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Abstract: Terrain adaptation research can significantly improve the motion performance of hexapod
robots. In this paper, we propose a method that combines reinforcement learning with a central
pattern generator (CPG) to enhance the terrain adaptation of hexapod robots in terms of gait planning.
The hexapod robot’s complex task presents a high-dimensional observation and action space, which
makes it challenging to directly apply reinforcement learning to robot control. Therefore, we utilize
the CPG algorithm to generate the rhythmic gait while compressing the action space dimension
of the agent. Additionally, the proposed method requires less internal sensor information, which
exhibits strong applicability. Finally, we conduct experiments and deploy the proposed framework
in the simulation environment. The results show that the terrain adaptation policy trained in our
framework enables the hexapod robot to move more smoothly and efficiently on rugged terrain
compared to the traditional CPG method.
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Combined Reinforcement Learning The movement path of the legged robot is formed by discrete landing points. In
and CPG Algorithm to Generate uneven terrain environments, legged robots have a stronger motion potential than regular
Terrain-Adaptive Gait of Hexapod wheeled or tracked mobile robots and can meet task requirements in more complex environ-
Robots. Actuators 2023, 12, 157. ments. Among them, the good motion stability of the hexapod robot makes it have greater
https://doi.org/10.3390/ advantages and application value in the fields of rescue, transportation exploration, and
act12040157 so on [1-3]. However, redundant actuators increase the difficulty of modeling and motion

planning. In order to make robots move smoothly on irregular ground, complex control
systems and algorithms usually need to be designed [4-6]. At present, the research on adap-
tive motion control technology of hexapod robots mainly includes (1) model-based motion
Revised: 30 March 2023 optimization [7-13]; (2) bio-inspired methods [14-18]; and (3) machine learning [19-22].
Accepted: 2 April 2023 The hexapod robots in [7,8,10] use external sensing sensors, such as depth sensors [8],
Published: 3 April 2023 stereo cameras [7], and LIDAR [10], to model the surrounding, so that the robot can deter-
mine a reasonable landing point position and leg trajectory through planning algorithms
and realize the crossing of obstacles and balancing the body. Such methods can significantly
improve the motion performance of robots but require expensive sensors and large compu-
tational resources to ensure efficiency. The method proposed in [9,13] only relies on the legs
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adjustment of legs in continuous motion. Moreover, the method does not require a robot
model and is therefore general. In [21,22], the authors adopted the hierarchical control
framework and reinforcement learning method to improve the adaptive motion ability of
the hexapod robot. The policy network obtained by iteratively training a hexapod robot
in a stochastic simulation environment has a certain generalization capability, which is
an effective approach to solve the control problem of complex nonlinear systems in an
unknown environment.

Motion control based on CPG offers the advantages of simple design and low compu-
tational complexity. However, the performance of CPG-based motion control is poor in
rough terrain. At the same time, directly controlling the joint angles of hexapod robots with
reinforcement learning to achieve terrain-adapted walking is challenging. On the one hand,
this is because the hexapod robot has many joints, which means that as the dimension of
the output layer of the policy network increases, there are more parameters to learn in the
network. On the other hand, we need the hexapod robot to converge to a regular walking
pattern instead of swinging its legs in a haphazard manner, which requires a lot of effort
in the design of the reward function. Imitation learning and reinforcement learning are
usually combined to make the robot learn a specific behavior pattern.

Therefore, this paper focuses on designing a novel terrain-adapted gait generation
method for hexapod robots by combining CPG and reinforcement learning, with leg contact
feedback as the primary means of environment sensing. The signal coupling of oscillators
simplifies gait design and reduces the action space dimension of reinforcement learning,
making it easier to converge. First, a network comprising of six Hopf oscillators generates
the basic rhythmic gait signal. Then, the mapping function transforms the signal into the
foot coordinates. Finally, the inverse kinematic (IK) module computes the angle of motion
of the joints. The key point of this approach is that the parameters of the mapping function,
corresponding to the oscillator of each leg, are variable and their values are determined
by the policy network trained by reinforcement learning. The parameters are modified to
change the trajectory of the foot, and the body pose adjusts during the walk to improve the
motion performance in rough terrain.

The rest of the paper is organized as follows: Section 2 introduces the hexapod robot
platform and the method of generating rhythmic gait using the CPG network. Section 3
proposes a terrain-adaptive gait generation framework that fuses reinforcement learning
and CPG networks (RL-CPG) and describes the design and training details of the policy
network. Section 4 presents experiments to validate the effectiveness and feasibility of
the proposed framework. Finally, the conclusions and avenues for future research are
presented in Section 5.

