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Abstract: This paper aims to highlight the critical role of robot manipulators in industrial applications
and elucidate the challenges associated with achieving high-precision control. In particular, the
detrimental effects of nonlinear friction on manipulators are discussed. To overcome this challenge,
a novel friction compensation controller (FCC) that combines time-delay estimation (TDE) and an
adaptive fuzzy logic system (AFLS) is proposed in this paper. The friction compensation controller is
designed to take advantage of the time-delay estimation algorithm’s strengths in eliminating and
estimating unknown dynamic functions of the system using information from the previous sampling
period. Simultaneously, the adaptive fuzzy logic system compensates for the hard nonlinearities
in the system and suppresses the errors generated by time-delay estimation, thus improving the
accuracy of the robotic arm’s tracking. The numerical experimental results demonstrate that the
proposed friction compensation controller can significantly enhance the tracking accuracy of the
robotic arm, with the addition of the adaptive fuzzy logic system improving time delay estimation’s
performance by an average of 90.59%. Moreover, the proposed controller is more straightforward to
implement than existing methods and performs exceptionally well in practical applications.

Keywords: robot manipulator; high-precision control; time-delay estimation (TDE); adaptive fuzzy
logic system (AFLS); friction compensation

1. Introduction

Manipulators play a crucial role in various industrial processes, such as handling [1–3],
assembly [4–6], and assistance [7–9]. To achieve these operations, high-precision track-
ing control of the robot manipulator is essential. However, the complex dynamics of
the mechanical arm, which arise from highly nonlinear, time-varying parameters, dy-
namic coupling, and uncertainty, pose significant challenges to achieving high-precision
control [10–12]. Model-based controllers, such as sliding-mode control, can improve the
performance of mechanical arms, but a precise calculation of nonlinear dynamic models is
intricate, thereby limiting the potential of model-based controllers in practical applications.

The time-delay estimation (TDE) technique [13–17] is a model-free control approach
that was first proposed in the 1980s. TDE utilizes information from the previous time period
to eliminate and estimate unknown dynamic functions of the system [18,19]. Within a
sampling period, TDE assumes that the system’s dynamic changes are not significant. TDE
technology has been used to develop a simple, robust, and efficient time-delay control (TDC)
method, which does not require prior knowledge or offline identification. As a result, it has
found widespread use in the control of robot manipulators and chaotic systems [20,21].

TDC typically consists of two components: TDE elements and expected error dynamic
injection elements [22]. From the perspective of TDE, the dynamic nonlinear factors
of robot manipulators can be classified into two types: soft nonlinearity [23] and hard
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nonlinearity [24]. Soft nonlinearity can be completely eliminated using TDE, but hard
nonlinearity, such as static and Coulomb friction, can adversely affect the tracking accuracy
of TDC. Given that the sampling period cannot be infinitely small, dynamic characteristics
may change rapidly even within a single sampling period. When using TDE to estimate
such friction, TDE errors can lead to increased tracking errors, thereby hindering high-
precision tracking control of robot manipulators [25].

In recent research, a third element has been introduced into TDC to compensate for
hard nonlinearities and suppress TDE errors. Jin [26] proposed an ideal velocity feedback
(IVF) term for suppressing TDE errors and demonstrated its effectiveness compared to
adaptive friction compensation (AFC). To further improve the tracking accuracy of robot
arms, Jin proposed a high-precision position tracking control method that uses terminal
sliding mode (TSM) as the third element to suppress TDE errors and provide a faster
convergence rate. Although the validation results show that the performance of TDE-
TSM is better than that of TDC and TDE-IVF, TDE-TSM has two main drawbacks. One
is the jitter problem caused by TSM, which is highly undesirable due to the sign function
present in the TSM element. The other problem is the long computation time of TSM,
which requires the calculation of fractional power functions and can take several tens of
milliseconds for some worst-case controller hardware. To address these issues and achieve
high-precision tracking control, Bae et al. [27] proposed a controller that uses a fuzzy
logic system (FLS) as the third element, marking the first time that TDE was combined
with intelligent technology. However, the FLS is simple and standard, requiring careful
parameter tuning and experience.

