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Abstract: Modern spacecraft usually have larger and more flexible appendages whose vibration
becomes more and more prominent, and it has a great influence on the precision of spacecraft attitude.
Therefore, the cooperative control of attitude maneuvering and structural vibration of the system has
become a significant issue in the spacecraft design process. We developed a low-dimensional and
high-precision mathematical model for a large-scale flexible spacecraft (LSFS) equipped with a pair
of hinged solar arrays in this paper. The analytic global modes are used to obtain the rigid–flexible
coupling discrete dynamic model, and the governing equations with multiple DOFs for the system are
derived by using the Hamiltonian principle. The rigid–flexible coupled oscillating responses of LSFS
under the three-axis attitude-driving torque pulse during the in-orbit attitude maneuvering process
are investigated. A study on the flexibility of the hinge was also conducted. Based on the simplified
and accurate dynamic model of the system, we can obtain a state-space model for LSFS conveniently,
and the cooperative control schemes for rigid motion and flexible oscillation control are designed
by using the LQR, PD, and PD + IS algorithms. The simulation results show that three cooperative
controllers can realize spacecraft attitude adjustment and synchronously eliminate flexible oscillation
successfully. By comparison, the PD + IS controller is simpler so that it is suitable for the real-time
attitude–vibration cooperative control of spacecraft.

Keywords: large-scale flexible spacecraft; hinged multi-panel solar array; low-dimensional and
high-precision model; attitude maneuvering; cooperative control

1. Introduction

A large-scale flexible spacecraft (LSFS) employed for communications, remote sensing,
or other applications typically has large-span jointed solar arrays, which provide enough
power for these spacecraft to perform their various functions and ensure that the space-
craft’s lifetime is sufficiently long. Due to the large scale of solar arrays, the rigid–flexible
coupling vibration of these extremely flexible spacecraft can be easily triggered by oper-
ations in orbit such as the attitude maneuver [1]. Spacecraft in orbit are also affected by
their own complex environmental factors, especially large flexible spacecraft in the course
of performing diversified missions. This process can easily trigger the vibration of large
flexible appendages. However, because spacecraft are not affected by air resistance in space,
the low-frequency vibration of flexible structures is not likely to attenuate, and the vibration
of flexible appendages can have a coupling effect with spacecraft attitude. Moreover, it can
cause irreversible damage to precise parts of spacecraft and even cause the spacecraft to roll
unsteadily, leading to failure. Therefore, in order to investigate the dynamic characteristics
and design an effective attitude–vibration cooperative control law for LSFS, obtaining their
analytic global rigid–flexible coupling modes and establishing dynamic models with low
degrees of freedom is of great importance.

As vital appendages of spacecraft, solar arrays typically consist of flexible solar panels
and hinges. These flexible hinges have a huge influence on the whole spacecraft’s dynamics.
The dynamics of spacecraft hinged structures, especially the flexibility and non-linearity
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of the hinge, have an important influence on the dynamics of the system. Therefore, the
study of spacecraft hinged structure dynamics is an important part of spacecraft design.
It is directly related to the determination of spacecraft configuration, control, and so on,
and is one of the key issues to be considered when designing spacecraft. During spacecraft
maneuvering, structural vibrations are unavoidable due to the extreme flexibility of the
structure. Hence, the simplification of flexure hinges is critical to the dynamics and control
of LSFS. For such multi-body structures connected with flexible hinges, there are several
common methods. (1) The hinge is equivalent to a single beam structure. (2) The hinge
is considered as a rotational spring. (3) The connection structure is simplified into a
spring-damping element. (4) The hinge is characterized as a spring-constrained pendulum
structure, and the mechanical model of the hinge is obtained by introducing contact theory.
Wei and Cao [2] proposed the global mode method to establish an analytical dynamic
model for the flexible spacecraft with hinged appendages. Further, Wei et al. [3] introduced
nonlinear joints in a multi-beam structure and studied the complicated nonlinear responses
of the system. They focused on the strong impact of flexible hinges on the dynamic behavior
of the whole system. The good results demonstrate that the global mode method is efficient
to solve dynamic modeling problems of hinged structures. In fact, as we know, the exact
solution for the plate dynamic problem is always difficult to find except in some typical
and classical cases with simple boundaries. In the case of solar arrays, how to find the exact
solutions for complex boundaries connected by hinges is still a tough issue in the mechanic
field. Xing and Liu [4] developed a novel method to solve the dynamic problems of a
plate’s free vibration. The method developed in ref. [4], on the other hand, is only suitable
for a thin rectangular panel with combinations of classical boundaries. The method of
Rayleigh–Ritz has then been introduced to study dynamical modeling for thin plates with
non-classical boundaries. The Rayleigh–Ritz method is employed to study the dynamic
properties of multi-point supported plates by Li et al. [5]. Dong [6] studied the free vibration
of composite plates in three dimensions using the Chebyshev–Ritz method. The modal
function constructed in this method always shows the complex product forms in terms of
geometric boundary conditions, which slow down computation speed. Li et al. [7] used
a set of beam functions based on the Rayleigh–Ritz method to investigate the dynamic
properties of the folded solar arrays. Cao et al. [8] employed the same method to study the
free vibrations of the flexible multi-panel structure. Although the research undertaken by
Cao et al. was the first to investigate the analysis of the dynamic characteristics of flexible
multi-panel structures, an important issue remains to be improved for its practical use:
The free-free beam function consists of several trigonometric functions, which leads to the
relatively slow computational speed and rate of convergence. The characteristic orthogonal
polynomials were successfully utilized to investigate the dynamic characteristics of simple
structures [9] and structures with multiple panels [10]; it is still a novel task to adopt it
for the rigid–flexible coupling multi-body systems’ natural property investigations. For
the purposes of this paper, adopting the modal function-derived approach proposed by
Bhat [11], the Rayleigh–Ritz method can be employed to analyze the natural frequencies
and the analytical global mode functions for LSFS containing elastic connections.

Flexible spacecraft dynamics modeling is an important branch of dynamic research
on flexible multibody systems. Large flexible spacecraft are often composed of beams,
plates, trusses, and other simple hinged structures. Large rigid body movements of space-
craft, such as large-area rapid orbital maneuvers and agile attitude adjustment, can trigger
strong vibrations of large flexible structures, showing the coupled dynamic characteristics
of typical rigid body motion and structural vibration. For this kind of complex system,
it is key to design the attitude and vibration controller and analyze the nonlinear dy-
namic characteristics of the system. The LSFS investigated in this research is shown in
Figure 1. How to efficiently develop an accurate low-dimensional dynamic model is still
a significant scientific issue that urgently needs to be addressed. Flexible solar arrays are
distributed parameter systems, and their displacement would need to be discretized in
order to derive the discrete dynamical models, which are widely used in the dynamic
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analysis and vibration control of flexible space vehicles. The two most commonly used
methods for doing this are the finite element method (FEM) [12,13] and the modal approach
that uses mode shapes [14–16]. Shabana [16] developed the absolute nodal coordinate
method to establish the dynamic model in three dimensions. Sahoo and Singh [17] studied
the complicated dynamic problems of sandwich panels by a FEM model. The goal of
Frikha and Zghal [18] was to study the dynamic behavior of composite shell structures
reinforced with functionally graded carbon nanotubes, and a linear dual discrete direc-
tor finite element model is used to develop the governing equations of motion. Jen [19]
developed an improved substructure synthesis method to perform dynamic analysis of
the structures. Hablani [20] employed the FEM to derive a clear mathematical model
for a complex vehicle. It can be seen that the finite element method is a commonly used
dynamic modeling method for complex space combinatorial structures such as flexible
spacecraft, and the whole modal of the system can be easily obtained by this method.
However, the result obtained by the finite element method is often in numerical form and
it is difficult to obtain analytical expression, so it is disadvantageous for further research
on nonlinear dynamics. In addition, modal synthesis is an effective method to obtain
the global modes of complex systems. However, this method needs to obtain the modal
information of each substructure and combine the modes of each substructure to obtain
the global modes of the system. Both of them typically have a large number of degrees
of freedom, and it is always difficult to obtain the discrete low-dimensional dynamical
model, unfriendly to the controller design. Nowadays, with the development of computer
software technology, multi-body dynamic engineering simulation software has become
one of the common tools for the dynamic analysis of flexible multi-body systems. Large
commercial software, represented by Adams, can now perform rigid–flexible coupling
dynamics analysis, and simulation software, represented by the MATLAB and Simulink
modules, has become a widely used analysis tool in the field of control engineering. For
the study of spacecraft dynamics and control problems, two software simulations can be
used, but the problem can only be solved in simpler engineering situations, and there are
still some difficulties in the analysis of rigid–flexible coupling dynamics of more complex
flexible multi-body systems. To overcome these drawbacks of the FEM model and software
model, researchers use the modal method to derive the analytical dynamical model, and
Hughes et al. [21] proposed the modal truncation for flexible spacecraft, which made the
modal method possible. The structure of large spacecraft is complex and changeable, and
there are many large flexible accessories. It will be difficult to continue to use the hybrid
coordinate method to model the dynamics of such complex spacecraft. The process is
complex, and its accuracy makes it difficult to meet the requirements. At this time, the
appearance of the mode synthesis method has solved the dynamic modeling problem of
complex flexible spacecraft very well. Global modes can be obtained by the synthesis of
component modes [22], and the Craig–Bampton method is the most representative one [23].
The modes given by this method are approximate, however, and their expressions can be
complicated. Pan and Liu [24] adopted the assumed modal method to establish a complex
flexible multibody dynamic model for satellites and considered the thermal effects of the
system. It was shown by Richard [25] that the admissible basis functions of the structures
should be constructed based on the geometric boundary conditions. Nicolas et al. [26]
studied the dynamic modeling and conducted an analysis of spacecraft with variable tilt
of flexible appendages. Milad et al. [27] established the high-order rigid–flexible coupled
structural system and designed the vibration controller. Most research, however, focuses
on the study of the characteristics of a single structure such as a beam or a plate. There is
a paucity of research investigating the analytical global rigid–flexible coupling mode for
multibody structures. On the other hand, flexible oscillations have a great influence on the
rigid movement of the system [28], so if we continue to adopt the constrained modes and
ignore the coupling effect, the model will be imprecise. Hence, this research proposes an
analytical method to obtain the global mode function and a low-DOF dynamic model to
design the cooperative controller for the complex system.
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Due to the extreme rigid–flexible coupled effect of the LSFS, the vibration of flexible
appendages is difficult to attenuate rapidly in space. It will have a great impact on the
attitude accuracy of spacecraft. It is therefore of great importance to design an effective
attitude–vibration cooperative controller. In the early research on the attitude control of
spacecraft, the coupling of flexible vibration to body attitude motion was neglected, so
the attitude control law of rigid spacecraft could not be applied directly to large flexible
spacecraft. The design of modern large flexible spacecraft attitude and structure vibration
controller should be based on a rigid–flexible coupling dynamic model of the system in
order to control the attitude of spacecraft and suppress the vibration of flexible appendages.
Classical control theory is suitable for single-input–single-output systems, and it is difficult
to obtain a good control effect for multi-input–multi-output rigid–flexible coupled strong
nonlinear systems with multi-control objectives and time variation. Modern spacecraft
have many complex and varied tasks, and the classical theory of automatic control has
been unable to meet the requirements of modern spacecraft. The emergence of modern
control theory has been paid wide attention by many scholars, such as robust control,
sliding structure control, and adaptive control. Although a lot of research studies have been
conducted on spacecraft attitude movement and vibration control of flexible appendages,
there are relatively few control strategies that can effectively suppress the vibration of
flexible appendages while efficiently completing spacecraft attitude maneuvers.

