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Abstract: The ankle joint (AJ) is a crucial joint in daily life, responsible for providing stability, mobility,
and support to the lower limbs during routine activities such as walking, jumping, and running. Ankle
joint injuries can occur due to sudden twists or turns, leading to ligament sprains, strains, fractures,
and dislocations that can cause pain, swelling, and limited mobility. When AJ trauma occurs, joint
instability happens, causing mobility limitations or even a loss of joint mobility, and rehabilitation
therapy is necessary. AJ rehabilitation is critical for those recovering from ankle injuries to regain
strength, stability, and function. Common rehabilitation methods include rest, ice, compression, and
elevation (RICE), physical therapy, ankle braces, and exercises to strengthen the surrounding muscles.
Traditional rehabilitation therapies are limited and require constant presence from a therapist, but
technological advancements offer new ways to fully recover from an injury. In recent decades
there has been an upswing in research on robotics, specifically regarding rehabilitation. Robotic
platforms (RbPs) offer several advantages for AJ rehabilitation assistance, including customized
training programs, real-time feedback, improved performance monitoring, and increased patient
engagement. These platforms use advanced technologies such as sensors, actuators, and virtual
reality to help patients recover quicker and more efficiently. Furthermore, RbPs can provide a safe
and controlled environment for patients who need to rebuild their strength and mobility. They can
enable patients to focus on specific areas of weakness or instability and provide targeted training for
faster recovery and reduced risk of re-injury. Unfortunately, high costs make it difficult to implement
these systems in recuperative institutions, and the need for low-cost platforms is apparent. While
different systems are currently being used, none of them fully satisfy patient needs or they lack
technical problems. This paper addresses the conception, development, and implementation of
rehabilitation platforms (RPs) that are adaptable to patients’ needs by presenting different design
solutions (DSs) of ankle RPs, mathematical modeling, and simulations of a selected rehabilitation
platform (RP) currently under development. In addition, some results from practical tests of the first
prototype of this RP are presented. One patient voluntarily agreed to use this platform for more
rehabilitation sessions on her AJ (right leg). To counteract some drawbacks of the first prototype,
some improvements in the RP design have been proposed. The results on testing the improved
prototype will be the subject of future work.

Keywords: rehabilitation robot; ankle rehabilitation; robot design; modeling and simulation;
experimental testing

1. Introduction

In recent years, research in the field of medical robotics has been intensified. Among
the medical applications of robotics, high-precision surgical interventions or the recovery
of motor functions following such interventions or accidents can be mentioned. As benefits
of these systems, we can list: they eliminate overburdening of medical personnel, robots
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reduce waiting times, and physiotherapists can follow several patients at the same time. In
addition, the optimization of tools used in surgery and microsurgery facilitates surgical
interventions and reduces the incidence of errors and deaths in the scope of high-risk
interventions. In conclusion, while doctors can control and monitor more patients with
a reduced workload, patients receive better quality medical therapy thanks to modern and
efficient equipment.

The structure of the ankle joint (AJ) plays a defining role in an individual’s daily life,
providing balance, stability, and the possibility of locomotion. Representing such an impor-
tant structure in daily activities, the incidence of injuries at the level of this joint, including
those of a neurological nature, caused by a stroke, is also high [1]. AJ traumas will immedi-
ately affect its stability and mobility. The recovery of the physically injured AJ involves, in
the first stage, a reduction in edema: RICE and, possibly, anti-inflammatory drugs. Injured
ligaments will form scar tissue, so patients will experience limited activity in the absence
of proper rehabilitation. Traditional rehabilitation procedures are based on using simple
and primitive devices such as elastic bands and foam rollers. These procedures need the
permanent presence of the physiotherapist near the patient. In addition, the used exercises
are time-consuming and repetitive, requiring effort both from the physiotherapist and from
the patient. To counteract these aspects and to improve the quality of rehabilitation, in
recent years, robots have been involved in rehabilitation therapies. The use of robots in
such therapies is also based on the increasing number of elderly people who need assistance
either due to aging or accidents.

Due to the multiple traumas that can appear at the lower limb, a large diversity
of robotic systems have been designed for medical recovery, including AJ RPs. These
devices are designed to improve the motor function of the ankle joint, which can be
impaired due to various reasons, such as injury, disease, or aging. Typically, AJ RPs
have two degrees of freedom (DOF) to enable dorsiflexion (DF)/plantar flexion (PF) and
inversion (INV)/eversion (EV) movements. Some robots also include a third DOF to
allow for abduction/adduction rotation. Examples include the ankle rehabilitation robot
developed by Park et al. [2]. These robots can be classified into different categories based
on their design, such as parallel devices, exoskeletons, or wearable devices.

Parallel devices are the most common type of AJ rehabilitation robots (RRs). They typ-
ically consist of two platforms, one fixed and one movable, connected by parallel linkages,
providing multiple DOF for the ankle joint. Actuation is usually provided by electric motors
or pneumatic actuators. Several studies have been conducted to evaluate the effectiveness
of parallel AJ RRs in clinical settings. For example, a study by Kesar et al. [3] evaluated the
Anklebot, a parallel robot for ankle rehabilitation, in stroke patients and found significant
improvements in motor function. Another study by Lee et al. [4] developed an AJ rehabili-
tation robot (RR) using pneumatic artificial muscles and demonstrated improved ankle DF
and PF in stroke patients.

