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Abstract: The series elastic actuator (SEA) is generally used as the torque source of the exoskeleton
robot for human–robot interaction (HRI). In this paper, an impedance control method for lower
limb exoskeleton robots driven by SEA is presented. First, considering the low-frequency vibrations
generated by the lower limb exoskeleton robot during walking, the displacement generated by the
robot is regarded as an external disturbance to the SEA motor. An SEA structure with negative
stiffness structure (NSS) is designed to achieve vibration isolation in the low-frequency excitation
region. Second, the dynamics model of the SEA-driven exoskeleton robot system is proposed, and
the impedance control strategy is integrated into the proposed system. In addition, the numerical
responses of the vibration-isolation system in both time and frequency domains are given, and the
designed NSS is designed to achieve vibration isolation. The amplitude-frequency responses of the
system are obtained. The harmonic balance (HB) method is used to give the analytical solution of the
designed negative-stiffness isolation system, and the effects of different characteristic parameters on
the isolation system are analyzed. Moreover, the stability of the SEA-driven exoskeleton impedance
control system is demonstrated using the Lyapunov method. Finally, numerical simulations are
carried out in order to show the effectiveness of the control method.

Keywords: impedance control; negative stiffness; vibration isolation; harmonic balance method

1. Introduction

Assistive robots are gaining attention and becoming human helpers in social envi-
ronments [1–4], e.g., navigation robots, machine manipulators, and exoskeleton robots
worn by hemiplegic patients, etc. An exoskeleton robotic system is an assistive robotic
system with a humanoid structure that can be worn and assist the wearer to accomplish
a corresponding task with the prediction of the intention of the wearer. In contrast to
conventional robots, the motion system of exoskeletal robots needs to be consistent with
the wearer, and therefore, effective HRI is essential. However, the lower limb exoskeleton
robot is susceptible to factors such as conditions and external environment during walking;
considering the impact from the ground causes body vibrations, in order to reduce the
impact of low-frequency vibrations on the human body when the lower limb exoskele-
ton robot is walking, it is necessary to consider certain vibration-isolation designs in the
control process.

Due to the effects of low-frequency vibrations on different mechanical systems, the
necessary vibration-isolation design is required; however, active control tends to be costly
and energy constrained. As a result, active control always involves higher costs and more
implementation difficulties than passive systems, and passive vibration isolation has been
widely developed [5–20]. In recent years, Fang et al. [11,12] explored systems of vibration
control and energy harvesting models for satellites by integrating a nonlinear energy sink
(NES) and a giant magnetostrictive material (GMM), and the complexification-averaging
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(CX-A) technique was employed. Lu et al. [13] investigated the enhancement of circular-
ring vibration-isolation performance by shape memory alloy (SMA) wire ropes. The NSS
exhibits much lower dynamic stiffness compared to static systems or mechanisms, which
provides the opportunity to achieve the lowest possible filtering without compromising
other characteristics. Furthermore, in recent years, Lu et al. [14–17] have proposed many
novel vibration-isolation structures and applied them to different projects, including the
design of a new two-stage nonlinear vibration-isolation system, each with high-static-low-
dynamic stiffness (HSLDS), with the positive stiffness of each stage achieved by a metal
plate, and the corresponding negative stiffness achieved by a bistable carbon-fiber-metal
(CF) composite plate. An analytical model was used and the plate was statically tested to
measure the actual stiffness of the plate. These studies have made great contributions in
the field of nonlinear vibration isolation [21–27]. Le and Ahn [21] gave an NSS consisting
of a pair of opposed springs perpendicular to the mass displacement, which generate a net
vertical recovery force to achieve vibration isolation when there is a relative displacement
between the floor and the seat. Phu et al. [25] introduced a hybrid magneto-rheological
(MR) damper containing a combination of three control strategies controllers: PI control,
fuzzy neural control, and sliding mode control. In [26], a method for estimating the natural
frequencies of Cartesian 3D printers based on the kinematic scheme was introduced. Gho-
likord et al. [27] experimentally tested a novel design of negative-stiffness (NS) structure
and improved the performance of the negative-stiffness structure in terms of energy ab-
sorption as well as maintaining its original configuration under cyclic loading. Compared
with Gholikord et al., the new structure with NSS characteristics designed based on an
exoskeleton structure not only expands the diversity of quasi-zero stiffness structures, but
also shows excellent performance in the field of low-frequency vibration isolation.