Previous research ideas have been limited to equating the vibration of flexible ap-
pendages to an external disturbance, and then directly controlling the attitude. Another
method is to design the controller completely separate from the attitude control and the
vibration control of the spacecraft without considering the coupling effects. On the other
hand, the vibration control of flexible spacecraft has also been experimentally studied on
a flotation simulator by several scholars, and the experimental results were compared
with the theoretical results of the proposed method. The simulator can realize the weight-
less movement of the experimental platform in the plane and the single-axis weightless
rotation. A flexible L-beam is installed at the edge of the circular central platform. Two
controllers, PD and bang-off-bang, were experimentally designed for the attitude control
of spacecraft, and piezoelectric intelligent materials were used for the vibration control
of flexible appendages. The experimental results show that the spacecraft can suppress
the vibration of the flexible appendage and improve the efficiency and accuracy of the
spacecraft’s attitude maneuverability. The experimental results are in good agreement with
the theoretical analysis. The problem of piezoelectric intelligent materials’ actuator/sensor
placement is also an issue itself but will not be addressed in this paper, and the detailed
introduction about how to arrange the actuator position may be referred to in ref. [29].
Active vibration control such as strain rate feedback (SRF) control [30], positive position
feedback (PPF) control [31], modal velocity feedback [32], linear quadratic regulator (LQR)
control [33], optimal control [34], proportional-derivative (PD) control [35], and so on, are
commonly used in engineering. An attractive feature of the SRF control approach is that
the global stability of the entire system is guaranteed while the controllers accomplish
their tasks in the coupled rigid–flexible dynamic domain without parasitic parameter
interactions. The multi-modal vibration control of flexible structures is recognized as a
significant challenge owing to the well-known phenomenon of spillover and frequency
varying. The spillover phenomenon and variation in modal dynamics may cause instability
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and degradation in performance. To overcome these defects, an adaptive positive position
feedback (PPF) method is proposed for controlling the vibration of the system with bonded
piezoelectric sensors and actuators. A multi-modal PPF controller can be adjusted with
estimated frequencies and is able to damp the target modes quickly. A theoretical analysis
of the flexural vibration of a system with a control system which implements direct velocity
feedback using either an ideal collocated force actuator or a closely located piezoelectric
patch actuator is usually presented to generate active damping which reduces the vibration
level at resonance frequencies. Among them, a PD controller is easy to design and is widely
used in industrial control. It has become one of the main control technologies because
of its simple structure, good stability, reliable work, and convenient adjustment. When
the system parameters of the controlled object cannot be fully grasped or an accurate
mathematical model cannot be obtained, other technologies of control theory are difficult
to adopt, and then the application of PD control technology is the most convenient. LQR
is the earliest and most mature state space design method in modern control theory. The
optimal solution of linear quadratic can be written into a unified analytical expression,
and the solution process can be normalized. The state linear feedback control law can be
simply used to form the closed-loop optimal control system, which can take into account
multiple performance indexes. LQR optimal control can make the original system achieve
better performance indexes by using a low cost, and the method is simple and easy to
realize, which is convenient for realizing the stable, accurate, and fast control goals. In
recent years, some scholars have proposed the strategy of combining input shaping (IS)
with other closed-loop control methods. Different closed-loop control methods can be se-
lected according to the characteristics of control tasks, and then various hybrid controllers
with different emphases can be designed. Although the characteristics of various hybrid
controllers are different, the core idea is to design a controller based on the better vibration
suppression effect of the input shaping method and the strong anti-interference ability of
the closed-loop control method. Its core idea is to divide a pulse into multiple sub-pulses,
and the dynamic responses caused by multiple sub-pulses will just cancel each other out
after the superposition, so as to achieve the purpose of vibration suppression. On account of
the advantages of the three control methods, the LQR, PD, and PD + IS control methods are
adopted to design a cooperative control scheme for the rigid–flexible coupled LSFS system.

In order to improve the dynamic modeling and cooperative control problems men-
tioned previously, a low-dimensional and high-precision dynamic model for the LSFS is
established. The present method employs global analytical modes of the rigid–flexible
coupling system to derive discrete governing equations by using the Hamiltonian principle.
This paper investigates the attitude and vibration-coupled effects of in-orbit LSFS under
three-axis attitude-driving torque. Furthermore, effective cooperative control schemes
for attitude–vibration control are designed. The LQR, PD, and PD + IS controllers are
designed based on the discrete dynamic model of the system. Through a typical example
of spacecraft maneuvering from a known attitude angle to an expected attitude angle, the
results of the LQR controller, the PD controller, and the PD + IS controller are compared,
and the control effects and advantages of the three cooperative controllers designed in this
paper are summarized. The cooperative controllers designed in our paper are based on the
real rigid–flexible coupling global mode of the system, which can realize the attitude and
vibration control synchronously, other than some designs of two independent controllers to
reach the cooperative control goal as in most research studies. Our modeling approach can
straightforwardly be applied to other multibody systems. Such an analytical solution and
cooperative control for a model consisting of many panels and torsional springs have not
been investigated in previous studies in the literature, and this manuscript seeks to fill this
gap, which provides a general analytical method for the dynamic modeling and control for
complex large-scale flexible spacecraft.

This paper is organized as follows: the procedures of description and discretization
for the model of the LSFS are presented in Sections 2 and 3. The dynamic response analysis
during the attitude maneuvering process is conducted in Section 4. The cooperative control
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scheme for attitude motion and solar panel vibration control is designed in Section 5.
Finally, some conclusions are summarized in the last section.

2. Mathematical Model of the LSFS

The dynamic modeling of flexible spacecraft is an important branch of flexible multi-
body system dynamics. Large flexible spacecraft are often assembled by hinged simple
flexible structures such as beams, plates, trusses, etc. Large-scale rigid body motions of
spacecraft, such as large-scale rapid orbit maneuvers, attitude agile adjustment, etc., may
stimulate strong vibrations of large flexible structures, showing typical coupling dynamic
characteristics of rigid body motion and structural vibration. For this complex system, how
to accurately model and establish a mathematical model that can well describe its dynamic
characteristics is the key to its attitude and vibration controller design and nonlinear
dynamic characteristics analysis.