Exoskeletons are another type of AJ RRs that provide support and assistance to the
ankle joint through wearable robotic devices. They typically consist of rigid structures
attached to the leg and foot, with actuators and sensors providing joint motion and feedback.
A study by Lobo-Prat et al. [5] evaluated an ankle exoskeleton for gait rehabilitation in
stroke patients and found improved ankle DF and reduced compensatory movements.

Wearable devices are a newer type of AJ RRs that are designed to be lightweight and
portable, allowing patients to use them during daily activities. A study by Cheung et al. [6]
developed a wearable AJ RR with self-aligning joints and found improved ankle DF and
PF in healthy individuals.

Control strategies for AJ RRs play an important role in their effectiveness. Several
studies have explored different control strategies, such as impedance control, admittance
control, and trajectory tracking control. A study by Paradiso et al. [7] developed a robotic
device for ankle rehabilitation with impedance control, while a study by Park et al. [8]
developed a gait-enhancing mobile shoe using machine learning algorithms to adapt to
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each patient’s unique gait. Table 1 summarizes some of the existing parallel AJ RRs, based
on: actuation type, number of DOF, control strategies, and study with patients [9].

Table 1. Some existing parallel AJ RPs [9].

Reference Actuation Type Number of DOF Control Strategies Study with Patients

Girone et al. [10] Pneumatic 6 Position control; force control Yes

Yoon et al. [11] Pneumatic 4 Position control No

Dai et al. [12] Electric 4 N/A No

Liu et al. [13] Electric 3 Position control; force control No

Saglia et al. [14] Electric 2 Position control; assistive control;
admittance control No

Malosio et al. [15] Electric 3 Position control; admittance control No

Ayas et al. [16] Electric 2 Trajectory tracking; admittance adaptive control No

Ai et al. [17] Pneumatic 2 Adaptive backstepping sliding mode control No

Jamwal et al. [18] Pneumatic 3 Position control; adaptive control;
adaptive impedance control Yes

Zhang et al. [19] Pneumatic 3 Position control; adaptive patient-cooperative
control; adaptive trajectory tracking Yes

Tsoi et al. [20] Electric 3 Joint force control; impedance control No

Wang et al. [21] Electric 3 Position control No

Valles et al. [22] Electric 3 Position control; force control No

Li et al. [23] Electric 3 Position control; patient-passive compliant
exercise; isotonic exercise; patient-active exercise No

Unfortunately, robotic-assisted rehabilitation therapies at the level of recuperative
institutions are highly costly. That is why research is needed for the development of
robotic RPs that can allow therapy to be performed in the patient’s home. Home-based
AJ RRs is a growing field, as they offer patients more convenient and accessible options
for rehabilitation. We may analyze these robots in terms of different aspects such as robot
design, user interface, control strategies, clinical validation, and so on.

In terms of robot design, we may present some examples: Hong et al. [24] developed
a portable and lightweight AJ RR that could be easily used at home by stroke patients;
Liu et al. [25] designed a 3-DOF wearable AJ RR that could be easily worn by patients
during their daily activities; and Zhou et al. [26] developed a modular AJ RR that could be
customized based on the patient’s needs and preferences.

Concerning the user interface, Aghaebrahimian et al. [27] developed a smartphone-
based user interface for an AJ RR, allowing patients to monitor their progress and receive
feedback on their rehabilitation; Kamal et al. [28] designed a gamified user interface for
a home-based AJ RR, making rehabilitation more engaging and motivating for patients;
and Wang et al. [29] developed a user-friendly interface for an AJ RR, allowing patients to
easily adjust the robot’s settings and track their rehabilitation progress.

Regarding clinical validation, Chen et al. [30] conducted a clinical study on a home-
based AJ RR with 24 stroke patients and found that the robot was effective in improving the
patients’ ankle range of motion and gait performance; Li et al. [31] conducted a randomized
controlled trial on a home-based AJ RR with 60 ankle sprain patients and found that the
robot-assisted rehabilitation group had better ankle function than the control group; and
Wang et al. [32] conducted a pilot study on a home-based AJ RR with 12 ankle sprain
patients and found that the robot was effective in improving the patients’ ankle strength
and range of motion.

Overall, home-based AJ RRs have the potential to improve patient outcomes by
providing more accessible and convenient rehabilitation options. However, more research
is needed to validate their effectiveness and usability in clinical settings. Table 2 presents
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some AJ RPs suggested for domestic use, taking into account actuation type, number of
DOF, and the main function of the developed rehabilitation systems [33].

Table 2. Some AJ RPs suggested for domestic use [33].