A series of SEAs have been designed to drive the exoskeleton robot [28–32].
Kong et al. [28] proposed the control method of rotary SEA and a gait phase-smoothing
sliding model-based control method was given for exoskeleton robots. In [29], a nonlinear
SEA for an exoskeleton robot is given. Three springs are connected in series between a
direct-current (DC) servo motor (equipped with a harmonic reducer) and the load, which
are, in turn, connected in parallel with each other. Li et al. [31] proposed an iterative
learning impedance controller for a rehabilitation robot driven by an SEA, where the
control target is specified as the desired impedance model. Hsieh et al. [32] designed a
unidirectional force-sensing SEA for shoulder rehabilitation, which uses a single linear
compression spring connected in series between a linear stepper motor and a slider to
generate a unidirectional linear output force by compressing the spring. Although different
SEAs were designed in the above studies, the effect of the harmonic excitation on the SEA
for exoskeleton robots was not considered.

In the case of HRI, it is possible to use force control as an alternative; however, its
disadvantage is its poor robustness [33–35]. In contrast to force control, impedance control is
a control strategy that controls the robot by regulating the dynamic relationship between the
robot position and the interacting forces, and impedance control methods can improve the
system stability. In recent years, impedance control has been further explored [36–41], and
the studies have shown that impedance control has been effectively applied in robot control.

Inspired by the aforementioned discussions, this work has the following contributions:
(1) This paper introduces a vibration-isolation design method for a lower limb exoskeleton
robot using NSS under low-frequency harmonic excitation. The displacement generated
by the robot is considered as an external disturbance to the motor. (2) The response of the
NSS vibration-isolation system in the time and frequency domains is given by numerical
solutions and HB methods. The effect of different characteristic parameters on the isolation
system is analyzed by the analytical solutions. (3) The impedance control method is
integrated into the dynamics model of the SEA-driven exoskeleton system and the stability
of the overall system is demonstrated using the Lyapunov method.
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2. Problem Formulation and Preliminaries

This section presents the SEA structure with NSS for a lower limb exoskeleton robot.
In addition, the HRI force is given and will be viewed as an elastic external force.

2.1. SEA Structure with NSS

In the design of the NSS and exoskeleton, a simplified technical drawing is shown in
Figure 1 that will help visualize the design.

Figure 1. A simplified technical drawing of the NSS and exoskeleton designs.

We took measurements to minimize backlash and ensure that saturation does not
occur. For instance, we carefully selected actuators that have a high dynamic range and
are not prone to saturation. Additionally, we used feedback control algorithms that can
account for and compensate for nonlinearities in real-time. Regarding the issue of jamming,
we took several precautions to ensure that the mechanism does not jam when the angle
β is large. We use rail guides to constrain the motion of the mechanism and prevent it
from deviating from its intended path. We also use limiters to restrict the motion of the
mechanism within safe operating ranges, and to prevent it from reaching extreme angles
that could lead to jamming or other undesirable behaviors.

In order to achieve a compliance control of the exoskeleton robot, based on [31], a
compliant actuator schematic is illustrated in Figure 2a; it is composed primarily of a
servo motor with a rotary encoder, a set of linear and nonlinear springs, a ball screw and
displacement sensors. The motion of the motor is first transmitted through a couple to
the ball screw, and the couple transforms the rotational motion of the shaft into the linear
motion of the ball screw nut. The motion of the nut is then passed through the NSS to
the output carriage, which uses a pair of cables to drive the robot joints. An encoder
is mounted on the motor to measure the angular displacement of the motor and ball
screw, a displacement sensor is used to measure the displacement of the NSS, and a rotary
potentiometer is mounted in the robot joint to measure the joint angle. Figure 2b shows the
elastic element placed before the reducer, i.e., between the motor and the exoskeleton. The
ball screws offer high precision and accuracy, which is crucial in many industries such as
manufacturing, aerospace, and robotics. They have a low friction coefficient, which means
they require less power to operate, and they are able to maintain their accuracy over long
periods of use.
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Figure 2. Overview of the mechanical structure schematic of SEA: (a) Diagram of SEA structure with
NSS. (b) Diagram of the placement of the elastic element.

The NSS is shown in Figure 3b. Here, the weight of the vibration isolation device
is neglected. By means of a force F, opposite to the displacement, the mass is displaced
downward x from its initial position and two horizontal springs are compressed and
produce two vertical restoring forces acting on the mass. Figure 3a describes the HRI with
vibration isolation structure.
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Figure 3. Overview of the model structure schematics: (a) Diagram of vibration isolation structure
with negative stiffness. (b) Schematic diagram of HRI with vibration-isolation structure.