In this paper, we propose a friction compensation controller (FCC) aimed at improving
the tracking accuracy of robot arms and making the controller easier to use in practical
applications. The controller adds an adaptive fuzzy logic system (AFLS) as the third
element to handle strong nonlinearities and TDE errors, while an adaptive rule is designed
to update the parameters of the fuzzy logic system online. The controller consists of
three elements: the TDE element for canceling soft nonlinearities, the injection element for
dynamically calculating target error, and the AFLS element for suppressing TDE errors.
By using TDE, this controller is easier to implement in practical applications. The design of
AFLS ensures the high-precision tracking of the robot arm.

The main contributions of this paper can be summarized as follows. Firstly, a novel
friction compensation controller (FCC) algorithm is proposed to mitigate the adverse effects
of nonlinear friction on manipulators. The FCC algorithm combines time delay estimation
(TDE) and an adaptive fuzzy logic system (AFLS). TDE uses information from the previous
sampling period to eliminate and estimate unknown dynamic functions of the system,
while AFLS compensates for the strong nonlinearities in the system and suppresses errors
generated by TDE. Secondly, the proposed FCC is designed to significantly improve the
tracking accuracy of robot arms. Numerical experiments show that the performance of
TDE can be improved by an average of 90.59% with the addition of AFLS. Lastly, the pro-
posed controller is easier to implement than existing methods and exhibits exceptional
performance in practical applications. Hence, the algorithm proposed in this paper is a
practical choice to address the challenges of achieving high-precision control in industrial
applications.

The structure of this paper is as follows: in Section 2, we provide a review of traditional
iterative learning control (TDC) and highlight its associated issues. In Section 3, we propose
a novel control algorithm based on TDC and adaptive fuzzy logic systems (AFLS) and
mathematically prove its convergence. Section 4 presents a performance comparison be-
tween the proposed controller and multiple TDE-based controllers. Finally, we summarize
the experimental results and draw conclusions in the Section 5 of this paper.
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2. Review and Problem of TDC
2.1. Review of TDC

The dynamic behaviour of the robot manipulator can be accurately described by means
of the following equation based on Assumptions 1–3.

M(θ)θ̈+ C(θ, θ̇)θ̇+ G(θ) + F(θ, θ̇) + τd = τ (1)

where θ, θ̇, θ̈ ∈ Rn are the position, velocity, and acceleration of the joints; τ ∈ Rn denotes
the torque; and M(θ) ∈ Rn×n represents the inertia matrix; C(θ, θ̇) ∈ Rn stands for the
Coriolis and centrifugal matrix; G(θ) ∈ Rn is the gravitational vector; F ∈ Rn is the friction
term, and τd ∈ Rn denotes the disturbance torques.

After defining a constant diagonal matrix M, the equation mentioned above can be
rewritten as:

u = Mθ̈+ H (2)

H = (M(θ)−M)θ̈+ H(θ, θ̇, θ̈) (3)

where H(θ, θ̇, θ̈) is the sum of unknown nonlinear dynamics of the manipulator, and

H(θ, θ̇, θ̈) = C(θ, θ̇)θ̇+ G(θ) + F(θ, θ̇) + τd (4)

The tracking error is defined as follows.

e = θd − θ (5)

where θd represents the desired position. The velocity and acceleration error are defined as
ė = θ̇d − θ̇, ë = θ̈d − θ̈, respectively.

The control objective of the TDC is to attain the following error dynamic:

ë + KD ė + KPe = 0 (6)

where KD and KP are the constant diagonal gain. Then, the TDC applied in tracking control
of the robot manipulator is designed as follows.

u = Mγ0 + Ĥ(θ, θ̇, θ̈) (7)

γ0 = θ̈d + KD ė + KPe (8)

where Ĥ(θ, θ̇, θ̈ is the estimation value of H in Equation (3). The TDE technique is utilized
to estimate the unknown function H, which can be expressed as follows:

Ĥ(θ, θ̇, θ̈) = Ht−L = ut−L −Mθ̈t−L (9)

where •t−L denotes the value of • at time t− L.
During the controller design process, the following assumptions were made.