2. Rhythmic Gait Generation by the CPG Network

In this section, we briefly introduce the used hexapod robot platform. Then, a network
composed of Hopf oscillators for generating rhythmic gaits is described in detail.

2.1. Hexapod Robot

The work in this paper uses a hexapod robot model built in Pybullet [23], as shown in
Figure 1. The six legs are evenly distributed around the body and each has three joints: the
hip, knee, and ankle joints. The robot is blind because it does not carry external sensors
such as radar and camera, and the robot can only sense its own state information, body
attitude angle, acceleration, foot-tip collision, etc. External precision sensors have a high
probability of damage, and in the absence of such sensor information, we would like the
hexapod robot to still have some terrain adaptation capability; hence, we initiated a related
study on blind hexapod robot platforms.
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Figure 1. Simulated prototype of the hexapod robot.
2.2. CPG Network

The CPG algorithm is used to output a stable periodic signal. Classical oscillation
models include the Matsuoka neuron oscillator model [24,25], the Van der Pol (VDP)
relaxation oscillator [26,27], the Kuramoto phase oscillator [28], etc. The Hopf harmonic
oscillator model [29,30] has the advantages of high stability, few parameters, clear physical
meaning, and easy tuning. Therefore, the Hopf oscillator is chosen as the signal source in
this paper and its basic mathematical model is as follows:

v — a2 2 _
{x a(p—x*—y*)x —wy 0

y=B(n—22— )y +wx’

where x, y are the output of the oscillator; «, B are convergence rate coefficients; y is the
square of the output signal amplitude; w is the frequency of the oscillator. When the
hexapod robot walks with different gaits, the support time and swing time of the legs
are not the same. In order to make the rising section of the oscillator output correspond
to the swing phase of the leg and the falling section correspond to the support phase
of the leg, the coverage coefficient ¢ is added to adjust the value of w, which has the
following relationship:

, @)

_ 1=¢
Wst = —7 Wsw

— _ Wst Wsw
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where wg; and wsy, are stance phase frequency and swing phase frequency, respectively;
a is a positive coefficient (2 = 100 in this paper) that determines the rate of transition of the
frequency w between ws; and wsy. The coefficient of common gait on land occupancy is

shown in the Table 1 below.

Table 1. Common gaits corresponding to the coverage coefficient.

Gait Tripod Tetrapod Wave
€ 1/2 2/3 5/6

In this paper, each leg is controlled using signals generated by a single oscillator unit,
and the whole robot uses six oscillator units to form a coupled network to generate a
rhythmic gait. As shown in Figure 2, the network is performed by bidirectional coupling of
neighboring oscillatory units.
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Figure 2. Circularly bidirectionally coupled CPG network.

In order to realize coupling, the signals generated by different oscillators, the coupling
term Aj; is added to Equation (1), and the final mathematical model is given by
= a(p—x} —y})xi — wiyi
Ui =B —x7 —y7)yi + wixi + AL Aji
]
, ®)

x; = (x — offsety,)

yi = (y — offsety,)

where A represents the coupling strength coefficient between oscillators (A = 0.1 in this
paper), and if its value is too large, it will cause the curve to appear blurred; the output
signal compensation offset,, and offset,, are used to adjust the center position of the output
signal to meet the needs of different gaits. The coupling way of the network determines the
expression of the coupling term as follows:

(4)

A _ { (yjcosb—x;sin6y) =i <Lij=12...,6
! 0 j—i>1ij=12,...,6

where 6;; represents the phase difference between oscillators, and the phase difference
between legs corresponding to common gaits is shown in Figure 3.
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Figure 3. The phase difference corresponding to common gaits.
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The transition from the output signal of the oscillator to the control signal of the robot
joint requires a mapping that transforms the signal into a foot trajectory and then computes
the joint angle via inverse kinematics. The mapping function is defined as follows:

fix = fixo ~+ kox; sin ¢

fiy = fiy, + koxicos ¢ 5)
fum { fizo+k1yi+b y; >0 !

fizo+k2]/i+b y; <0

where (fix,, fiyor fiz,) is the initial position of the foot; ko, k1, k» are the scaling coefficients,
depending on the workspace of the specific robot; b is the z-axis compensation and ¢ is the
direction of the stride. In summary, Equations (2)—(5) form the basic part of the adaptive
gait generator in this paper, and with appropriate gait parameters, the hexapod robot will
move with a thythmic gait generated by the CPG algorithm. Figure 4 shows the robot
moving in a tripod gait on flat ground with the mapping parameters set to kg = 0.02,
k1 =0.04, and k, = 0.

Figure 4. Hexapod robot walks with a tripod gait generated by the CPG algorithm.