The total virtual work of the vibration-isolated device on vertical direction is as

δU = Fδx− 2Fh tan(β)δx. (1)
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By applying the principle of virtual work, we can obtain

Fδx− 2Fh tan(β)δx = 0, (2)

where Fh = Kh(Lo − Lh) is the horizontal spring force; β is the angle of the horizontal line
at the start; Lo and Lh are the lengths of the horizontal springs, respectively; and the length
of the sliding block is neglected here.

At arbitrary positions, the angle β can be established as

tan(β) =
hid − x
b− Lh

, (3)

where
Lh = b−

√
a2 − (hid − x)2, (4)

and
hid =

√
a2 − (b− Lo)

2. (5)

Substituting Equations (3)–(5) to the expression in Equation (2) for the horizontal
spring force Fh, it can be derived that

F = 2Kh

 Lo√
a2−

(√
a2−(b−Lo)

2−x
)2
− b√

a2−
(√

a2−(b−Lo)
2−x

)2
+ 1

 ·(√a2 − (b− Lo)
2 − x

)
. (6)

The following dimensional parameters can be defined as

F̂ = F
Kh Lo

, x̂ = x
Lo

, γ1 = a
Lo

, γ2 = b
Lo

,

ĥid =

√(
a

Lo

)2
−
(

b
Lo
− 1
)2

=
√

γ1
2 − (γ2 − 1)2,

(7)

where F̂ is the dimensionless restoring force, x̂ is the dimensionless displacement, γ1 and
γ2 are configuration parameters, ĥid is the dimensionless deformation of the vertical spring,
a is the length of the rod, and b is the distance from the edge to the edge.

Given these dimensionless parameters, the dimensionless restring force can be derived
from Equation (6) as follows.

F̂ = 2

 1√
γ2

1 −
(

ĥid − x̂
)2
− γ2√

γ2
1 −

(
ĥid − x̂

)2
+ 1

(ĥid − x̂
)

. (8)

The above equation shows the parametric correlation between the dimensionless recov-
ery force F̂ and the dimensionless displacement x̂. Figure 4a,b describes the dimensionless
force-deflection characteristics for various configuration parameters, and the configurative
parameters of the NSS are shown in Table 1.

Table 1. Configurative parameters of the NSS.

Parameters Change in the Value of γ1 Change in the Value of γ2

γ1 0.8, 0.82 and 0.85 0.75
γ2 1.2 1.2, 1.25 and 1.3
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(a) (b)

Figure 4. Dimensionless force-deflection characteristics for various configuration parameters: (a) for
various γ1, (b) for various γ2.

As for the range of values of NS, some predictions in the design of NSS can be
derived from Figure 4. In this paper, as shown in Figure 4a, if the value of γ2 = 1.2 and
0.8 ≤ γ1 ≤ 0.85, the maximum and minimum forces exist for the restoring force. The
dimensionless restoring force decreases as the dimensionless mass displacement increases,
while if the mass position is outside this range, the restoring force increases with the mass
dimensionless displacement. This means that in this case, the structure has two different
values of stiffness depending on the displacement of the mass. For example, γ1 = 0.82, as
shown in Figure 4a, if the displacement of the mass is in a region, the stiffness is positive
and the other is negative. Similarly, the above analysis applies to Figure 4b.

2.2. Design Procedure of the Vibration Isolation System

When the mass is moved downward by x amounts from the initial position, as a
result, the mass is compressed by three compressive forces including two restoring forces
generated by the two horizontal springs and the force of the vertical spring. Thus, in this
case, the vertical restoring force of the system can be obtained by adding the restoring force
of the vertical spring on the left side of Equation (8).

The following dimensional parameters can be defined as

F̂s = x̂ + 2α

 1√
γ2

1 −
(

ĥid − x̂
)2
− γ2√

γ2
1 −

(
ĥid − x̂

)2
+ 1

(ĥid − x̂
)

, (9)

where α = Kh/Kv denotes the spring ratio.
Define û = ĥid − x̂ as the dimensionless displacement of the isolated device with

respect to the base and Equation (9) can be rewritten as follows

F̂s = ĥid − û + 2α

 1√
γ2

1 − û2
− γ2√

γ2
1 − û2

+ 1

û. (10)

The dimensionless dynamic stiffness of the system is obtained by differentiating
Equation (10) with respect to the dimensionless displacement x̂

K̂ = 1 + 2α

 û2(γ2 − 1)(
γ2

1 − û2
) 3

2
+

(γ2 − 1)√
γ2

1 − û2
− 1

. (11)
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When u = 0, the dimensionless equivalent stiffness at the static equilibrium position
K̂SEP is described by

K̂SEP = 1 + 2α

(
(γ2 − γ1 − 1)

γ1

)
. (12)

The above equation shows the parametric correlation between the dimensionless
dynamic stiffness and K̂ the dimensionless displacement û. The spring ratio α = Kh/Kv is
set as α = 1, 1.8 and 2.0. Figure 5 shows the dimensionless dynamic stiffness curves with
linear stiffness for the various values of α.