Assumption 1. The system has a fast enough processing speed to handle a small sampling time,
the sampling time can be set to a small value without causing significant delays or errors in the data
acquisition process.

Assumption 2. The system is subject to bounded external disturbances, meaning that the external
disturbances acting on the system are limited and will not cause the system to become unstable.

Assumption 3. The desired trajectory θd ∈ Rn for each joint is assumed to be both smooth and
continuous. This assumption implies that the first and second-time derivatives, θ̇d and θ̈d, exist
for all time intervals and are continuous and bounded. The smoothness and continuity of θd is
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essential for ensuring the continuity and stability of the motion profile of the joint. The continuity
of θ̇d and θ̈d ensures that the velocity and acceleration of the joint remain bounded and the motion
is predictable.

Then, according to Assumption 1, the following equation can be satisfied.

H ≈ Ht−L (10)

The final form of TDC can be obtained by combining Equations (7)–(9) as follows.

u = M
(
θ̈d + KD ė + KPe

)
+ ut−L −Mt−L (11)

According to the study in [28], the stability condition of the controller is:∣∣∣φi

(
M−1M − In

)∣∣∣ < 1 (12)

where In is the n × n identity matrix and φi

(
M−1M − In

)
is the i−th eigenvalue of

M−1M − In. The above function can be satisfied by the choice of M.

2.2. TDE Error Due to Friction

This paper discusses the use of time-delay estimation (TDE), which is based on the
assumption that the nonlinearity in the system dynamics does not vary significantly. TDE
can achieve perfect time-delay estimation performance as the sampling time L approaches
zero. However, in practical digital implementations, the minimum value of L is limited.
Therefore, the estimation performance of TDE depends on the finite L, which can be
represented by the following relationship.

H − Ĥ = Ht − Ht−L = M
(
γ0 − θ̈

)
(13)

The TDE error δ is defined as follows.

δ = M−1[Ht − Ĥt
]
= γ0 − θ̈ (14)

By substituting Equation (8) into Equation (14), the error dynamics of TDC can be
expressed as follows.

ë + KD ė + KPe = δ (15)

which shows the effect of TDE error on tracking error clearly.

Remark 1. According to Equation (1), the friction term F ∈ Rn consists of both static and Coulomb
friction forces. These friction forces exhibit rapid changes near θ̇ = 0, meaning that these fast
dynamics can occur within a single sampling period. In such cases, Equation (10) cannot be satisfied,
resulting in TDE error due to the inaccurate estimation of TDE technology. This, in turn, leads
to larger tracking errors, as shown by Equation (15). To address this issue, this study proposes a
friction compensation method based on parameter identification in Section 3.

3. Time-Delay Control with Adaptive Fuzzy Logic System
3.1. Derivation of the Proposed Controller

To compensate for TDE error in TDC, we have introduced an adaptive fuzzy logic
system (AFLS) as the third element. Therefore, the controller is composed of a TDE element,
desired error dynamics, and AFLS. To introduce AFLS, we have used a sliding surface:

s = ė + k1e (16)

where k1 is the n× n constant matrix to be tuned.
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Then, the control input is designed as

u = Mγ f + ut−L −Mθ̈t−L (17)

γ f = θ̈d + (k1 + k2)ė + k1k2e + f (18)

where f = [ f1, . . . fi, . . . fn] is the adaptive fuzzy logic system to suppress TDE error;
ut−L −Mθ̈t−L is the TDE element to cancel the soft nonlinearities; θ̈d + (k1 + k2)ė + k1k2e
is the error dynamic, which has the small framework with TDC, and k2 is the designed
n× n constant matrix. Thus, the final form of the controller is proposed by:

u = ut−L −Mθ̈t−L︸ ︷︷ ︸
Time-Delay Estimation

+ M
[
θ̈d + (k1 + k2)ė + k1k2e

]︸ ︷︷ ︸
The injection of desired error dynamics

+ M f︸︷︷︸
AFLS

(19)

Substituting Equation (17) to Equation (2), the equation can be obtained as:

δ = ë + (k1 + k2)ė + k1k2e + f (20)

The above equation also shows the influence of f on TDE error. f is designed from
two aspects: the fuzzy logic term and adaptive term. Now, the design process is given
as follows.