3. Terrain-Adaptive Gait Generation
3.1. Problem Description

Here we consider the robot interacting with the environment in discrete time steps.
At each time step, the robot state (position, attitude, velocity, angular velocity, angular
acceleration, torque, etc.) and environmental information (terrain height, ground friction
coefficient, etc.) can be completely described by a set of state vectors s; € S. By definition,
this vector contains the information needed to select the operation at the current time step.
The robot obtains the information o; € O from s; and performs an action a; € A to interact
with the environment. At the next time step, the state vector is updated and state-transition
distribution is denoted by 7 (s¢, s;—1). The reward function ry € R(ay, s;) evaluates the
quality of each state-action transition.

The above process can be described as a Markov decision process (MDP) and satisfies
the basic Markov property; that is, in a sequential process, the state at time ¢ + 1 only
depends on the state at time ¢ and has nothing to do with the state before time t. When
the state s; is not fully observable, that is o C st, we refer to the process as a partially
observable MDP (POMDP).

In this paper, it is obvious that the robot cannot observe all the information about
the environment, so we treat the learning problem as a POMDP. The agent selects the
appropriate action by the policy network my: O — A. The parameter 0§ denotes the
weights of the neural network. Our goal is to find policy parameters such that the reward
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is maximized over a finite time horizon T using the observation o, according to the
following objective:

¢’ = argymaxE

T-1
Y ’th’tl , (6)

t=0

where 0 < v < 1is a discount factor, E is the expected value, and ¢’ is the optimal policy
parameters. The architecture of the terrain-adaptive gait generator designed in this paper
is shown in Figure 5.
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Figure 5. Terrain-adaptive gait generation framework.

In our framework, the terrain-adaptive gait generator with RL-CPG algorithm adjusts
the position of the foot by using different mapping parameters. This is a simple and practical
way to adjust the body balance, regardless of which rhythmic gait the robot is walking with.
As a result, in the reinforcement learning task, we adopt an action a; = {9, b} thatis a
7-D vector. ¢ € [—1,1] represents the turning direction of the robot, where the robot turns
by adjusting the stride difference between the legs on both sides of the body. The larger
the absolute value of ¢, the larger the stride difference. b is the variable in the mapping
function of each leg.

As mentioned above, our research is based on the blind hexapod robot platform. This
means that there is a limit to what the robot can observe. Considering future deployments

on real robots, we choose the observation oy = {(p, w,v,S,T, 9} @ is the Euler angle of the
body. w, v are the angular and linear velocities of the body, respectively. S is a 6-D Boolean

vector representing the touchdown of each leg. T and 0 are the joint torques and angular
velocities, respectively.

3.2. Reward Function

The reward design encourages the robot to adjust the position of its foot according
to the terrain and its own motion state to keep the fuselage as smooth as possible while
maintaining the forward direction. Therefore, we design the following rules of reward:

(1) In our work, the robot does not have sensors to sense the terrain ahead, so it cannot
make a plan in advance. However, the robot is able to level the tilted body by
compensating for joint positions, and this behavior deserves a reward. Thus, the
expression for ty,1,,c is given by

Ybalance = |min(¢ cw, 0) |; ()

where @ o w means that each element of the two vectors is multiplied separately.
Thalance €NCOUrages actions that help the robot recover its balance.
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(2) Inorder to avoid the robot taking advantage of the first rule to obtain a large number
of rewards and behaving in an undesired way, we need to design a negative reward
as follows:

Trotation = — ((51 Z|(P| + 02 Z‘wD’ ®)

where 61 and J; are the weighting factors.
(3) The reward 7 oqa,4 fOr robot motion is necessary, and we expect the robot to keep
moving forward in rough terrain. The expression is

' forward = U +d, 9)

where v is the forward speed of the robot, and d is the forward distance of the robot.

(4) In this paper, we expect to perturb the gait trajectory as little as possible. The energy
consumption penalty 7epnergy is the penalty for gait motion efficiency and energy
consumption. The expression we designed is

18 ;
Yenergy = Zi:l 70, (10)
where T; is the joint torque, and 0; is the joint angular velocity.

3.3. Termination Condition

Certain termination conditions are set to avoid the policy network falling into local
minima and improve the sampling efficiency. When the following condition occurs, the
agent will terminate the training and start again from the initial state.

(1) The robot is involved in a self-collision.

(2) The pitch, roll, or yaw of the base exceeds the allowed range.
(38) The base height is less than the set threshold.

(4) The distance the robot moves exceeds the set threshold.