Reference Actuation Type Number of DOF Function

Cioi et al. [34] Pneumatic 6 Ankle rehabilitation for children with epilepsy

Girone et al. [10] Pneumatic 6 AJ rehabilitation

Roy et al. [35] Electric 3 Ankle training with a robotic device to improve
hemiparetic gait after a stroke

Kim et al. [36] Electric 2 Active ankle–foot orthosis for foot drop

Ward et al. [37] Electric 2 Powered ankle–foot orthosis

Forrester et al. [38] Electric 3 “AnkleBot” training on paretic ankle motor control
in chronic stroke

Jamwal et al. [39] Pneumatic 3 Treatment for an ankle sprain through physical therapy

Blanchette et al. [40] Electro-hydraulic 2 Robotized ankle–foot orthosis

Takahashi et al. [41] Pneumatic 2 An exoskeleton supplies plantar flexion assistance

Koller et al. [42] Pneumatic 2 Powered ankle exoskeletons using neural measurements

Ren et al. [43] Electric 2 Wearable AJ RR for in-bed acute stroke rehabilitation

Yeung et al. [44] Electric 2 Robot-assisted ankle–foot orthosis to provide
assistance post stroke

Awad et al. [45] Electric 2 ReWalk ReStore dorsi flexor and plantar flexor

The analysis of the existing literature allows us to conclude that using robotic systems
(RbSs) as an innovative substitute for traditional medical treatment is highly advantageous.
Nonetheless, rehabilitation systems are faced with certain shortcomings which restrict their
usage in recovery clinics, including poor interaction of the patient with the rehabilitation
system, the need for additional safety measures during exercises, the inability to repeat
sessions at home, limited real-time adjustment options, complex command interfaces, and
difficulty handling the systems due to shape and dimension constraints. To overcome
these limitations, specialized control techniques are necessary to ensure patient safety
and recovery throughout system usage. Control algorithms aim to monitor RbPs used in
rehabilitation exercises to enhance motor plasticity and improve motor function recovery.
Despite the availability of numerous recovery systems in the literature, a device that satisfies
all patient requirements and lacks technical issues does not yet exist. Hence, this study
focuses on designing, developing, and implementing adaptable RPs tailored to patients’
specific demands.

The remainder of this paper is organized as follows: Section 2 discusses the design
of an ankle RP, including the motivation of the chosen design solution (DS), structural
synthesis, design solutions (DSs), and the selection of a platform that will be practically
realized. Section 3 presents mathematical modeling and simulation of the adopted DS, its
dimensional synthesis, and experimental results during the test; in addition, this section
presents some ethical and safety issues and a new proposed design, based on the conclu-
sions that result from the practical test. In Section 4, some concluding remarks of this work
are presented.

2. Materials and Methods
2.1. Design of the Ankle Rehabilitation Robot
2.1.1. Motivation of the Adopted Solutions

The AJ is very important both in a person’s daily activities and in sports activities.
Due to the fact that it is in great demand throughout the day, this joint can be subject to
accidents. Although, in addition to classical therapies, many clinics use robotic systems for
the rehabilitation of the AJ, these systems are either too complex, requiring the presence
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of a physiotherapist; boring and tiring, decreasing patients’ motivation to use them; or
too expensive to be purchased by patients in order to carry out recovery sessions at home.
Starting from these aspects, there is the need to design robotic platforms that are as simple
and friendly as possible, as well as at a low-cost price. In an attempt to design and create
a robotic platform for the AJ, the authors of this paper have carried out various studies
over the last few years [46–51].

2.1.2. Structural Synthesis

Taking into account the movements allowed by the AJ (Figure 1), we started the
design of the robotic RP. This platform should be able to recover two of the three move-
ments shown in Figure 1: DF/PF and EV/INV. The third movement allowed by the AJ
(abduction/adduction) is not a key element in the rehabilitation of this joint, with it being
a secondary movement. The ranges of the specified movements vary between 25◦ to 50◦ for
PF, 20◦ to 30◦ for DF, 35◦ to 50◦ for INV, and 0◦ to 25◦ for EV [52]. We may conclude that the
designed platform must be a spatial kinematic structure and it should allow two rotational
movements around two perpendicular axes. This means that the driven link (DnL) of the
RP must have two DOF. This link will be the plate supporting the sole of the foot (PSSF).
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Figure 1. AJ rotational motions.