In order to establish an accurate and low-dimensional dynamic model of the LSFS, it
is necessary to describe the detailed mathematical relationships and formulations for the
whole system, including the assumptions, kinetic energy, and potential energy of the model.

2.1. Assumptions and Geometry Descriptions of the Model

The central body of the LSFS is rigid, and the solar panels are utilized as thin hon-
eycomb plates. Each solar panel is connected by flexible hinges. Two yokes are used as
rigid rods.

For the dynamic modeling of the hinges for the multi-panel structure, there are several
common processing methods, as follows: use the finite element method to establish solid
elements to directly model the hinge; the hinge is equivalent to a single beam structure for
modeling; the hinge is simplified as a rotating joint with torsion spring for modeling; the
connecting structure is simplified as a spring damping element; the hinge is modeled as
a pendulum structure with spring constraints; and the mechanical model of the hinge is
obtained by introducing contact theory. The equivalent beam method is one commonly
used method to analyze the dynamic characteristics of the flexible solar array in the early
days. It cannot accurately reflect the characteristics of the hinge when it works. Although it
is simple to use, the calculation error is large. By using the equivalent spring method and
directly measuring the hinge stiffness, a hinge model close to the actual situation can be
obtained, so in this paper, flexible hinges are considered as rotational springs with no size,
mass, damping, and Coulomb friction.

The honeycomb sandwich solar panels are mainly composed of upper and lower
panels and the sandwich layer in the center. Generally, the panel and sandwich are bonded
with adhesive to form a rigid structure. The honeycomb sandwich structure is widely
used in aerospace and other fields for its light weight, low cost, high strength, sound
insulation, and shock absorption, and it has become an indispensable structural material.
In engineering applications, for complex structures such as the honeycomb sandwich, it
is usually necessary to use the finite element method to analyze them, whereas the direct
establishment of a detailed honeycomb model requires a large amount of calculation and
requires huge time and cost. Therefore, in the calculation and analysis, it is often necessary
to simplify it, so it is very important to establish a simple, accurate, and feasible equivalent
model for the design and analysis of engineering structures. In order to simplify the
honeycomb structure accurately, the research on equivalent parameters of the honeycomb
core layer cannot be ignored. At present, most of the literature is based on the equivalent
plate theory, the honeycomb plate theory, and the sandwich panel theory. The equivalent
plate theory is that the whole honeycomb sandwich structure is equivalent to an isotropic
plate with uniform density but different thicknesses. The theory of the honeycomb panel is
that the whole honeycomb sandwich structure is equivalent to an orthotropic plate with
the same stiffness and size, and the in-plane and out-of-plane mechanical properties of
the faceplate and sandwich layer are considered simultaneously. The sandwich panel
theory considers the panel and the sandwich layer separately. The panel is equivalent to
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a homogeneous thin plate conforming to Kirchhoff’s hypothesis, and the sandwich layer
is equivalent to an orthotropic layer with a certain in-plane stiffness. We will not study
the influence of the core honeycomb shape on the overall performance of the sandwich
panel in this paper, so considering the equivalent plate theory is easy to realize, saving
calculation cost and time. The panel of the solar array is equivalent to an isotropic elastic
rectangular thin plate (shown in Figure 2) based on equivalent theory [36]. The equivalent
material parameters Eeq, ρeq, Geq, and teq can be expressed as

teq =
√

12h2
c + 12hchf + 4h2

f , Eeq = 2hf Ef /teq ,

Geq = 2hf Gf /teq , ρeq =
(

2hf ρf + 2hcρc

)
/teq ,

(1)

where ρc =
8
3

δc
lc

ρ0 . teq= H.
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The O-xyz to O0-x0y0z0 transformation matrix is

Aoo0 =

cosθz −sinθz 0
sinθz cosθz 0

0 0 1

1 0 0
0 cosθx −sinθx
0 sinθx cosθx

 cosθy 0 sinθy
0 1 0

−sinθy 0 cosθy

 . (2)

Oi-xiyizi is the floating frame on each plate. The Oi-xiyizi to O-xyz transformation
matrix is

Ao,o =

1 0 0
0 1 0
0 0 1

 . (3)

2.2. The Expression of the LSFS’s Solar Panel Displacement

Each solar panel transverse displacement is given by{
w(xRi , yRi , t) = W(xRi , yRi)sinωt,
w(xLi , yLi , t) = W(xLi , yLi)sinωt,

for i = 1, 2, . . . , N. (4)

where ω is the vibration frequency. W(xRi , yRi) and W(xLi , yLi) are the modal functions.
Based on the summary in the introduction section, the modal function W(xRi , yRi) and

W(xLi , yLi) can be written as

W(xRi , yRi) =
mt
∑

m=1

nt
∑

n=1
A(Ri)

mn ϕm(xRi)ϕn(yRi),

W(xLi , yLi) =
mt
∑

m=1

nt
∑

n=1
A(Li)

mn ϕm(xLi)ϕn(yLi).
(5)

where ϕm(xRi), ϕn(yRi), ϕm(xLi), and ϕn(yLi) are characteristic orthogonal polynomials in
the x and y directions, respectively. mt and nt are numbers truncated when a specific model
is calculated; A(Ri)

mn and A(Li)
mn are the unknown coefficients.

2.3. The LSFS’s Kinetic Energy

As illustrated in Figure 3, the position vector of an arbitrary point Pi in O0-x0y0z0 can
be expressed as

rPi = ro + Aoo0roPi (6)

Then, the velocity of the panel can be obtained as follows:

vPi =
.
rPi =

.
ro +

.
Aoo0roPi + Aoo0

.
roPi (7)

Then, the kinetic energy of the whole system can be expressed as follows:

T = 1
2 ρ

N
∑

i=1

∫
VRi

vPRi

T · vPRi
dV + 1

2 ρ
N
∑

i=1

∫
VLi

vPLi

T · vPLi
dV

+ 1
2 mR(

.
xo

2 +
.
yo

2 +
.
zo

2) + 1
2 ωTJRω

(8)

where ρ and mR are the density of each plate and the mass of the rigid platform. xo, yo, and
zo are the positions of O in O0-x0y0z0. Additionally,

ω =

ωx
ωy
ωz

 =

cosθy 0 −cosθxsinθy
0 1 sinθx

sinθy 0 cosθxcosθy




.
θx.
θy.
θz



JR =

Jx 0 0
0 Jy 0
0 0 Jz
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where Jx, Jy, and Jz are the rigid hub inertial moments of the x-, y-, and z-axes.
Because the missions always need satellites to reach high-precision orientation, the

satellite rotates very slowly, and the rotating angle is tiny when the attitude adjusts. There-
fore, we are interested in whether the attitude angles will be small, so that Taylor expansion
can be used to obtain the following first-order approximations for trigonometric functions
of attitude angles, and the nonlinear terms are neglected here.

2.4. The LSFS’s Potential Energy

Based on the relationship between the strain and stress of the panel, also taking into
account the torsional spring, the potential energy of the LSFS can be expressed as

U =
N
∑

i=1

D
2
∫ a

0

∫ b
−b

[(
∂2wRi
∂xRi

2

)2
+ 2v

∂2wRi
∂xRi

2
∂2wRi
∂yRi

2 +

(
∂2wRi
∂yRi

2

)2
+ 2(1− v)

(
∂2wRi

∂xRi ∂yRi

)2
]

dxRi dyRi

+
N
∑

i=1

D
2
∫ 0
−a
∫ b
−b

[(
∂2wLi
∂xLi

2

)2
+ 2v

∂2wLi
∂xLi

2
∂2wLi
∂yLi

2 +

(
∂2wLi
∂yLi

2

)2
+ 2(1− v)

(
∂2wLi

∂xLi ∂yLi

)2
]

dxLi dyLi

+
N
∑

i=1

1
2 k∆2

ARi
+

N
∑

i=1

1
2 k∆2

BRi
+

N
∑

i=1

1
2 k∆2

ALi
+

N
∑

i=1

1
2 k∆2

BLi

(9)

where D denotes the flexural rigidity of the panel, a and b are the length and width of the
panel, k represents the stiffness of the rotational springs, and ∆ARi

, ∆BRi
, ∆ALi

, and ∆BLi
denote

the rotational angles of hinges ARi ,BRi , ALi , and BLi as shown in Figure 3, respectively.

3. Discrete Dynamic Model for the LSFS

The analytic global modes of the LSFS solved by the global mode method proposed
in our previous research [37] are employed to conveniently establish an accurate discrete
dynamic model here.