Remark 2. In order to suppress the influence of TDE error, we designed a sliding-mode surface
in this study. Similar to traditional sliding-mode control, the purpose of the sliding-mode surface
used here is to guide the system state to a specific trajectory, thereby achieving stable control of the
system. Specifically, the sliding-mode surface s used in this study is a hyperplane composed of a
state variable ė and a reference input signal k1e. If the system state changes and the state point
crosses the sliding-mode surface, the controller will adjust the system to guide its state back to the
sliding-mode surface, thus achieving stable control of the system.

3.2. Fuzzy Logic Term

To obtain fuzzy rules, we conducted the following analysis: when |si| is large, the ex-
pected | fi| should also be large to ensure the convergence speed of the system. On the other
hand, when |si| is small, allowing for a smaller | fi| can avoid oscillation. Moreover, when
|si| is zero, | fi| can also be zero. Therefore, we can define the rules as follows:

IF si is NB, THEN fi is NB
IF si is NS, THEN fi is NS
IF si is ZE, THEN fi is ZE
IF si is PS, THEN fi is PS
IF si is PB, THEN fi is PB

In the system, si is the input of the fuzzy system, while fi is its output. Both variables
are divided into five fuzzy subsets: positive big (PB), positive small (PS), zero (ZE),
negative small (NS), and negative big (NB). These subsets are represented by Gaussian
membership functions, which are defined as follows:

µA(xi) = exp

[
−
(

xi − α

σ

)2
]

(21)

where the subscript A denotes the fuzzy sets such as NB, . . . , PB ; xi is si and fi; α is the
center of A and σ is the width of A.

Choosing the product inference engine, singleton fuzzification, and center average
defuzzification, fi can be written as:

fi =
∑M

m=1 θm
fi

µm
A(si)

∑M
m=1 µm

A(si)
= θT

fi
ψ fi (si) (22)
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where θ fi
=
[
θ1

fi
, . . . , θm

fi
. . . , θM

fi

]T
, ψ fi (si) =

[
ψ1

fi
(si), . . . , ψm

fi
(si) . . . , ψM

fi
(si)
]T

and ψm
fi
(si) = µAm(si)/ ∑M

m=1 µAm(si).θ fi
is chosen as the parameter to be updated and

therefore is called the parameter vector. ψ fi (si) can be regarded as the weight of the
parameter vector which is called the function basis vector.

3.3. Adaptive Scheme

Define θ∗fi
so that fi = θ∗Tfi

ψ fi (si) is the optimal estimation for ε, and there exists the
optimal estimation error wi > 0, which satisfying∣∣∣δi − θ∗fi

ψ fi (si)
∣∣∣ ≤ wi (23)

Define
θ̃ fi

= θ fi
− θ∗fi

, (24)

Then
fi = θ̃T

fi
ψ fi (si) + θ∗fi

ψ fi (si) (25)

After that, choose the adaptive law as

˙̃θ fi
= ηisiψ fi (si) (26)

where ηi is a positive constant.

3.4. Stability Analysis

Theorem 1. Let γi be the control gain satisfying 0 < γi < 1. Then, the recursive FCC controller
defined in Equation (19) ensures that all closed-loop system signals are bounded and achieve
asymptotic output tracking, i.e.,

lim
t→∞

e(t) = 0, (27)

where e(t) is the tracking error signal.

In other words, Theorem 1 guarantees the stability of the closed-loop system and the
convergence of the tracking error to zero as t approaches infinity. This result is significant
as it confirms the effectiveness of the proposed recursive FCC controller in achieving
high-precision control of the system.

Proof. The Lyapunov function is chosen as:

V =
1
2

sTs +
1
2

n

∑
i=1

(
1
ηi

θ̃T
fi

θ̃ fi

)
(28)

From Equation (10), the following equation can be obtained.