Based on the previous comments, some mechanisms with two DOF will be proposed
for the AJ RP. “Fixed” RP versions with the base connected to the ground and also “portable”
RP versions with the base connected to the calf will be proposed. For all of these RPs, the
DnL will be the PSSF. None of the two types of RP may be used during walking. However,
the “portable” versions could be displaced, before, during, or after the rehabilitation process.
If we consider the DnL of a mechanism that represents the structure of an AJ RP, this link
should have three DOF if all three movements of the AJ are intended to be recovered
(Figure 2).
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We may find multiple actuating solutions of the DnL with three DOF. One of them
could use a 3-SPS/S (spherical—prismatic—spherical/spherical) mechanism (see Figure 3a).
The prismatic joints of this mechanism will be driving joints (DgJs). A second possible
solution is using a 3-RSS/S (rotational—spherical—spherical/spherical) mechanism, shown
in Figure 3b. In this case, DgJs are the revolute joints.
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Because we considered that the abduction/adduction movement of the AJ is a sec-
ondary one and we do not take it into account for recovery, the DnL (the PSSF) could only
have two DOF (Figure 4).
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We may use multiple actuating solutions of a DnL with two DOF, too. A first example
is considering a mechanism such as 2-SPS/U (spherical—prismatic—spherical/universal),
as shown in Figure 5a. To avoid rotation around its own axis of the SPS type kinematic
chain, a 2-UPS/U (universal—prismatic—spherical/universal) mechanism may be utilized
(Figure 5b). The actuation of prismatic joints usually requires linear actuators or rotary
actuators and additional mechanical transmissions. For the linear actuators, we may use
pneumatic or hydraulic actuators, but they require an external fluid source, which is not
usually available at home. Moreover, pneumatic and hydraulic actuators exhibit nonlinear-
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ities in their operation. Mechanical transmissions are used to convert the rotational motion
into a translational one (ball screw; rack and pinion). These transmissions are complicated
and expensive. To counteract all the disadvantages mentioned above, we will propose
an RP based on a Scotch–Yoke mechanism. This mechanism has advantages such as a high
output torque and smooth operation. Two kinematic solutions (KSs) using the Scotch–Yoke
mechanism will be proposed in the following. One of these solutions (KS-1), the “fixed
kinematic solution”, is shown in Figure 6. It has the base (link 0) fixed to the ground. The
DnL 6 plays the role of the PSSF.
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The “portable kinematic solution” has the base (link 0) connected to the calf (KS-2; see
Figure 7). The PSSF is, again, represented by the DnL 6. During the rehabilitation exercises,
the leg should be suspended, with the calf resting on a solid surface (for example, a chair
or a sofa). For both KSs mentioned above (KS-1 and KS-2), the driving links (DgLs) are the
links 3 and 3′. To produce the INV/EV movement of the AJ, the DnL 6 must be rotated by
the angle θ6 around the x-axis. For performing this, the DgLs will be rotated by the same
angle, θ3 = θ3′ , in the same direction. The PF/DF movement of the DnL 6 (with the angle
θ6′ around the y-axis) will be produced when the DgLs is rotated by the same angle but in
opposite directions, θ3 = −θ3′ .
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A second actuation solution of the DnL with two DOF (Figure 4) could use a 2-RSS/U
(rotational—spherical—spherical/universal) mechanism, Figure 8. For this actuation solu-
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is shown in Figure 9 and the second one, the “portable kinematic solution” (KS-4), is
represented in Figure 10. In these cases, the DnL 4 plays the role of the PSSF.
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For these last two mechanisms, the INV/EV movement of the AJ is produced when
the DnL 4 is rotated by the angle θ4 around the x-axis. We will determine whether the DgLs
will be rotated by the same angle, θ1 = θ1′ , in the same direction. If the DgLs is rotated by
the same angle but in opposite directions, θ1 = −θ1′ , the PF/DF movement of the DnL 4
(with the angle θ4′ around the y-axis) will be produced.

2.1.3. Design Solutions

Some DSs of “fixed” RPs based on the mechanisms discussed above have been ana-
lyzed. These designs could have collinear (DS-2, DS-4, DS-6, and DS-8) or parallel (DS-1,
DS-3, DS-5, and DS-7) rotational axes of the two actuators. In addition, they could have the
two DnL rotational axes coaxial (DS-1, DS-2, DS-5, and DS-6) with the AJ rotational axes or
parallel (DS-3, DS-4, DS-7, and DS-8) to them. These DSs are summarized in Tables 3 and 4.
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To select the design solution (DS) with the most advantages in use (Table 5), we have
analyzed the proposed DSs based on several criteria:

• RP maintenance (C1)—these criteria take into account the actuator and mechanism
type (joints type);

• Simplicity in use (C2)—ease of programming and use by the end user;
• RP cost (C3)—takes into account the cost prices of the components;
• RP overall dimensions (C4)—the overall dimensions and the mass of the platform are

very important in choosing the technical solution;
• Minimum blocking probability (C5)—depends on the joints type;
• The DnL range of motion (C6)—the RP should cover the range of motion for both AJ

movements considered for rehabilitation.

Table 3. DSs of robotic RPs with two DOF based on the spatial four-bar linkage (2-RSS/U).

The Center of the AJ Is Aligned with the
Rotation Center of the Robot

The Center of the AJ and the Rotation Center
of the Robot Are not Coincident

Parallel Rotational
Axes of DgLs

Collinear Rotational
Axes of DgLs

Parallel Rotational
Axes of DgLs

Collinear Rotational
Axes of DgLs

DS-1
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Points from 0 to 5 were awarded for each criterion and for each DS. RPs with the center
of the AJ aligned with the rotation center of the robot (DS-1, DS-2, DS-5, and DS-6) have
bigger overall dimensions than other platforms. In addition, RPs with collinear rotational
axes of the DgLs (DS-2, DS-6, DS-4, and DS-8) have bigger dimensions compared with
the platform with parallel rotational axes of these links (DS-1, DS-3, DS-5, and DS-7). DSs
based on a 2-RSS/U mechanism (DS-1, DS-2, DS-3, and DS-4) have better maintenance
than platforms based on a 2-UPS/U mechanism (DS-4, DS-5, DS-6, and DS-7). These last
RPs (with a 2-UPS/U structure) are more expensive due to the ball nut screw transmissions
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that should be used for the prismatic joint. In addition, the blocking probability of the
RPs based on a 2-UPS/U (DS-4, DS-5, DS-6, and DS-7) mechanism is higher. The range
of motions for RPs with the center of the AJ not coincident with the rotation center of the
robot (DS-3, DS-4, DS-7, and DS-8) is bigger. Among the discussed DSs, two solutions stand
out that meet most of the requirements (DS-1 and DS-3). To select the DS which will be
practically realized, dimensional synthesis, mathematical modeling, and simulations of the
two mentioned DSs have to be carried out.

