before and after the optimization.

Method Stiffness of Front
Absorber (Nm/rad)

Damping of Front
Absorber (N/(m/s))

Damping of Rear
Absorber (N/(m/s))

Initial parameters 4901 4400 7400
NLPQL method 4607 4270 5800
Full-factor method 4550 4200 5800

4.2. Vibration-Control Results

To visualize the effects of vibration control utilizing the optimal suspension parameters
and the optimal controller, a vehicle traversing a series of speed obstacles was subjected to
a dynamic maneuver. The vehicle’s initial velocities were set to 25 km/h and 45 km/h. The
vibration control results are shown in Figure 8. The first five values denote the peak value
for vibration acceleration for the speed bump series (as shown in Figure 1). The last peak
value denotes the average vibration acceleration on the bumpy road. Two different initial
vehicle speeds were used. The control effects were visualized using four distinct control
methods: no optimal controller and optimal parameters (method A), optimal controller but
without optimal parameters (method B), PID controller with optimal parameters (method
C), and optimal controller with optimal parameters (method D). Figure 8 illustrates that
when the vehicle traverses a bumpy road, its vertical acceleration magnitude increases
with the initial speed (from 25 km/h to 45 km/h). In addition, the maximal acceleration of
vibration occurs at the third peak when the initial velocity is 45 km/h (relatively high). This
is due to the fact that the vehicle’s speed does not diminish significantly over the bumps.
Nonetheless, the vibration builds up over time. This indicates that the vehicle is unable to
assimilate sufficient energy and will likely experience greater vibrations at a higher initial
speed on a rough road. In addition, the maximal acceleration of vibration decelerates as
the initial speed increases.
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(a) (b)

Figure 8. Obtained vertical acceleration peaks. (a) 25 km/h. (b) 45 km/h.

Tables 6 and 7 present the vertical vibration suppression numerical results for the four
different control strategies at speeds of 25 km/h and 45 km/h. The efficacy of the other
three control methods is determined through a benchmark served by the numerical results
derived from the simulation of the dynamics without any control (method A). It can be
seen from the tables that, at the lower speed (25 km/h), the average suppression for the five
peaks is 29.28% for the optimal controller, and the maximum suppression can reach 50.55%.
By optimizing the suspension parameters, the average suppression can be improved to
reach 30.8%. A more significant suppression effect is realized than the PID controller with
optimal parameters (the average suppression 26.33%). For an initial speed of 45 km/h,
the average suppression for the five peaks is 3.54% for the optimal controller, and the
maximum suppression reached 9.75%. Taking into consideration the optimal suspension
parameters, the optimal controller suppresses peaks by an average of 5.7%, whereas the
PID controller only suppresses peaks by 2.43%, which is consistent with the findings at
modest vehicle speeds. Finally, the vehicle vibration control method, which uses the RSM
model, the NLPQL algorithm, and the optimal controller, is the most effective. Passive
suspension-parameter optimization is integrated with an active speed-control scheme from
the new vibration control method.

Table 6. The peaks of vertical acceleration (25 km/h).

25 km/h
Control Method

A B C D

First peak 14.60 13.92 (↓ 4.61%) 13.56 (↓ 7.09%) 13.39 (↓ 8.29%)
Second peak 15.72 13.44 (↓ 14.49%) 14.10 (↓ 10.31%) 13.36 (↓ 14.99%)
Third peak 15.68 9.73 (↓ 37.93%) 11.75 (↓ 25.04%) 10.44 (↓ 33.43%)
Fourth peak 15.65 9.73 (↓ 37.78%) 8.52 (↓ 45.42%) 8.54 (↓ 45.42%)
Fifth peak 15.24 7.53 (↓ 50.55%) 8.92 (↓ 41.45%) 7.46 (↓ 51.03%)
Mean value 15.38 10.87 (↓ 29.28%) 11.33 (↓ 26.33%) 10.64 (↓ 30.82%)

Table 7. The peaks of vertical acceleration (45 km/h).