ṡ = δ− f − k2s (29)

Then, the derivative of V can be expressed as

V̇ = sT ṡ +
n

∑
i=1

1
ηi

θ̃T
fi

˙̃θ fi

= sT(ε− f − k2s) +
n

∑
i=1

1
ηi

θ̃
θ̃θi
fi

˙̃li

=
n

∑
i=1

si(εi − fi − k1isi) +
n

∑
i=1

1
ηi

θ̃T
fi

˙̃θ fi

(30)



Actuators 2023, 12, 184 7 of 18

As fi = θ̃T
fi

ψ fi (si) + θ∗Tfi
ψ fi (si), then

V̇ =
n

∑
i=1

si(εi − fi − k1isi) +
n

∑
i=1

1
ηi

θ̃T
fi

˙̃θ fi

=
n

∑
i=1

si

[
εi − θ̃ fi

ψ fi (si)− θ∗Tfi
ψ fi (si)− k1isi

]
+

n

∑
i=1

1
ηi

θ̃T
ii

˙̃θ fi

= −
n

∑
i=1

sik1isi +
n

∑
i=1

si

[
εi − θ∗fi

ψ fi (si)
]
+

n

∑
i=1

[
1
ηi

θ̃T
fi

˙̃θ fi
− θ̃T

fi
siψ fi (si)

]
= −

n

∑
i=1

sik1isi +
n

∑
i=1

si

[
εi − θ∗fi

Tψ fi (si)
]
+

n

∑
i=1

1
ηi

θ̃T
fi

[
˙̃θ fi
− ηisiψ fi (si)

]
(31)

As ˙̃θk̂i
= ηisiψ fi (si), the above equation can be expressed as

V̇ = −
n

∑
i=1

sik1isi +
n

∑
i=1

si

[
εi − θ∗fi

Tψ fi (si)
]

(32)

According to Equation (23), there exists a small positive constant, which satisfies∣∣∣εi − θ∗fi
ψ fi (si)

∣∣∣ ≤ wi ≤ γi|si| (33)

where 0 < γi < 1.
Then, Equation (32) can be expressed as:

V̇ = −
n

∑
i=1

sik1isi +
n

∑
i=1

si

[
εi − θ∗fi

ψ fi (si)
]

≤ −
n

∑
i=1

sik1isi +
n

∑
i=1

siγi|si|

≤ −
n

∑
i=1

sik1isi +
n

∑
i=1

γis2
i

= −
n

∑
i=1

(k1i − γi)s2
i ≤ 0

(34)

According to Equations (28) and (34), V is bounded and greater than or equal to zero.
Since k1i and γi are both positive constants, V̇ is negative semi-definite. Thus, V̇ converges
to zero as t approaches infinity.

Remark 3. By Barbalat lemma, we can conclude that if a function f (t) is uniformly continuous
and bounded, and its derivative converges to zero as t approaches infinity, then f (t) converges to a
finite limit as t approaches infinity. In our case, V is bounded and its derivative V̇ converges to zero
as t approaches infinity. Therefore, we can conclude that limt→∞ V exists.

When the system reaches a steady state, the first derivative of the error signal (i.e., ė)
also tends to zero. Thus, we have ė = θ̇ − θ̇d, and:

lim
t→∞

ė = lim
t→∞

(θ̇ − θ̇d) = lim
t→∞

1
T
(θ − θd)− θ̇d = 0 (35)

Similarly, we can show that limt→∞ ke = 0.
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Thus, this controller with the adaptive law in Equation (26) can drive the overall
system tracking error to converge to zero, that is

lim
t→∞

s = lim
t→∞

(ė + ke) = 0, (36)

as
lim
t→∞

θ = θd and lim
t→∞

θ̇ = θ̇d (37)

Therefore, it has been proven that with this control method and by applying
Equation (19) as the input, the actual joint positions will converge to the desired ones.

4. Numerical Experiments

This study aims to verify the effectiveness of the proposed robot arm control method
through simulations conducted on a two-degree-of-freedom robot arm, as illustrated in
Figure 1. The experimental objectives of this paper consist of two aspects: first, to investigate
the performance of the FCC under different f values, and second, to validate the advantages
and disadvantages of the TDE, NTSM, and FCC under different frictional force disturbances.
Therefore, we conducted three sets of comparative experiments to evaluate the performance
of three algorithms under three different conditions: no friction, normal friction disturbance,
and significant friction disturbance.