The kth order analytical global modes of the LSFS can be written as

Φk =
[
Xo,k, Yo,k, Zo,k, θ

(x)
0,k , θ

(y)
0,k , θ

(z)
0,k , WR1,k, . . . , WRN ,k, WL1,k, . . . , WLN ,k

]T
(10)

The displacement of the LSFS is given as follows:[
xo, yo, zo, θx, θy, θz, wR1 , . . . , wRN , wL1 , . . . , wLN

]T
=
[
xor, yor, zor, θxr, θyr, θzr, 01×2N

]T
+ Φp(t)

(11)

where p(t) is the generalized modal coordinate vector expressed as{
Φ = [Φ1, Φ2, . . . , Φn]

p = [p1(t), p2(t), . . . , pn(t)]
T (12)

Based on the parameter identification method, the linear transmitted torque formula-
tion [38] of the ith hinge is given as

MT
s = c∆

.
θs + k∆θs, (s = RAi , RBi , LAi , LBi) (13)

where the two terms of Equation (13) represent a linear damping and a linear spring,
respectively. c and k are the linear damping coefficient and the linear spring stiffness
coefficient, respectively.

Then, the damping is introduced in energy through Equation (13) and the Hamiltonian
principle is employed to obtain the following discrete dynamic model:

M
..
q + C

.
q + Kq = Q (14)
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where M, C, and K are the mass, viscous damping, and stiffness matrices with the di-
mensions of (6 + n)×(6 + n), respectively. The details of the M, C, and K are given in the
Appendix A. The q and Q are expressed as

q =
[
xor, yor, zor, θxr, θyr, θzr, pT]T

Q =
[
0, 0, 0, τx, τy, τz, τxθ

(x)
0 + τyθ

(y)
0 + τzθ

(z)
0

]T (15)

4. The Validation Analysis for the Method

Based on the geometric and material properties of the LSFS studied in this paper, the
finite element model of the system is established. Figure 4 is the finite element model of the
LSFS in ANSYS, which is used to verify the accuracy and validity of the present method.
The rigid hub is modeled by the Mass 21 element which has six DOFs, the mass, and the
moment of inertia in the x, y, and z directions. Solar panels are discretized by employing
the Shell 63 element. The Combine 14 element which has rotational stiffness is used to
model the hinges.
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The accuracy of the dynamic model is validated by comparing results obtained with
the natural frequencies (taken as reference values) obtained from the finite element method
in this subsection. As shown in Table 1, the first ten frequencies of the system calculated by
commercial software ANSYS and the proposed method are given, respectively.

Table 1. Comparison of the first twelve frequencies of the system, f (Hz).

Frequency Order ANSYS Proposed Method Rt (%)

1 0.102 0.102 0.000
2 0.233 0.235 0.858
3 0.630 0.634 0.635
4 0.673 0.677 0.594
5 1.664 1.676 0.721
6 1.672 1.684 0.718
7 3.300 3.275 0.758
8 3.444 3.420 0.697
9 10.220 10.169 0.499
10 10.272 10.220 0.506

Here, the relative error is defined as

Rt =

∣∣∣∣ fmtnt − ffinite
ffinite

∣∣∣∣× 100% (16)

where fmtnt is the frequency with respect to the polynomial terms of mt and nt, and ffinite
represents the frequency calculated by ANSYS.
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It can be observed from Table 1 that the absolute values of relative errors between the
analytical solutions and the results from ANSYS are less than 0.858%. Hence, the accuracy
of the model can be guaranteed by using the proposed method in this paper.

5. The Dynamic Response Analysis

The three-axis attitude-driving torque pulse τ is

τ =

τx
τy
τz

 =

0.1τ0
τ0
τ0

, τ0 =


10N ·m, 0 ≤ t ≤ 4s
0, 4 < t < 8s, t > 12s
−10N ·m, 8 ≤ t ≤ 12s

(17)

where τ0 is the amplitude of the attitude-driving torque pulse. The time history is shown
in Figure 5.
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The geometric and material properties of the LSFS studied in this section are listed in
Table 2.

Table 2. Geometric and material parameters of the LSFS.

Parameters Values

The number of solar panels (N) 3.0
The length of the panel a (m) 2.0
The width of the panel 2b (m) 2.0
Distance between the hinges A and B b0 (m) 1.6
The thickness of the honeycomb core 2 hc (m) 0.0197
The thickness of the honeycomb face sheet hf (m) 0.15 × 10−3

The length of the honeycomb wall lc (m) 6.35 × 10−3

The thickness of the honeycomb wall δc (m) 0.0254 × 10−3

The elastic modulus of the aluminum E0 (Pa) 6.89 × 1010

The mass density of the aluminum ρ0 (kg m−3) 2.8 × 103

Poisson ratio v 0.33
The size of the distance r0 (m) 2.0
The inertial moment of the hub Jx, y, z (kg m2) 100,100,100
The mass of the hub mR (kg) 150
The linear stiffness of the rotation spring k (N ·m/rad) 50
The damping coefficient of the hinges c (N ·m · s/rad) 10

5.1. Displacements of the LSFS under the Three-Axis Attitude-Driving Torque Pulse

The rigid motions of the spacecraft in the x, y, and z directions are shown in Figure 6.
It can be observed that the vibration amplitudes in the x, y, and z directions are almost
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zero, which indicates the attitude maneuvering of the spacecraft can hardly excite any rigid
translation motions, and it has almost no influence on the translational motions.
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Figure 8 shows the displacements of each of the right solar panels. The vibration am-
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Figure 6. The translation of the spacecraft under the τ(k = 50 N ·m/rad ).

The attitude maneuvering angles of the spacecraft are plotted in Figure 7. It can be
observed that the attitudes of the spacecraft have been adjusted to the expected positions
gradually under the attitude-driving torque pulse. There is almost no fluctuation observed
in Figure 7a,c. It is shown that the maneuvering process in the θx and θz directions cannot
cause the vibration of the flexible solar arrays. However, in Figure 7b, the attitude angle
θy oscillates remarkably, which demonstrates that the spacecraft attitude maneuvering in
the θy direction will excite the rigid–flexible coupling effects. The vibrations of solar arrays
also affect the attitude motions.
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Figure 7. The attitude motion of the spacecraft under the τ(k = 50 N ·m/rad ); they are listed as:
(a) the displacement of θx; (b) the displacement of θy; (c) the displacement of θz.

Figure 8 shows the displacements of each of the right solar panels. The vibration
amplitude of each panel increases gradually with the distance longer to the central body.
In Figure 8, we can clearly observe that the displacement amplitudes of the solar panels
jump exactly at 0 s, 4 s, 8 s, and 12 s, which means the sudden action and the sudden
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stop of the attitude-driving torque can cause remarkable vibration of the solar array. The
residual vibration lasted almost 30 s in Figure 8, and it was not conducive to the stability
of spacecraft attitude. Therefore, designing an attitude–vibration cooperative controller
is necessary.
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5.2. The Effects of the Hinges for the Attitude Maneuver

In order to study the effects of the hinge flexure, the vibrations of the LSFS under
various hinge stiffnesses are numerically carried out in the attitude maneuvering process.

The results in Figure 9a,d plainly show that as the stiffness k increases, the vibration
amplitudes of the solar array tips decrease. On the other hand, Figure 9 shows that
increasing the stiffness of the hinge will extend the duration of the vibration and also will
reduce the vibration periods. The flexibility of the hinge helps to accelerate the dissipation
of the residual vibrations.
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Figure 9. Deflections of the solar array tip for different spring stiffnesses; they are listed as:
(a) k = 50 N ·m/rad; (b) k = 100 N ·m/rad; (c) k = 500 N ·m/rad; (d) k = 1000 N ·m/rad.
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Figure 10 is plotted to discuss the effect of the hinge damping. It is illustrated that the
different damping coefficients have a great influence on the fluctuations of the solar array.
As can be seen from Figure 10, if the hinge damping is minimal, the residual vibration will
persist for a long time. With the increase in the hinge damping, the vibration response of
the solar array decreases, and the residual vibration dissipation time is shorter. Increasing
the damping of hinges is an effective way to reduce the vibration response and accelerate
the dissipation of residual vibration.
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6. The Cooperative Control for Attitude Motion and Structure Vibration

Based on the above analysis, we can conclude that only attitude motion θy excites the
vibration of solar panels, causing the rigid–flexible coupling phenomenon. Therefore, the
dimension of the model for the spacecraft considered in this paper can be reduced further
by deleting the terms associated with other rigid motion variables. The degree of freedom
of the new model is 1 + n.

Taking the first few modes, the dynamic responses can be obtained by solving
Equation (14). To determine how many modes should be taken for the controller de-
sign, the forced responses of the attitude motion θy and the end corner of the third-right
panel with different numbers of modes are worked out through Equation (14) numerically,
as shown in Figure 11a,b, respectively.
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.y= + τZ AZ B  (19) 

where 

Figure 11. The vibration response of the system (k = 500 N ·m/rad); they are listed as: (a) the
displacement of θy; (b) the displacement of the 3rd-right panel tip.