Table 5. Selection of the adopted DS.

DS-1 DS-2 DS-3 DS-4 DS-5 DS-6 DS-7 DS-8

C1 5 5 5 5 4 4 4 4
C2 5 5 5 5 5 5 5 5
C3 5 5 5 5 4 4 4 4
C4 4 3 5 4 3 2 4 3
C5 4 4 5 4 3 3 3 3
C6 4 3 5 3 4 4 5 5

Total 27 25 30 26 23 22 25 24

3. Results
3.1. Mathematical Modeling and Simulation

Only two DSs based on the spatial four-bar mechanism (DS-1 and DS-3) were con-
sidered for mathematical modeling and simulation. The first one has two rotational axes
coincident with the AJ axes. However, unfortunately, the simulation revealed that the DS-1
design solution, based on the kinematics shown in Figure 9, cannot assure the necessary
movement ranges for AJ rehabilitation.

3.1.1. Mathematical Modeling of the DS-3 Design Solution

The kinematics of this DS of the RP is shown in Figure 11. The links 1 and 1′ are DgLs,
while the plate 4 represents the DnL. To determine the relationship between the angular
position of the DnL 4 with respect to the angular position of the driving link (DgL), the
kinematic analysis of the mechanism is required.
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The first considered case is that of the INV/EV movement, when both DgLs will be
rotated with θ1 = θ′1. This movement is produced by the equivalent mechanism shown in
Figure 12a. To write the kinematic equations, an equivalent mechanism driven by a single
motor (shown in Figure 12b) is used.
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The direct kinematics problem will lead to:

θ4 = 2·atan

(
−B1 ±

√
A1

2 + B1
2 − C1

2

C1 − A1

)
, (1)

where 
A1 = −2·l4·lh − 2·l1·l4· cos θ1
B1 = 2·l4·lv − 2·l1·l4· sin θ1
C1 = 2·lh·l1· cos θ1 − 2·lv·l1· sin θ1 + l12 − l2

2 + l2
4 + l2

v + l2
h

, (2)

while the inverse kinematics problem leads to:

θ1 = 2·atan

(
−B2 ±

√
A22 + B22 − C22

C2 − A2

)
(3)

where 
A1 = (2·lh·l1 − 2·l1·l4· cos θ4)
B1 = (−2·lv·l1 − 2·l1·l4· sin θ4)
C1 = l12 − l2

2 + l2
4 + l2

v + l2
h + 2·l4·(lv· sin θ4 − lh· cos θ4)

(4)

We will now consider a mechanism with two DOF (Figure 13a), responsible for PF/DF
movement, when the DgLs 1 and 1′ are rotated with θ1 = −θ′1. To solve the direct kinematics
problem, a mechanism with one DOF is used (Figure 13b). By solving the direct kinematics
problem for this mechanism, we will obtain:

θ′4 = 2·atan

(
−B3 ±

√
A32 + B32 − C32

C3 − A3

)
, (5)
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where 
A3 = −2·l′42

B3 = −2·l′4·l2 + 2·l1·l′4· sin θ1
C3 = l12 − l2

2 + l42 + lv2 + lh2 + 2·l′42 − 2·lh·l4 − 2·l1·lv· sin θ1+
+2·l1·(lh − l4)· cos θ1

. (6)

The inverse kinematics problem leads to:

θ1 = 2·atan

(
−B4 ±

√
A4

2 + B4
2 − C4

2

C4 − A4

)
, (7)

where
A4 = 2·l1·(lh − l4)
B4 = 2·l1·(l′4· sin θ′4 − lv)
C4 = l12 − l22 + l42 + lv2 + lh2 + 2·l′42 − 2·l′4·(l2· sin θ′4 + l′4· cos θ′4)− 2·lh·l4

. (8)
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with two DOF [46] and (b) equivalent mechanism with one DOF.

Dimensional synthesis of the mechanisms and also a numerical simulation based on
these equations must be further carried out.

3.1.2. Dimensional Synthesis and Simulation of the DS-3 Design Solution

For INV/EV movement, a simplified planar mechanism is used, represented by the
extreme positions of the DnL (Figure 14a). For anatomical and dimensional reasons, we
impose as known dimensions: lh, lv and l4. The angle θ4 is also known (θ41 for INV and
θ42 for EV). The extreme positions of the crank are defined by θ11 and θ12 (θ1 = θ11 + θ12).
First, the dimensional synthesis of the mechanism responsible for INV/EV movement
(Figure 14a) is solved, with the lengths l1 and l2 resulting in:

l1 =
b2 − a2

2·b· cos(ψ + θ12)− 2·a· cos β
, (9)

l2 =
√

l2
1 + b2 − 2·b·l1· cos(ψ + θ12), (10)
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where
a =