Figure 1. Diagram of two-DOF robot manipulator.

To facilitate the simulation, the dynamic model of the robot arm system is presented
in Equation (1). Detailed information on the model is presented below:

M(θ) =

[
α + 2δ cos(θ2) + 2η sin(θ2) β + δ cos(θ2) + η sin(θ2)

β + δ cos(θ2) + η sin(θ2) β

]
(38)

C(θ, θ̇) =

[
[−2δ sin(θ2) + 2η cos(θ2)]θ̇2 [−δ sin(θ2) + η cos(θ2)]θ̇2
[δ sin(θ2)− η cos(θ2)]θ̇1 0

]
(39)

G(θ) =

[
δe2 cos(θ1 + θ2) + ηe2 sin(θ1 + θ2) + (α− β + e1)e2 cos(θ1)

δe2 cos(θ1 + θ2) + ηe2 sin(θ1 + θ2)

]
(40)

Friction severely affects the control performance of robot systems. Therefore, we select
the friction term as follows:

F(θ, θ̇) =

[
Fv1θ̇1 + Fc1 sgn

(
θ̇1
)

Fv2θ̇2 + Fc2 sgn
(
θ̇2
) ] (41)
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where α = I1 + m1l2
c1 + Ie + mel2

ce + mel2
1 , β = Ie + mel2

ce, δ = mel1lce cos δe, η =
mel1lce sin δe, e1 = m1l1lc1 − I1 − m1l2

1 , e2 = g/l1; m1 denotes the mass of first link; lcl
is the distance between the mass center of the first link and the first joint; Il is the moment
of inertia of the first link; me is the mass of second link with payload; lce is the distance
between the mass center of second link and the second joint; Ie is the moment of inertia of
the second link; δe is the angle relative to the original second link. The physical parameters
of the robot manipulator are shown in Table 1.

Table 1. The physical parameters of the robot manipulator.

Indices l1 l2 lc1 lce I1 I2 m1 me δe

Value 1 1.2 0.5 1 0.083 0.4 1 3 0

This study compares the performance of three controllers in experiments:

1. FCC: This is a time-delay estimation controller equipped with AFLS (as given in
Equation (20)), which is thoroughly described in Section 3 of this paper. The control
gains for this controller are set as follows: M1 = 0.15, M2 = 0.15, k11 = 10, k12 = 10,
k21 = 70, and k22 = 70.

2. NTSM: This technique is founded on the principles of TDE and sliding-mode control.
It achieves the high-precision control of nonlinear dynamic systems by incorporating
supplementary terms on the sliding surface. These terms help to mitigate the impacts
that traditional sliding-mode control may generate, resulting in a superior level of
control.

3. TDC: A widely used control method for systems with a delay that effectively solves
delay problems and improves the stability and precision of the control system.

To quantitatively evaluate the control performance of these three controllers, the study
uses the maximum value, mean value, and standard deviation of the tracking error as
performance indicators, marked as MAV, RMS, and Var, respectively, whose definitions
can be found in [29]. In the three experiments, a normal level sinusoidal trajectory with
sufficient smoothness is used, defined as x1d(t) = [2sin(0.5πt); 2sin(0.5πt)]Trad.

4.1. Comparative Experiment of Three Controllers under No-Friction Disturbance

This section compares the simulation results of three algorithms at Fv1 = 0, Fc1 = 0,
Fv2 = 0, and Fc2 = 0, as presented in Figures 2–5. The FCC achieves maximum tracking
errors of approximately 0.01 rad and 0.005 rad for joint 1 and joint 2, respectively. Compared
to the TDC algorithm with linear error dynamics, the FCC exhibits smaller tracking errors.
Furthermore, Figure 4 demonstrates that there is no jitter in the control inputs of the
two joints.

Figure 2. Position-tracking curves for the three controllers under no-friction disturbance.
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Figure 3. Tracking-error curves of the three controllers under no-friction disturbance.