It can be concluded from these figures that only the first two rigid–flexible coupling
modes need to be selected to satisfy the accuracy of the dynamic responses analysis of the



Actuators 2023, 12, 167 15 of 27

system. From this point of view, the low-dimensional and high-precision dynamic model
of the complex spacecraft can be obtained by using the global mode method, which can be
used to design an accurate cooperative controller conveniently.

Then, two cooperative controllers are designed by employing the LQR and the PD
control law for the attitude adjustment and vibration suppression of flexible spacecraft in
this paper based on the three-DOFs model. As attitude movements θx and θz are decoupled
from the flexible vibration of the solar array during the attitude adjustment process, only
θy and τy are considered in the design of the cooperative controller. Here, force Q in
Equation (15) can be rewritten as follows:

Q = Sτy, S =

[
1,

(
θ
(y)
0

)
1×n

]T
. (18)

6.1. The LQR Cooperative Controller

For the controller design problem of linear systems, if the performance index is the
integral of the quadratic function of the state variables and (or) control variables, the
optimization problem of such dynamic systems is called the optimal control problem of
the quadratic performance index of linear systems, which is called the linear quadratic
optimal control problem or the linear quadratic problem for short. The optimal solution
of the linear quadratic problem can be written into a unified analytical expression, and
the normalization of the solution process can be realized. The closed-loop optimal control
system can be simply constructed by using the state linear feedback control law, which
can take into account multiple performance indicators. Therefore, it has received special
attention and is a more mature part of the modern control theory.

LQR (linear quadratic regulator) is a linear quadratic regulator. Its object is a linear
system given in the form of state space in modern control theory, and the objective function
is a quadratic function of object state and control input. LQR optimal design refers to
the state feedback controller τy designed to minimize the quadratic objective function J,
and τy is uniquely determined by the weight matrix Q and R, so the selection of Q and R
is particularly important. LQR theory is the earliest and most mature state space design
method in modern control theory. The fact that LQR can obtain the optimal control law
of state linear feedback is particularly valuable, which is easy to use to form closed-loop
optimal control. Moreover, the application of computer software provides conditions for
LQR theoretical simulation, and it is more convenient for us to achieve stable, accurate, and
fast control objectives.

In this section, the cooperative controller is designed by using the linear quadratic
regulator (LQR) method. Figure 12 shows the block diagram of the LQR controller. The
detailed procedures are demonstrated as follows:

.
Z = AZ + Bτy. (19)

where

Z =

[
q
.
q

]
, A =

[
0 I

−M−1K −M−1C

]
, B =

[
0

M−1S

]
.
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The control torque τy is defined as

τy = −GZ , (20)

where G is the control gain matrix. τy minimizes a quadratic performance index that is a
cost function of the system states and control input.

J =
1
2

∫ ∞

0

[
ZTQZ + Rτ2

y

]
dt , (21)

where Q is a positive semimatrix, and R is a positive weighting scalar. The gain matrix G
can be obtained as G = R−1BTP , by solving the functional extremum problem, where P is
the solution of the following Riccati equation:

PA + ATP− PBR−1BTP + Q = 0 . (22)

Here, the Riccati equation is the simplest nonlinear equation. A, B, Q, and R are known
real coefficient matrices, and P is an unknown matrix. Generally, there are many solutions
to this equation, but if there is a stable solution, we hope to find a stable solution. In the
optimal control problem of infinite time, we focus on the value of some variables after a
certain time, so we need to select the value of the control variable now so that the system
can operate in the optimal state in the future. The optimal value of the control variable at
any time can be obtained from the solution of the Riccati equation and the observed value
of the state variable at that time. If there is more than one observation variable and control
variable, the Riccati equation will be a matrix equation. The steady-state solution of P is
related to the infinite time problem when approaching infinity. The dynamic equation can
be iterated repeatedly until convergence to obtain the steady-state solution of P, and then
the time label in the dynamic equation can be removed to confirm whether the steady-state
solution is correct. If the algebraic Riccati equation has a stable solution, the solver will
generally try to find a unique stable solution. The stable solution means that the closed-loop
system can be stabilized by controlling the relevant LQR system with this solution.

The attitude sensor is installed on the central rigid body, and two displacement sensors
are installed on the solar wing. The measured values of θy,

.
θy, w, and

.
w can be obtained in

real time. Then, the modal displacement and modal velocity of the system can be inversely
calculated using Equation (14). Finally, the modal displacement and velocity are substituted
into the attitude motion–structure vibration cooperative controller designed in this section
to obtain the control torque of the controller.

6.2. The PD Cooperative Controller

As the most commonly used and easily realized control method in engineering, PD
control still has the most extensive engineering applications. This kind of control method
with high control accuracy and good dynamic performance is often used for three-axis
stabilized spacecraft and does not require an accurate mathematical model. With the
development of modern control theory, PD control has been constantly improved in practice.
Self-tuning, adaptive, intelligent, and other improved types have emerged to adapt to
various systems. The PD controller is proposed for flexible multibody systems, which are
easy to implement and independent of spacecraft model parameters.

In this section, the cooperative controller is designed by using the PD control law. The
block diagram of the PD controller is illustrated in Figure 13.
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The control torque τy is defined as

τy = Kd
.
e + Kp e. (23)

where tracking errors can be expressed as
.
e =

.
θd −

.
θ and e = θd − θ. Kd and Kp are the

differential gain and proportional gain, and θd and
.
θd are the desired attitude angle and the

desired attitude angular velocity of the spacecraft, respectively. Substituting the control
torque τy into Equation (23), the desired attitude angle of the flexible spacecraft can be
accurately achieved, and the vibration of the solar arrays can be suppressed synchronously.

We installed an attitude sensor on the central rigid body, measured the attitude angle
in real time, and substituted the error between the measured value and the expected value
into the controller to obtain the control torque.

6.3. The PD + IS Cooperative Controller

In recent years, some scholars have proposed the strategy of combining input shaping
(IS) with other closed-loop control methods. Different closed-loop control methods can be
selected according to the characteristics of control tasks, and then various hybrid controllers
with different emphases can be designed. Although the characteristics of various hybrid
controllers are different, the core idea is to design the controller based on the better vibration
suppression effect of the input shaping method and the strong anti-interference ability of
the closed-loop control method. In 1958, Smith put forward the Posicast control method in
his monograph “Feedback control systems”, which was the first to put forward the idea of
input shaping. Its core idea is to divide a pulse into multiple sub-pulses, and the dynamic
responses caused by multiple sub-pulses will just cancel each other after superposition, so
as to achieve the purpose of vibration suppression.

In this paper, the input shaping method and the proportional derivative (PD) control
method are organically combined, and a PD + IS cooperative controller is designed for
the flexible spacecraft, which realizes the simultaneous control of spacecraft attitude and
structural vibration.

Here, θd is replaced by the pulse sequence given by the following formula:

θdIS = θd ∗Amult (24)

Amult is a multimodal input shaper with the following expression:

Amult = A1s ∗A2s ∗ · · · ∗Ais ∗ · · · ∗Ans (25)

where Ais (i = 1, 2, . . . , n) is the pulse sequence of the ith mode of the system, including the
pulse amplitude Aj, and the action time tj; “∗” is a convolution symbol. During calculation,
the Aj of each Ais is multiplied, and the corresponding tj is added.

According to the design method of the ZVD shaper, the pulse amplitude and pulse
time of the jth order frequency can be calculated from ζ and ωd:[

Aj
tj

]
=

[
1

(1+K)2
2K

(1+K)2
K2

(1+K)2

T1 T2 T3

]
, j = 1, 2, 3 (26)

where K = exp(−ζπ/
√

1− ζ2), Tj = (j− 1)π/ωd (j = 1, 2, . . .). ζ and ωd are the
damping ratio and damped frequency of the ith order of the system, calculated by the
following formula:

λsys = −ζωd ± iωd

√
1− ζ2 (27)

If the newly generated pulse sequence is embedded into the feedback link in Figure 13,
the error of the controller becomes e = θdIS − θ. In this way, the vibration of the solar
array can be suppressed while the attitude is adjusted, forming a cooperative controller for
attitude motion and solar array vibration suppression as shown in Figure 14.
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In PD + IS control, the expected input instructions are obtained according to the task
requirements of the system, so as to successfully complete the predetermined objectives of
the system. The pulse sequence needs to be designed based on the dynamic characteristics
of the system. The key is to obtain the accurate natural frequency and modal damping
of the system. In this way, designing the desired input as multiple pulse sequences can
ensure that the system can effectively suppress the flexible vibration while completing the
set motion target.

6.4. The Simulations and Discussions

In this section, numerical simulations were conducted and presented to demonstrate
the effectiveness of the control schemes designed in this paper. In this simulation, we
tested the controllers against the complete distributed parameter model of the spacecraft,
and the flexible spacecraft was commanded to a rest-to-rest maneuver, and the attitude
angle varied from the initial state π

6 rad to the desired angle 0 rad. The desired attitude
angular velocity equaled zero. The vibration of the spacecraft had to be suppressed when
the attitude maneuver process finished.