45 km/h
Control Method

A B C D

First peak 17.93 18.46 (↑ 2.92%) 17.20 (↓ 4.11%) 17.51 (↓ 2.35%)
Second peak 21.48 19.63 (↓ 8.62%) 19.54 (↓ 9.00%) 18.59 (↓13.44%)
Third peak 24.49 23.85 (↓ 2.63%) 26.44 (↓ 7.95%) 24.58 (↑ 0.37%)
Fourth peak 22.00 22.34 (↑ 1.53%) 20.72 (↓ 5.80%) 21.55 (↓ 2.03%)
Fifth peak 22.58 20.38 (↓ 9.75%) 21.94 (↓ 2.84%) 20.10 (↓ 11.00%)
Mean value 21.70 20.93 (↓ 3.54%) 21.17 (↓ 2.43%) 20.47 (↓ 5.67%)
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Based on the results shown in Figures 6 and 7 and Tables 6 and 7, the following
conclusions can be drawn:

– Intricate coupling effects are exhibited by the three suspension parameters when the
vehicle traverses a series of speed bumps.

– One peak value is insufficient to characterize the vibration performance. Instead,
the average acceleration of the five shocks is a more appropriate metric for describing
vibration control.

– Consistent with real-world observations, opposing trends are displayed via the re-
sults for vehicle accelerations and displacements. To optimize the design, vehicle
displacements are therefore converted into constraints.

The NLPQL method is used as a computationally efficient and scalable mathematical
optimization technique. However, it is worth noting that the initial point selection has a
significant impact on the algorithm’s convergence and ultimate results. In the research,
this technique is used to optimize the suspension parameters in order to minimize the
vibration acceleration of a vehicle traveling over a rough road. As the objective function,
the previous quadratic RSM model is utilized, offering superior convergence compared
to the conventional suspension dynamics model. To avoid falling into a local optimum
solution that does not satisfy the actual engineering requirements, a specific range of
vehicle suspension parameter variables is defined based on numerical experience. In future
applications, suspension optimization parameters may be used directly in the control of
the vehicle’s active suspension, i.e., the suspension stiffness and damping are adjusted
to the current optimum parameters based on the road conditions, and then the vehicle
speed is adjusted to further suppress vehicle vibrations using a controller such as the
optimal controller.

5. Conclusions

The vibration problem that occurs when a vehicle traverses a series of speed obstacles
was partially addressed by developing a suspension-optimization method employing an
optimal control algorithm. In addition, a multibody vehicle model was created using a semi-
recursive multibody formulation that accurately depicts the critical vehicle characteristics.
For the vehicle dynamics model, an optimal controller was used to suppress all vertical
vibrations. And a quadratic RSM model was proposed with an optimal Latin hypercube
approach to improve the vehicle vibration controller. The RSM model was analyzed
and its accuracy was confirmed. The suspension parameters were optimized using an
NLPQL algorithm and the RSM model, with the full-factor method used to validate the
optimization results.

The results indicate that the new method of vibration control, which combines a
meta-model-based suspension optimization with an optimal control algorithm, enables
more effective suppression of vibrations on rough roads. In addition, the average vibration
acceleration decreased by more than 30% at an initial speed of 25 km/h. The average
and maximum vibration acceleration decreased by more than 5% and 10% at 45 km/h,
respectively. Overall, these results suggest that the new method could be used to control
the vibration of autonomous vehicles to improve passenger comfort and safety. Future
research could focus on the parameter-uncertainty analysis for vehicle vibration control.

Author Contributions: Conceptualization, Y.P.; methodology, W.D. and L.H. (Liuqing He); software,
W.D. and L.H. (Liuqing He); validation, W.D. and L.H. (Liuqing He); formal analysis, W.D. and S.-P.Z.;
investigation, W.D. and S.-P.Z.; resources, Y.P. and L.H. (Liang Hou); data curation, W.D. and L.H.
(Liuqing He); writing—original draft preparation, W.D.; writing—review and editing, W.D. and L.H.
(Liang Hou); visualization, W.D.; supervision, Y.P. and L.H. (Liang Hou); project administration, Y.P.;
funding acquisition, Y.P. and L.H. (Liang Hou). All authors have read and agreed to the published
version of the manuscript.



Actuators 2023, 12, 297 16 of 17

Funding: This work was supported by the National Natural Science Foundation of China (12072050),
the Guiding Funds of Central Government for Supporting the Development of the Local Science and
Technology (2020L3002), Fujian Province Regional Development Project (No. 2022H4018), and Fujian
Province Science and Technology Innovation Platform Project (No. 2022-P-022).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
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