3.4. Policy Training

In this paper, the augmented random search (ARS) [31] method is used to train a
policy to maximize the expected reward return as shown in Equation (6). ARS uses a
random parameter search policy optimization technique which is more simplified than
the current reinforcement learning algorithm and can improve the sample efficiency. We
chose a linear policy so that it could reduce the application cost in the future. Thus, for
each ARS optimization step, we deploy 8 rollouts per iteration with a parameter learning
rate of 0.015 and parameter exploration noise of 0.05. During the training process, a new
rugged ground is generated by a random seed at each episode. The height of the ground
varies by a maximum of 75% of the height of the raised leg.

After the training is completed, we can obtain a policy network with fixed parameters.
The flow chart of the robot for terrain-adapted walking using the RL-CPG algorithm is
shown in Figure 6. First, the coupled rhythmic signals with specified gait parameters,
which are the basis for the hexapod robot to move in a regular pattern, are output by the
oscillator network. Then, the currently obtained observations of the robot are fed into
the policy network to obtain the mapping parameters and bring them into the mapping
function. Next, the signal is mapped to the foot-end trajectory using the mapping function.
Finally, the IK module calculates the desired angle for each joint and sends them to the
joint actuators to move the hexapod robot.
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Figure 6. Flowchart of the robot walking with the RL-CPG algorithm.

4. Experiments and Results
4.1. Motion Verification

In this experiment, we validate the trained policy network. The height of the robot
is initialized to be 0.147 m. We set the positive y-axis direction of the world coordinate
frame as the forward direction. The robot is set to walk with a tripod gait, and the strategy
network slightly adjusts the mapping parameters in real time. Figure 7 shows the process
of the hexapod robot walking on rough ground. From the results, we can see that when
a leg lands on the raised ground, the output of the policy network for that leg is large to
compensate for the height of the leg landing earlier. The movement of the hexapod robot
performs well on rough ground.

Figure 7. The hexapod robot uses the RL-CPG algorithm to walk on rough ground.

During motion, the roll and pitch angles reflect the degree of body sway. Figure 8
records the roll and pitch angles during the movement of the robot using RL-CPG algorithm.
The results show that the shaking amplitude of the robot is about 3 degrees, and the
performance is smooth. This also indicates that the proposed terrain-adapted gait generator
is feasible and capable of making the hexapod robot move in rough terrain.
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Figure 8. The roll and pitch angles of the robot in motion.

4.2. Motion Performance Comparison

In order to compare the direct control of robot joint motion using RL baseline algorithm
and the gait generation method using RL-CPG algorithm and CPG algorithm, we performed
100 experiments, and each experiment randomly generated rugged terrain. The fixed time
step is set to 5000. The motion states of the hexapod robot with these different algorithms
are compared under the same terrain, as shown in Table 2.

Table 2. Statistics of the experimental data of RL-CPG algorithm and traditional CPG algorithm.

Avg (dy) Avg (dy) Mean (lpx])  Mean (jp,|) Died
RL-CPG 2.63 0.41 0.020 0.019 15
CPG 2.15 0.46 0.021 0.020 32
RL 0.96 0.73 0.034 0.035 18

We compared the average forward distance, the average offset, the mean of the
absolute value of the roll and pitch angle, and the number of early terminations. We expect
the robot to walk in the forward direction as much as possible. It is found that the method
of using RL baseline to directly control the joint motion of the hexapod robot fails to make
the robot learn a regular motion pattern and walk on rough ground under the same training
conditions. From the results, it can be seen that the robot using RL-CPG algorithm walks
farther in the y direction than that using CPG algorithm, and the offset in the x direction is
smaller; that is, the walking efficiency is higher. In addition, the robot using the RL-CPG
algorithm terminates significantly fewer times early.

However, the degree of body sway is not obvious from the mean comparison. The
absolute values of the body roll angle and pitch angle of the robot at each time step in all
experiments were counted, and their distribution was observed as shown in Figure 9. It
can be seen that with the RL-CPG algorithm, the robot body has a smaller amplitude range
and its motion is more stable.
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Figure 9. Comparison of the distribution of |¢x| and ’(py‘ between CPG and RL-CPG algorithm.

5. Conclusions

In this paper, a terrain-adaptive gait generation framework with RL-CPG algorithm is
proposed to improve robot terrain adaptation. The CPG algorithm reduces the difficulty
of applying reinforcement learning to the hexapod robot, and the application of reinforce-
ment learning makes the CPG algorithm more flexible and suitable for walking on rough
ground. In addition, the algorithm relies on fewer sensors, so the algorithm has more
stable performance and strong versatility. Despite the low deployment cost of the proposed
algorithm, the current study only considers rugged terrain, and it is the focus of future
work to consider more complex terrain and apply the algorithm to real robots. However,
the study of terrain adaptation in this paper is only for rugged ground, and it will be our
main work in the future to consider more complex ground situations.
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