√
l2
h + l2

v + l2
4 − 2·

(
l2
h + l2

v
)1/2·l4· cos(α′ + θ41 + θ42) (11)

b =

√
l2
h + l2

v + l2
4 − 2·

(
l2
h + l2

v
)1/2·l4· cos α′ (12)

α′ =
π

2
− θ42 − acos

 lv√
l2
h + l2

v

 (13)

ψ =
π

2
+ acos

 lv√
l2
h + l2

v

− acos

 b2 + l2
h + l2

v − l2
4

2·b·
√

l2
h + l2

v

 (14)

β =
π

2
+ acos

 lv√
l2
h + l2

v

− acos

 a2 + l2
h + l2

v − l2
4

2·a·
√

l2
h + l2

v

− θ11 (15)
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The geometric synthesis of the mechanism responsible for the PF/DF movement
is solved using the simplified mechanism shown in Figure 14b. Based on the previous
synthesis, d1, e1, d2, e2 and lv are known, with:

d1 = l1· sin θ11, (16)
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e1 = l2· sin θ21, (17)

d2 = l1· sin θ12, (18)

e2 = l2· sin θ22. (19)

The maximum values of the rehabilitation angle θ′4 are also known, considering that we
know θ′41 and θ′42, which are the angular extreme positions of DgL. Following the analytical
calculation, the last necessary unknown dimension is obtained, namely:

l′4 =
(d1 − lv)· sin θ′41 +

√
(d1 − lv)

2· sin2 θ′41 − 2·
(
1− cos θ′41

)
·
[
(d1 − lv)

2 − e2
1

]
2·
(
1− cos θ′41

) , (20)

or

l′4 =
(d2 + lv)· sin θ′42 +

√
(d2 + lv)

2· sin2 θ′42 − 2·
(
1− cos θ′42

)
·
[
(d2 + lv)

2 − e2
2

]
2·
(
1− cos θ′42

) . (21)

Based on the geometric synthesis and the kinematics problem, a prototype of the RP
was designed and is shown in Figure 15, where 1—the base; 2 and 2′—electrical actuators
(digital servos HD—1235 MG); 3 and 3′—driving links (the cranks of the two spatial four
bar mechanisms); 4 and 4′—the rods of the two spatial four bar mechanisms; 5—driven
link (the PSSF); 6 and 7—PSSF encoders; and 8 and 9—DgLs encoders.
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Figure 15. Three-dimensional CAD design of the RP (DS-3 design solution): (a) isometric view and
(b) frontal view.

To prove that this design solution of the RP provides the DnL with the necessary
movement ranges, a simulation of the virtual prototype was performed, using: l1 = 60 mm;
l2 = 103 mm; l4 = 75 mm; lh = 25 mm; and lv = 101.5 mm. A frame was attached to the
CAD model with the origin at the center of the AJ, considered at 70 mm above the PSSF,
Figure 16. When θ1 and θ′1 angular positions of DgLs vary between the limits that ensure
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the two rehabilitated movements, the values of θ′4 and θ4 are those shown in Figure 17. The
surfaces shown in Figure 17 could be considered the RP “workspace”.
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Figure 17. Maximum range of the PSSF angular positions according to the angular positions of the
DgLs: (a) for PF/DF movement, θ1 = −θ′1, and (b) for INV/EV movement, θ1 = θ′1.

Considering that the angular position of the DnL should vary between −25◦ and 0◦

for PF and between 0◦ and 50◦ for DF, the angular position of the DgLs will obtain values
as follows: θ1 = −32.4◦ ÷ 59◦ and θ′1 = −59◦ ÷ 32.4◦, θ1 = −θ′1 (Figure 18a). For INV/EV
movement, considering that the angular position of the DnL should vary between−50◦ and
50◦, in order to assure the rehabilitation of both right and left leg AJs, the angular position
of the DgLs should obtain values in the range θ1 = θ′1 = −73.8◦ ÷ 73.8◦ (Figure 18b).

The curve in Figure 18a represents the diagonal of the surface in Figure 17a, when
θ1 = −θ′1, and the curve in Figure 18b represents the diagonal of the surface in Figure 17b,
when θ1 = θ′1.

The planar curves shown in Figure 19 represent the angular positions θ′4 and θ4 of the
DnL according to the angular position θ1 of the DgL for PF/DF movement (Figure 19a) and
INV/EV movement (Figure 19b). As can be seen in these diagrams, the curves are identical,
both for numerical simulation and for virtual RP simulation. The curves represented
with a dashed red line represent the planar versions of the spatial curves presented in
Figure 18a,b. In Figure 20, the angular positions of the DgLs and driven links (DnLs) are
shown according to the time. Their linear variation can be observed, suggesting smooth
operation and trouble-free performance of the proposed recovery exercises.
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3.2. Experimental Results
3.2.1. Experimental Platform