As illustrated in Figures 2–5, the TDC algorithm effectively eliminates uncertainties
and exhibits good tracking performance. Building upon this, the NTSM algorithm achieves
high-precision tracking while also avoiding control jitter. Additionally, the FCC is proposed
in this paper to achieve high-precision anti-interference control. In contrast to the TDC and
NTSM algorithms, the FCC not only eliminates uncertainties but also achieves excellent
tracking performance in the presence of frictional force interference.

Figure 4. The control input voltage curves of the three controllers under no-friction disturbance.
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Figure 5. Performance indices evaluation during the last three cycles under no-friction disturbance.

Figure 5 demonstrates the FCC’s outstanding tracking performance without frictional
interference. The variance data in Figure 5 shows that the TDC controller’s tracking
performance on joint 1 and joint 2 improved by 86.198% and 71.286%, respectively, af-
ter adding AFLS.

Remark 4. The variance of motion error in a robotic arm is a crucial metric for assessing its
performance, enhancing control systems, optimizing motion trajectory planning, and predicting
motion trajectories. To enhance the performance of a robotic arm, this study analyzes its errors
by calculating variance and utilizes it as a reference point to gauge the extent of performance
enhancement. For instance, on joint 1, the variance of TDC is 1.3575× 10−4 , and the variance of
FCC is 1.875× 10−5. As a result of this calculation, it is determined that the performance of joint 1
has been enhanced by 86.198%. It is important to note that all performance improvement ratios in
this study are based on variance calculations.

4.2. Comparative Experiment of Three Controllers under Normal Friction Disturbance

To evaluate the high-precision tracking performance of the proposed algorithm, a cer-
tain amount of nonlinear friction disturbance was introduced to the system in this section
by setting Fv1 = 50, Fc1 = 50, Fv2 = 50, and Fc2 = 50. Under these conditions, unmodeled
nonlinear friction was identified as the primary source of disturbance and was used to test
the robustness of the proposed FCC.

Figure 6. Position-tracking curves for the three controllers under normal friction disturbance.
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Figure 7. Tracking-error curves of the three controllers under normal friction disturbance.

The simulation results presented in Figure 6 demonstrate that the FCC can accurately
track the desired motion trajectory of the load. Figure 7 displays the tracking errors
of the three controllers, indicating that the proposed FCC achieved the best tracking
performance among the three controllers. The AFLS compensation mechanism resulted
in better tracking performance than the NTSM. Figure 8 shows the control input voltage
of the FCC, which is both smooth and limited. The performance indicators of the last
three cycles are summarized in Figure 9. In the presence of normal friction disturbance,
the FCC exhibited excellent anti-interference performance in the three indicators of MAV,
RMS, and Var, which is the best among the three controllers. This is attributed to the
faster convergence efficiency and high robustness of AFLS. Based on the variance shown
in Figure 9, it is evident that the addition of AFLS improved the performance of TDC by
96.105% and 96.376% in joint 1 and joint 2, respectively.
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Figure 8. The control input voltage curves of the three controllers under normal friction disturbance.

Figure 9. Performance indices evaluation during the last three cycles under normal friction
disturbance.

4.3. Comparative Experiment of Three Controllers under Significant Frictional Disturbance

In this section’s three comparative experiments, a significant amount of frictional
disturbance was introduced by setting Fv1 = 100, Fc1 = 100, Fv2 = 100, and Fc2 = 100.

Figure 10. Position-tracking curves for the three controllers under significant frictional disturbance.
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Figure 11. Tracking-error curves of the three controllers under significant frictional disturbance.

Figure 12. The control input voltage curves of the three controllers under significant frictional
disturbance.

The tracking trajectories and tracking errors of the three controllers are presented in
Figures 10 and 11. Figure 12 illustrates the control input voltage of the three controllers,
indicating that their input voltage remains smooth and constrained. Figure 13 summarizes
the performance indicators for the last three cycles, with TDC demonstrating the worst
tracking performance due to its low robustness to nonlinear friction disturbance. In contrast,
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the FCC delivers the best performance in all performance indicators. Specifically, according
to the variance shown in Figure 9, the addition of AFLS improves TDC performance by
97.885% and 97.712% for joint 1 and joint 2, respectively. The numerical experimental
results reveal that, compared with the other two controllers, the proposed FCC delivers the
best tracking performance in both transient and steady-state aspects.