For the LQR controller, the initial conditions of the system were chosen as follows:
t = 0; θy = π

6 ;
.
θy = 0 rad s−1; pi = 0,

.
pi = 0, i = 1, 2. The desired state variables Zd and

.
Zd

were set to zero. Let R = 1, Q = diag(5, 1, 1, 5000, 1, 1).
Figure 15 shows the simulation results for the LQR controller. It can be concluded

from Figure 15a that the desired attitude angle of the flexible spacecraft can be accurately
achieved within 100 s, and no overshoot occurs during attitude maneuvering. From
Figure 15c, we can know the vibration of the hinge is not very strong during the attitude
maneuvering process. However, at the beginning of the attitude maneuvering, the curves
for the displacements of the solar panel w3 and the hinge BR1 oscillate intensely. The
relatively large amplitude vibration of the solar array is observed, and the maximum
amplitude of w3 reaches up to 8.8 mm. In addition, the maximum control torque is about
1.2 Nm.

For the PD controller, the attitude angle θd varies from the initial state θd = π
6 rad to

the desired angle 0 rad. The desired attitude angular velocity
.
θd equals zero. The PD gains

of the PD controller are taken as Kd = 48 and Kp = 1.2, respectively.
The desired state of the flexible spacecraft for the PD controller remains the same as

the LQR controller for a fair comparison, and the detailed simulation results are shown
in Figure 16. It can be seen from Figure 16a that the time history curve of θy for the PD
controller is essentially the same as with the LQR controller, and those two controllers have
the capability to accomplish attitude stabilization within the same time. In Figure 16b,c, the
curves for the displacements of the solar panel w3 and hinge BR1 also oscillate intensely at
the beginning of the attitude maneuvering. However, the maximum vibration amplitude of
the solar array w3 reaches up to 4.8 mm. In addition, the maximum control torque is about
0.7 Nm.

From the analyses above, compared to the LQR controller, the PD controller needs
the smaller control torque to achieve the same attitude control goal for the spacecraft,
and it causes smaller vibrations during the attitude-adjusting process. It is concluded
that two cooperative controllers can accurately accomplish the attitude maneuvering and
effectively suppress the vibration of the solar arrays as well as the corresponding residual
vibration. By contrast, PD control algorithms are very simple and conducive to real-time
spacecraft control. On the one hand, it is neither possible nor feasible to measure the full
state in practice. Therefore, a controller that requires full-state feedback, such as a linear
quadratic regulator (LQR) controller, may be limited to this factor. For PD control, no
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full-state feedback is required; only attitude angles and angular velocity measured through
the sensors on the spacecraft are needed.
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Under this condition, the expected attitude angle, angular velocity, and initial con-
ditions of the spacecraft are the same as those of the PD controller simulation. The first
two-order rigid flexible coupling global modes of the system are selected to design the
multi-mode input shaper. The first and second-order modes are designed as ZVD shapers
with three pulses. The simulation results are shown in Figure 17.
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It can be seen from Figure 16a that the spacecraft accurately maneuvered to the
expected attitude angle within 160 s without overshooting. The spacecraft solar array end
vibration and hinge vibration in Figure 17b,c also gradually attenuated and disappeared
after 160 s. Both of them have no residual vibration, which is equivalent to the effect of the
PD controller. However, compared to the dynamic response under PD control in Figure 16,
the PD + IS controller effectively suppressed the large amplitude oscillation of the flexible
solar array excited by the attitude maneuvering at the initial stage of the control torque
application. Through comparison, it can be seen that its amplitude decreased significantly.
Under the control of PD + IS, the maximum value of the vibration displacement at the end
of the solar array was 1.2 mm, far less than the 4.8 mm controlled by the PD. The control
torque did not exceed 0.17 Nm, which is also smaller than that of the PD control. Through
comparison, PD + IS control had a very significant effect on vibration suppression.

7. Conclusions

Considering a large-scale flexible spacecraft installed with a pair of multi-panel solar
arrays, a novel approach is proposed to establish a discrete dynamic model with small
dimensions and high precision for the system. The analytic global modes studied in
our previous research studies are directly adopted for the discretization of the dynamic
equations of flexible spacecraft and the design of a cooperative scheme for attitude control
and vibration suppression.

The rigid–flexible coupling dynamic response of in-orbit LSFS under a three-axis
attitude-driving torque pulse during the attitude maneuvering process are investigated. The
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attitude maneuvering process of the flexible spacecraft can cause remarkable oscillations
of its solar arrays. The hinges of the solar arrays have a significant effect on the dynamic
characteristics of the spacecraft. This analysis shows that increasing the stiffness of the
hinge is a method to reduce the vibration amplitude of the solar array, and the flexibility of
the hinge can accelerate the elimination of residual vibrations. However, increased hinge
stiffness was also observed to be detrimental to reducing vibration times. The discussion
demonstrates that increasing hinge damping is an effective means of reducing the vibration
response and accelerating the dissipation of residual vibration.

Moreover, the performance of cooperative controllers designed for attitude stabi-
lization and vibration suppression based on the low-dimensional model is assessed by
comparing them with controllers based on the LQR, PD, and PD + IS algorithms. The
simulation results conducted on the distributed model of the system demonstrate that the
controller designed by using the analytical low-dimensional model can suppress the oscil-
lation of solar panels and accurately achieve the desired attitude angle within a short time.
The LQR controller can achieve the effect of the cooperative control of spacecraft attitude
and structural vibration, but it is a full-state feedback controller. In practical engineering,
full-state measurement is neither possible nor feasible, so its application may be limited.
Although the PD controller can also achieve the cooperative control effect of spacecraft
attitude vibration, and it does not provide full-state feedback, which is easy to achieve, its
vibration suppression effect is not as good as the PD + IS controller, so the PD + IS controller
is an efficient attitude motion–structure vibration cooperative controller. It can not only ac-
curately complete the spacecraft attitude maneuvering task but also effectively suppress the
large amplitude and strong vibration of flexible components such as solar array substrates
and hinges at the initial stage of spacecraft attitude-control torque. The PD + IS controller
is not only simple to design but can also realize the real-time attitude structure vibration
control of flexible spacecraft. However, the design of the PD + IS controller needs the
precise dynamic characteristics of the system to be obtained so as to extract the cooperative
accurate frequency and damping information, to design an input shaper suitable for the
characteristics of the system. The global mode method presented in this paper can precisely
obtain the precise modes of the complex system, providing a guarantee for the design of
the attitude motion structure vibration cooperative controller of large flexible spacecraft.
By comparison, the controller based on the PD + IS algorithm is very simple and thus more
conducive to the real-time control of the spacecraft installed with a pair of solar arrays. Our
approach can straightforwardly be applied to other multibody systems.

In this paper, the flexibility of the hinges for solar arrays was considered, and the
interactions between the vibration and attitude of the spacecraft were studied. However,
the nonlinear stiffness, the friction torque, the geometric nonlinearity of large deformation,
the hinge clearance, and other nonlinear factors of the solar array were not considered.
Therefore, it is necessary to further study these in the future. In a complex space environ-
ment, composite solar arrays will bear a time-varying thermal load to generate thermal
flutter when a spacecraft enters and exits the Earth’s shadow. Therefore, it is necessary
to further establish the rigid flexible thermal coupling nonlinear dynamic model of at-
titude maneuver flexible spacecraft under solar heat flux and carry out research on the
nonlinear dynamic characteristics of spacecraft under thermal load. The attitude motion
and structure vibration cooperative controller based on the rigid flexible coupling global
mode is designed, and a good control effect is achieved through simulation. However, the
collaborative control laws designed in this paper have not been verified experimentally.
Therefore, it is necessary to further carry out control experimental research on the basis of
the theoretical research in this paper.
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Appendix A

The mass matrix M is as follows:

M =



M11 0 0 0 0 M16 M17
0 M22 0 0 0 M26 M27
0 0 M33 M34 M35 0 M37
0 0 MT

34 M44 M45 0 M47
0 0 MT

35 MT
45 M55 0 M57

MT
16 MT

26 0 0 0 M66 M67
MT

17 MT
27 MT

37 MT
47 MT

57 MT
67 M77


where

M11 = 2N · 4ρhab + mR

M16 = −2ρh
N

∑
i=1

∫ a

0

∫ b

−b
yRidyRidxRi − 2ρh

N

∑
i=1

∫ 0

−a

∫ b

−b
yLidyLidxLi

M22 = 2N · 4ρhab + mR

M26 = ρ
N

∑
i=1

∫ a

0

∫ b

−b
2h[xRi + r0 + a(i− 1)]dyRi dxRi + ρ

N

∑
i=1

∫ 0

−a

∫ b

−b
2h[xLi − r0 − a(i− 1)]dyLi dxLi

M33 = 2N · 4ρhab + mR

M34 =
N

∑
i=1

∫ a

0

∫ b

−b
2hyRidyRidxRi + ρ

N

∑
i=1

∫ 0

−a

∫ b

−b
2hyLidyLidxLi

M35 = ρ
N

∑
i=1

∫ a

0

∫ b

−b
−2h[xRi + r0 + a(i− 1)]dyRi dxRi + ρ

N

∑
i=1

∫ 0

−a

∫ b

−b
−2h[xLi − r0 − a(i− 1)]dyLi dxLi

M44 = ρ
N

∑
i=1

∫ a

0

∫ b

−b

2
3

h3 + 2hyRi
2dyRidxRi + ρ

N

∑
i=1

∫ 0

−a

∫ b

−b

2
3

h3 + 2hyLi
2dyLidxLi + Jx

M45 = ρ
N

∑
i=1

∫ a

0

∫ b

−b
−2hyRi [xRi + r0 + a(i− 1)]dyRi dxRi + ρ

N

∑
i=1

∫ 0

−a

∫ b

−b
−2hyLi [xLi − r0 − a(i− 1)]dyLi dxLi

M55 = ρ
N
∑

i=1

∫ a
0

∫ b
−b

2
3 h3 + 2h[xRi + r0 + a(i− 1)]2dyRidxRi

+ρ
N
∑

i=1

∫ 0
−a

∫ b
−b

2
3 h3 + 2h[xLi − r0 − a(i− 1)]2dyLidxLi + Jy
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M66 = ρ
N
∑