The comparative study of the DSs discussed above led to the selection of optimal
solutions, which are analyzed later. Thus, out of the two RPs based on the spatial four-bar
linkage, only one remained under discussion (DS-3 design solution, Figure 11). This DS
was practically realized (Figure 21). The general command and control architecture of
the RP is presented in Figure 22. The therapist will set the extreme values of the angular
positions for the PSSF through the graphical user interface (GUI), Figure 23. By doing so,
the therapist will provide the input data for the microcontroller, according to the necessary
rehabilitation exercises. Next, the microcontroller will send commands to the actuators to
perform the required movements. Data collected from the encoders will be transmitted to
the controller to be analyzed, resulting in visual feedback for both the patient and therapist.
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As electric actuators, we have used two digital servos HD—1235 MG. Each one of
these servos includes an encoder and its own electronics. These encoders (1 and 1′ in
Figure 21) are used to control the angular positions θ1 and θ′1 of the DnLs, based on the
information offered by the two encoders mounted on the rotational axes of the PSSF and
also based on the mathematical modeling of the RP. The last two encoders (4 and 4′ in
Figure 21) are used to determine the angular positions θ4 and θ′4 of the PSSF for each PF/DF
or INV/EV movement. Through the GUI, the therapist will set the extreme values of θ4 and
θ′4. To prevent supplementary injuries of the AJ during rehabilitation therapy, the current
consumed by the motors is measured and certain limits for this current are imposed in the
command/control program.

3.2.2. Experimental Tests and Results

Experimental tests on the RP were performed to evaluate if it may assure the range of
angular strokes of the PSSF, according to PF/DF and INV/EV movement requirements.
Complete angular strokes were performed for these movements, namely: 25◦ for PF, 45◦

for DF, 45◦ for INV (right leg), and 25◦ for EV (right leg). Figure 24 shows the values
of θ′4 and θ4 angular positions of the PSSF, relative to the θ1 angular position of the DgL.
These values are monitored during testing (dashed curves in blue). No patients were
involved in these tests (the tests were performed without loading of the PSSF). In red, we
may see the theoretical curves, generated with the numerical simulation results. Values
above 0 for θ′4 (in Figure 24a) correspond to DF movement, while values on the negative
axis correspond to PF movement. In Figure 24b, positive values of θ4 correspond to INV
movement, while negative values correspond to EV movement for the right leg. As we can
see, the experimental curves are close to those obtained from numerical simulation for both
movements that should be recovered.

Next, a volunteer patient with a fracture of the navicular bone in her right leg
(Figure 25) was used to test the RP after a 30-day rest period. Due to this long period
of immobilization, the patient suffered peripheral edema in the affected leg, walking dif-
ficulties and, also, difficulties in performing daily activities due to the increased stiffness
of the AJ. Because of that, the physiotherapist recommended several types of PF/DF and
INV/EV exercises to her with a frequency of at least once a day. The angular amplitudes
of the AJ for the voluntary patient, before starting the therapy, were measured and noted
(Figure 26).
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Starting from this data, tests were carried out on the RP by progressively increasing
the angular amplitudes of the PSSF, accurately finding the range of admissible values for
rehabilitation exercises. The patient started the rehabilitation exercises for AJ of the right leg
using the following as extreme angular positions: θ′4 = −20◦ ÷ 25◦ for PF/DF movement
and θ4 = −15◦ ÷ 20◦ for EV/INV movement (Figure 27). Figure 28 denotes the results
obtained during the first day of exercises. Deviations from the simulation results are due to
the AJ’s increased stiffness. Each recovery procedure was repeated at least 20 times daily.
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Before each session, in order to see if we were able to increase the intensity of the
exercises, the patient’s AJ was checked from a physical point of view to see the maximum
angular ranges it can develop. After 10 days of therapy, which means half of the recom-
mended recovery period, we were able to observe some improvements in the amplitude of
PF/DF and INV/EV movements. More exactly, the range of θ′4 varies between −22◦ ÷ 30◦,
and the range for θ4 is −23◦ ÷ 30◦ (Figure 29). We were also able to see that the deviations
from the simulation results were much smaller. For the last rehabilitation exercises, we ex-
tended the angular extreme positions of the PSSF to θ′4 = −25◦ ÷ 40◦ for PF/DF movement
and θ4 = −25◦ ÷ 35◦ for INV/EV movement (Figure 30). Comparing Figures 28 and 30,
we can observe real progress in the AJ movement recovery, especially for INV/EV, where
the stiffness of the joint was greatly increased.
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Figure 30. Results recorded during the rehabilitation exercises—day 20 [53]: (a) for PF/DF movement
and (b) for INV/EV movement.

To better see the evolution in the range of motion for both PF/DF and INV/EV
movements of the AJ, the curves shown in Figures 28–30 are represented together in
Figure 31. As we can see, the ranges of θ′4 and θ4 increase for each new rehabilitation session
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(starting from the first day—continuous line in red—until the twentieth day—dashed line
in green).
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suffered a fracture of the navicular bone in her right leg during her doctoral studies. She 
was a researcher and a patient at the same time. At the moment, the authors of this work 
do not intend to use the robotic platform in hospitals or to market this platform as a final 
product. Their intention is to improve the design according to the first prototype and its 
experimental tests to obtain a safe and effective RP. 

  

Figure 31. Results of the three rehabilitation sessions: (a) for PF/DF movement and (b) for INV/EV
movement.