Figure 13. Performance indices evaluation during the last three cycles under significant frictional
disturbance.

We conducted a series of comparative experiments to verify the effectiveness and
fast convergence of the FCC under various levels of frictional disturbances. The results
showed that the proposed control algorithm exhibited excellent position-tracking per-
formance. As the disturbance increased, the performance of FCC became increasingly
superior, confirming the superiority and effectiveness of AFLS in terms of disturbance
rejection. Therefore, the FCC not only possesses the fast convergence and efficiency of the
TDC algorithm but also has the high disturbance-rejection capability and faster convergence
rate of the AFLS algorithm. This further confirms the feasibility and effectiveness of the
FCC in practical control applications.

4.4. Further Analysis of Error for Three Algorithms

In this study, we analyzed the kinematic errors of three algorithms (TDC, NTSM,
and FCC) applied to two joints of a robotic arm, using 20,000 samples. Box plots were used
to display the data distribution and evaluate algorithm performance.

Figure 14 illustrates the distribution of kinematic errors in the robotic arm, with the
x-axis indicating the joints and the y-axis indicating error values. Each box represents the
error distribution of a joint, with the upper and lower boundaries indicating the upper and
lower quartiles (Q3 and Q1), the middle line representing the median (Q2), and the internal
line of the box indicating the mean. Outliers are shown outside the upper and lower limits
of the box.

TDC 1 and TDC 2 represent the TDC algorithm applied to joints 1 and 2, respectively.
Similarly, NTSM 1, NTSM 2, FCC 1, and FCC 2 represent the NTSM and FCC algorithms
applied to joints 1 and 2 of the robotic arm. From Figure 14, it is apparent that the TDC
algorithm has the largest error distribution, with the greatest distance between the upper
and lower limits, but there are no outliers. The error distribution of the NTSM algorithm
is relatively stable, with a lower height of the box and a smaller distance between the
upper and lower limits, except for an outlier in NTSM 2. The error distribution of the FCC
algorithm is the most stable, with the lowest average height of the box and the smallest
distance between the upper and lower limits, and there are no outliers.

The box plot indicates that the FCC algorithm has smaller and more evenly distributed
kinematic errors in each joint of the robotic arm, indicating superior tracking performance.
Therefore, the FCC algorithm proposed in this study is an effective algorithm for controlling
robotic arms.
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Figure 14. Tracking-error curves of the three controllers under significant frictional disturbance.

5. Conclusions

In this paper, we propose a novel friction compensation controller (FCC) that integrates
time delay estimation (TDE) and an adaptive fuzzy logic system (AFLS). The FCC method
utilizes the TDE technique to eliminate and estimate the unknown dynamic functions of the
system and incorporates an element for injecting expected error dynamics and an AFLS as
the third element to handle strong nonlinearity and TDE errors. Additionally, an adaptive
rule is designed to update the parameters of the fuzzy logic system online, improving the
performance of the controller. Compared to existing TDC methods, the proposed method
effectively suppresses TDE errors and provides a faster convergence rate. Moreover,
the controller in this paper does not require complex offline parameter identification or
precomputed models but can be implemented directly online, making it more suitable for
practical systems.

Numerical experiments demonstrate that the proposed friction compensation control
algorithm has fast convergence, high efficiency, and strong anti-interference capability,
and achieves excellent position-tracking performance even under a large amount of nonlin-
ear interference. Specifically, the addition of AFLS improves the performance of TDC by an
average of 93.0623% and 88.125% for joint 1 and joint 2, respectively.

This study provides novel ideas and methods for the development of robot arm con-
trollers and serves as a reference for the design of controllers in other industrial automation
fields. The results indicate that the proposed FCC is a promising solution for controlling
robotic systems with frictional effects and nonlinearities.
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