i=1

∫ a
0

∫ b
−b 2h

{
[xRi + r0 + a(i− 1)]2 + yRi

2
}

dyRidxRi

+ρ
N
∑

i=1

∫ 0
−a

∫ b
−b 2h

{
[xLi + r0 + a(i− 1)]2 + yLi

2
}

dyLidxLi + Jz

M17 = (2N · 4ρhab + mR)X0

−
(

2ρh
N
∑

i=1

∫ a
0

∫ b
−b yRidyRidxRi + 2ρh

N
∑

i=1

∫ 0
−a

∫ b
−b yLidyLidxLi

)
θ
(z)
0

M27 = (2N · 4ρhab + mR)Y0 +

{
ρ

N
∑

i=1

∫ a
0

∫ b
−b 2h[xRi + r0 + a

(
i− 1)] dyRidxRi

+ρ
N
∑

i=1

∫ 0
−a

∫ b
−b 2h[xLi − r0 − a(i− 1)] dyLidxLi

}
θ
(z)
0

M37 = (2N · 4ρhab + mR)Z0

+

(
ρ

N
∑

i=1

∫ a
0

∫ b
−b 2hyRidyRidxRi +ρ

N
∑

i=1

∫ 0
−a

∫ b
−b 2hyLidyLidxLi

)
θ
(x)
0

−
{

ρ
N
∑

i=1

∫ a
0

∫ b
−b 2h[xRi + r0 + a(i− 1)] dyRidxRi

+ρ
N
∑

i=1

∫ 0
−a

∫ b
−b 2h[xLi − r0 − a(i− 1)]dyLidxLi

}
θ
(y)
0

+ρ
N
∑

i=1

∫ a
0

∫ b
−b 2hWRidyRidxRi + ρ

N
∑

i=1

∫ 0
−a

∫ b
−b 2hWLidyLidxLi

M47 =
(

2N · 4
3 ρhab3 + 2N · 4

3 ρh3ab + Jx

)
θ
(x)
0

+

(
ρ

N
∑

i=1

∫ a
0

∫ b
−b 2hyRidyRidxRi +ρ

N
∑

i=1

∫ 0
−a

∫ b
−b 2hyLidyLidxLi

)
Z0

−
{

ρ
N
∑

i=1

∫ a
0

∫ b
−b 2h[xRi + r0 + a(i− 1)] yRidyRidxRi

+ρ
N
∑

i=1

∫ 0
−a

∫ b
−b 2h[xLi − r0 − a(i− 1)]yLidyLidxLi

}
θ
(y)
0

+ρ
N
∑

i=1

∫ a
0

∫ b
−b 2hyRiWRidyRidxRi + ρ

N
∑

i=1

∫ 0
−a

∫ b
−b 2hyLiWLidyLidxLi

+ρ
N
∑

i=1

∫ a
0

∫ b
−b

2
3 h3 ∂WRi

∂yRi
dyRidxRi + ρ

N
∑

i=1

∫ 0
−a

∫ b
−b

2
3 h3 ∂WLi

∂yLi
dyLidxLi

M57 = −
{

ρ
N
∑

i=1

∫ a
0

∫ b
−b 2h[xRi + r0 + a(i− 1)]dyRidxRi

+ρ
N
∑

i=1

∫ 0
−a

∫ b
−b 2h[xLi − r0 − a(i− 1)]dyLidxLi

}
Z0

−
{

ρ
N
∑

i=1

∫ a
0

∫ b
−b 2h[xRi + r0 + a(i− 1)] yRidyRidxRi

+ρ
N
∑

i=1

∫ 0
−a

∫ b
−b 2h[xLi − r0 − a(i− 1)]yLidyLidxLi

}
θ
(x)
0

+

{
ρ

N
∑

i=1

∫ a
0

∫ b
−b 2h[xRi + r0 + a(i− 1)]2dyRidxRi

+ρ
N
∑

i=1

∫ 0
−a

∫ b
−b 2h[xLi − r0 − a(i− 1)]2dyLidxLi + 2N · 4

3 ρh3ab + Jy

}
θ
(y)
0

−
{

ρ
N
∑

i=1

∫ a
0

∫ b
−b 2h[xRi + r0 + a(i− 1)] WRidyRidxRi

+ρ
N
∑

i=1

∫ 0
−a

∫ b
−b 2h[xLi − r0 − a(i− 1)]WLidyLidxLi

}
+ρ

N
∑

i=1

∫ a
0

∫ b
−b

2
3 h3 ∂WRi

∂xRi
dyRidxRi + ρ

N
∑

i=1

∫ 0
−a

∫ b
−b

2
3 h3 ∂WLi

∂xLi
dyLidxLi
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M67 = −
(

ρ
N
∑

i=1

∫ a
0

∫ b
−b 2h yRidyRidxRi+ρ

N
∑

i=1

∫ 0
−a

∫ b
−b 2hyLidyLidxLi

)
X0

−
{

ρ
N
∑

i=1

∫ a
0

∫ b
−b 2h[xRi + r0 + a(i− 1)]dyRidxRi

+ρ
N
∑

i=1

∫ 0
−a

∫ b
−b 2h[xLi − r0 − a(i− 1)]dyLidxLi

}
Y0

+

{
ρ

N
∑

i=1

∫ a
0

∫ b
−b 2h[xRi + r0 + a(i− 1)]2dyRidxRi

+ρ
N
∑

i=1

∫ 0
−a

∫ b
−b 2h[xLi − r0 − a(i− 1)]2dyLidxLi + 2N · 4

3 ρhab3 + Jz

}
θ
(z)
0

M77 = M11XT
0 X0 + M22YT

0 Y0 + M33ZT
0 Z0 + M44θ

(x)T

0 θ
(x)
0 + M55θ

(y)T

0 θ
(y)
0 + M66θ

(z)T

0 θ
(z)
0

+ρ
N
∑

i=1

∫ a
0

∫ b
−b

2
3 h3 ∂WT

Ri
∂xRi

∂WRi
∂xRi

dyRi dxRi + ρ
N
∑

i=1

∫ 0
−a

∫ b
−b

2
3 h3 ∂WT

Li
∂xLi

∂WLi
∂xLi

dyLi dxLi

+ρ
N
∑

i=1

∫ a
0

∫ b
−b

2
3 h3 ∂WT

Ri
∂yRi

∂WRi
∂yRi

dyRi dxRi + ρ
N
∑

i=1

∫ 0
−a

∫ b
−b

2
3 h3 ∂WT

Li
∂yLi

∂WLi
∂yLi

dyLi dxLi

+ρ
N
∑

i=1

∫ a
0

∫ b
−b 2hWT

Ri
WRi dyRi dxRi + ρ

N
∑

i=1

∫ 0
−a

∫ b
−b 2hWT

Li
WLi dyLi dxLi

+ρ
N
∑

i=1

∫ a
0

∫ b
−b 2h[xRi + r0 + a(i− 1)]dyRi dxRi

(
θ
(z)T

0 Y0 + YT
0θ

(z)
0

)
+ρ

N
∑

i=1

∫ 0
−a

∫ b
−b 2h[xLi − r0 − a(i− 1)]dyLi dxLi

(
θ
(z)T

0 Y0 + YT
0θ

(z)
0

)
+ρ

N
∑

i=1

∫ a
0

∫ b
−b 2h

(
ZT

0 WRi+WT
Ri

Z0

)
dyRi dxRi + ρ

N
∑

i=1

∫ 0
−a

∫ b
−b 2h

(
ZT

0 WLi+WT
Li

Z0

)
dyLi dxLi

−ρ
N
∑

i=1

∫ a
0

∫ b
−b 2h[xRi + r0 + a(i− 1)]dyRi dxRi

(
ZT

0θ
(y)
0 + θ

(y)T

0 Z0

)
−ρ

N
∑

i=1

∫ 0
−a

∫ b
−b 2h[xLi − r0 − a(i− 1)]dyLi dxLi

(
ZT

0θ
(y)
0 + θ

(y)T

0 Z0

)
+ρ

N
∑

i=1

∫ a
0

∫ b
−b 2hyRi dyRi dxRi

(
ZT

0θ
(x)
0 + θ

(x)T

0 Z0

)
+ ρ

N
∑

i=1

∫ 0
−a

∫ b
−b 2hyLi dyLi dxLi

(
ZT

0θ
(x)
0 + θ

(x)T

0 Z0

)
−ρ

N
∑

i=1

∫ a
0

∫ b
−b 2h[xRi + r0 + a(i− 1)]yRi dyRi dxRi

(
θ
(x)T

0 θ
(y)
0 + θ

(y)T

0 θ
(x)
0

)
−ρ

N
∑

i=1

∫ 0
−a

∫ b
−b 2h[xLi − r0 − a(i− 1)]yLi dyLi dxLi

(
θ
(x)T

0 θ
(y)
0 + θ

(y)T

0 θ
(x)
0

)
−ρ

N
∑

i=1

∫ a
0

∫ b
−b 2hyRi dyRi dxRi

(
θ
(z)T

0 X0 + XT
0θ

(z)
0

)
− ρ

N
∑

i=1

∫ 0
−a

∫ b
−b 2hyLi dyLi dxLi

(
θ
(z)T

0 X0 + XT
0θ

(z)
0

)
−ρ

N
∑

i=1

∫ a
0

∫ b
−b 2h[xRi + r0 + a(i− 1)]

(
WT

Ri
θ
(y)
0 + θ

(y)T

0 WRi

)
dyRi dxRi

−ρ
N
∑

i=1

∫ 0
−a

∫ b
−b 2h[xLi − r0 − a(i− 1)]

(
WT

Li
θ
(y)
0 + θ

(y)T

0 WLi

)
dyLi dxLi

+ρ
N
∑

i=1

∫ a
0

∫ b
−b 2hyRi

(
WT

Ri
θ
(x)
0 + θ

(x)T

0 WRi

)
dyRi dxRi

+ρ
N
∑

i=1

∫ 0
−a

∫ b
−b 2hyLi

(
WT

Li
θ
(x)
0 + θ

(x)T

0 WLi

)
dyLi dxLi

−ρ
N
∑

i=1

∫ a
0

∫ b
−b

2
3 h3
(

∂WT
Ri

∂xRi
θ
(y)
0 + θ

(y)T

0
∂WRi
∂xRi

)
dyRi dxRi

−ρ
N
∑

i=1

∫ 0
−a

∫ b
−b

2
3 h3
(

∂WT
Li

∂xLi
θ
(y)
0 + θ

(y)T

0
∂WLi
∂xLi

)
dyLi dxLi

+ρ
N
∑

i=1

∫ a
0

∫ b
−b

2
3 h3
(

∂WT
Ri

∂yRi
θ
(x)
0 + θ

(x)T

0
∂WRi
∂yRi

)
dyRi dxRi

+ρ
N
∑

i=1

∫ 0
−a

∫ b
−b

2
3 h3
(

∂WT
Li

∂yLi
θ
(x)
0 + θ

(x)T

0
∂WLi
∂yLi

)
dyLi dxLi

where
WRi

(
xRi , yRi

)
=
[
WRi,1

(
xRi , yRi

)
, . . . , WRi,n

(
xRi , yRi

)]
WLi

(
xLi , yLi

)
=
[
WLi,1

(
xLi , yLi

)
, . . . , WLi,n

(
xLi , yLi

)]
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θ
(x)
0 =

[
θ
(x)
0,1 , . . . , θ

(x)
0,n

]
, θ(y)

0 =
[
θ
(y)
0,1 , . . . , θ

(y)
0,n

]
, θ(z)

0 =
[
θ
(z)
0,1 , . . . , θ

(z)
0,n

]
Appendix B

The stiffness and damping matrices K and C are as follows:

K =

[
06×6 06×n
0n×6 K77

]
, C =

[
06×6 06×n
0n×6 C77

]
where

K77 = <+ `

< = D
N
∑

i=1

∫ a
0

∫ b
−b

∂2WT
Ri

∂x2
Ri

∂2WRi
∂x2

Ri

dyRidxRi

+vD
N
∑

i=1

∫ a
0

∫ b
−b

∂2WT
Ri

∂x2
Ri

∂2WRi
∂y2

Ri

+
∂2WT

Ri
∂y2

Ri

∂2WRi
∂x2

Ri

dyRidxRi

+2(1− v)D
N
∑

i=1

∫ a
0

∫ b
−b

∂2WT
Ri

∂xRi
∂yRi

∂2WRi
∂xRi

∂yRi
dyRidxRi

+D
N
∑

i=1

∫ a
0

∫ b
−b

∂2WT
Ri

∂y2
Ri

∂2WRi
∂y2

Ri

dyRidxRi

+k
N
∑

i=1

(
∆ΘRAi

)T
∆ΘRAi

+ k
N
∑

i=1

(
∆ΘRBi

)T
∆ΘRBi

where

∆ΘRA1
=

∂WT
R1

∂xR1

∣∣∣∣∣ xR 1 = 0
yR 1 = ya

∂WR1

∂xR1

∣∣∣∣ xR 1 = 0
yR 1 = ya

, ∆ΘRB1
=

∂WT
R1

∂xR1

∣∣∣∣∣ xR 1 = 0
yR 1 = yb

∂WR1

∂xR1

∣∣∣∣ xR 1 = 0
yR 1 = yb

∆ΘLA1
=

∂WT
L1

∂xL1

∣∣∣∣∣ xL 1 = 0
yL 1 = ya

∂WL1

∂xL1

∣∣∣∣ xL 1 = 0
yL 1 = ya

, ∆ΘLB1
=

∂WT
L1

∂xL1

∣∣∣∣∣ xL1 = 0
yL 1 = yb

∂WL1

∂xL1

∣∣∣∣ xL 1 = 0
yL 1 = yb

when i = 2, 3, . . . , N,

∆ΘRAi
==

∂WRi

∂xRi

∣∣∣∣ xRi = 0

yRi = ya

−
∂WRi−1

∂xRi−1

∣∣∣∣∣ xRi−1 = a

yRi−1 = ya

, ∆ΘRBi
==

∂WRi

∂xRi

∣∣∣∣ xRi = 0

yRi = yb

−
∂WRi−1

∂xRi−1

∣∣∣∣∣ xRi−1 = a

yRi−1 = yb

∆ΘLAi
==

∂WLi

∂xLi

∣∣∣∣ xLi = 0

yLi = ya

−
∂WLi−1

∂xLi−1

∣∣∣∣∣ xLi−1 = a

yLi−1 = ya

, ∆ΘLBi
==

∂WLi

∂xLi

∣∣∣∣ xLi = 0

yLi = yb

−
∂WLi−1

∂xLi−1

∣∣∣∣∣ xLi−1 = a

yLi−1 = yb

The expression of ` can be obtained from < in the last equation by replacing Ri with Li.
The damping matrix C77 is as follows:

C77 = κMM + κKKp + cCj

The coefficients κM and κK are the proportionality constants.
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where
Kp = <p + `p

<p = D
N
∑

i=1

∫ a
0

∫ b
−b

∂2WT
Ri

∂x2
Ri

∂2WRi
∂x2

Ri

dyRidxRi

+vD
N
∑

i=1

∫ a
0

∫ b
−b

∂2WT
Ri

∂x2
Ri

∂2WRi
∂y2

Ri

+
∂2WT

Ri
∂y2

Ri

∂2WRi
∂x2

Ri

dyRidxRi

+2(1− v)D
N
∑

i=1

∫ a
0

∫ b
−b

∂2WT
Ri

∂xRi
∂yRi

∂2WRi
∂xRi

∂yRi
dyRidxRi

+D
N
∑

i=1

∫ a
0

∫ b
−b

∂2WT
Ri

∂y2
Ri

∂2WRi
∂y2

Ri

dyRidxRi

The expression of `p can be obtained from <p by replacing Ri with Li.

Cj =
N
∑

i=1

(
∆ΘRAi

)T
∆ΘRAi

+
N
∑

i=1

(
∆ΘRBi

)T
∆ΘRBi

+
N
∑

i=1

(
∆ΘLAi

)T
∆ΘLAi

+
N
∑

i=1

(
∆ΘLBi

)T
∆ΘLBi
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