Figure 32 also shows the evolution of the AJ recovery results during rehabilitation
therapy. The curves represented in this figure highlight the improvements in the AJ mobility
at the end of the period, compared to the first day, for both PF/DF and INV/EV movements.
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Figure 32. Results of the rehabilitation exercises over time during the therapy period [53]: (a) for
PF/DF movement and (b) for INV/EV movement.

3.2.3. Ethical Issues

Ethical review and approval to use the RP for tests on human participants was not
required. The single patient/participant in the study provided her written informed
consent to participate. More than this, the patient is the coauthor of this study, and she
suffered a fracture of the navicular bone in her right leg during her doctoral studies. She
was a researcher and a patient at the same time. At the moment, the authors of this work
do not intend to use the robotic platform in hospitals or to market this platform as a final
product. Their intention is to improve the design according to the first prototype and its
experimental tests to obtain a safe and effective RP.
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3.2.4. Safety Issues

To prevent supplementary injuries of the AJ during rehabilitation therapy, the RP
should be safe. In case the range of the PSSF angular positions exceeds the mobility range
of the injured AJ or if the motors malfunction, they should stop. One possible solution is to
measure the current consumed by the motors and to impose certain limits for this current in
the command/control program. If the actual consumed current exceeds the limits imposed
in the program, the motors should be shut down. This is the solution we are using at the
moment. Another safety solution is to use compliant joints between the motors and the
DgLs. If the encoders mounted on the output motors shafts send rotational values that
exceed the rotational values sent by the encoders mounted on the DgLs, the motors should
be shut down. This means that the AJ opposes resistance that exceeds the set value of the
torque on the compliant joint. This second solution is intended to be further implemented.

3.3. New Proposed Design

Even though the robotic platform described here has demonstrated benefits for the
rehabilitation of the human AJ, the center of the ankle suffers some displacement during
exercise (see Figure 33). That is why the calf was not fixed during the rehabilitation
exercises (this is the case for Rudgers Ankle [10] or ARBOT [14], etc., too). To avoid these
displacements, an optimal RP should have a coincidence between the intersection point
of the PF/DF and INV/EV rotational axes and the center of the AJ. To counteract this
drawback of the realized RP, a new kinematics of the RP is proposed (Figure 34).
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Based on the kinematic diagram shown in Figure 34, a new design for the RP was
proposed. As we see in Figure 35, the center of AJ is aligned with the rotation center of the
robot, which is the intersection point of the PF/DF and INV/EV rotational axes. In addition,
the new robotic platform will enable its use on patients with different anthropomorphic
dimensions thanks to its adjustable posture.

To underline the difference between the first prototype (Figure 15) and the new pro-
posed RP (Figure 35), the two platforms are represented in Figure 36. The single difference
between the first design and the new one is the shape of the PSSF, noted with 1 (in dark
green). The new “U” shape of the PSSF has as an effect lowering of the AJ center of rotation
at the intersection point of the two PSSF rotation axes.
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The simulation of the new virtual robotic platform reveals that there is not any dis-
placement of the AJ center during rehabilitation (Figure 37). The prototype of the new
design is shown in Figure 38. The sole of the foot will be fixed on the plate representing the
DnL while the shank will be connected to the robot base (Figure 38b).
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During the rehabilitation session, the patient will put their foot on the upper plate of
the RP. The position of the PSSF can be adjusted, on z and x axes, so that the AJ rotation
centre for different patients can coincide with the rotation centre of the mechanism. Results
concerning the simulation of the new virtual robotic platform and also concerning its
experimental tests will be the subject of future work.
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Figure 38. Improved prototype of the RP: (a) front isometric view and (b) back isometric view.

4. Discussion

When the AJ is injured, it can become unstable, and it can limit mobility or even
cause loss of movement. Rehabilitation therapy is necessary to treat these traumas, and
traditional therapies typically rely on elastic bands and foam rollers, which require constant
assistance from a therapist and are often repetitive and time-consuming. Robotic systems
have the potential to assist with AJ rehabilitation, but their high costs make them difficult to
implement in recovery institutions. To address this issue, research has been carried out to
develop low-cost, high-functionality robotic platforms for ankle rehabilitation and patient
monitoring. This paper presents structural synthesis of AJ movements to identify new RP
designs. Several solutions were proposed and compared based on a set of criteria, with two
standing out as meeting most of the requirements. Dimensional synthesis, mathematical
modeling, and simulation were used to select a final variant, with DS-3 based on the spatial
four-bar mechanism chosen as the most practical solution.

The first experimental tests were carried out on a volunteer patient, who suffered from
stiffness of the ankle joint, following rest from wearing the cast device. The assessment of
the patient’s recuperative progress was carried out through the monitoring of the angular
strokes achieved by the ankle joint. The experimental results proved the efficiency of the
system in patient recovery, as well as the validity of the mathematical model.

Even if the robotic platform described here demonstrated benefits on the rehabilitation
of the human AJ, an optimal RP should have the center of the AJ aligned with the rotation
center of the robot. This rotation center is the intersection point of the PF/DF and INV/EV
rotational axes. Starting from that, a new RP design is proposed. The new RP will be further
investigated in future work, including experimental tests. In addition, future studies are
currently focused on the implementation of compliant joints between motors and DgLs,
which could avoid overloading the ankle joint during rehabilitation exercises.
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