Figure 5. Dynamic stiffnesscurves with linear stiffness for the various values of α.

The resilience force for Equation (10) is expressed in the following dimensional form.

Fs = Kvx + 2Kh

 1√
γ2

1 −
(

hid−x
Lo

)2
− γ2√

γ2
1 −

(
hid−x

Lo

)2
+ 1

(hid − x). (13)

2.3. Human-Limb Model

Given the slow HRI process, based on [37], the human-limb model can be
simplified as

KH(zh − u) = Fe, (14)

where KH denotes the stiffness. zh is the desired position for a human limb.
When the system deviates from the initial position x, its potential energy V can be

given as

V = 1
4 Kvx2 + 2Kh

(
hid − x

2
)

x + 2Kh(1− γ2)Lo

(√
γ2

1 −
(

hid−x
Lo

)2
−
√

γ2
1 −

(
hid
Lo

)2
)

. (15)

The dissipation function is defined as

D =
1
2

C(żm − że)
2. (16)

The kinetic energy T in the system is given by

T =
1
2

mż2
m. (17)
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Next, applying Lagrange’s equation,

d
dt

(
∂T
∂żm

)
−
(

∂T
∂zm

)
+

(
∂V
∂zm

)
+

(
∂D
∂zm

)
= P + Q + Fe, (18)

where Q = −mg. P indicates the external excitation.
By substituting Equations (14)–(17) into Equation (18), the equation for the isolated

control system can be derived as follows

mz̈m + C(żm − że)− Kvx− 2Kh

 (1−γ2)√
γ2

1−
( hid−x

Lo

)2
+ 1

(hid − x) + mg = P + Fe. (19)

The relative displacement, velocity and acceleration of the isolated control system are
shown below

u = hid − x, u̇ = żm − że, ü = z̈m − z̈e,

where hid → zm, x → ze.
The dynamics system is rewritten as follows

mü + Cu̇ + (Kv + KH)u− 2Kh

 (1− γ2)√
γ2

1 −
(

u
Lo

)2
+ 1

u = −mz̈e + P + KHzh. (20)

2.4. Numerical Solution of Nonlinear Vibration Isolation System

Next, in order to analyze the dynamic response of the negative-stiffness isolation
system, the numerical solution curves, time-amplitude response and frequency-amplitude
response curves are given. The external excitation parameters are set to P = −k1u + mz̈e
+ Fa cos (ωt), Fe = 0.01 N, k1 = 1.0 N/m. The results are shown in Figure 6a,b.

(a) (b)

Figure 6. Time and frequency amplitude response curves: (a) frequency and amplitude response
curve, (b) time and amplitude response curve.

2.5. Harmonic-Balance Solution for Nonlinear Vibration-Isolation Systems

Considering the steady-state vibration around the static equilibrium position as well
as the minimal displacement, at the static equilibrium position (u = 0), the extended power
series of the restoring force can be approximated as

F̂se = ĥid +
Kv

m

(
1 + 2α

(γ2 − γ1 − 1)
γ1

)
û + α

(γ2 − 1)
γ3

1
û3 + O(u), (21)
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where F̂se denotes the approximate force and O(u) denotes the higher order term. Then,
Equation (20) can be rewritten in terms of dimension, as below

Fse = hidKv + Kv

(
1 + 2α

(γ2 − γ1 − 1)
γ1

)
u + αKv

(γ2 − 1)
γ3

1L2
o

u3 + O(u). (22)

Based on the Lagrange Equation (18), the approximate dynamic equation for the
steady-state mass is derived below

ü + 2ζ1u̇ +
(

ζ2

(
1 + 2α

(γ2−γ1−1)
γ1

)
+ KH

m

)
u + ζ2

(
α
(γ2−1)

γ3
1 L2

o

)
u3 = −z̈e +

P
m + KHzh

m , (23)

where ζ1 = C/2m and ζ2 = Kv/m. P/m = −k1u + mz̈e + Fa cos (ωt), (KHzh)/m = −2Fa
cos (ωt).

The HB method is adopted and the solution is set as

u = A cos(ωt) + B sin(ωt). (24)

Substituting the Equation (24) into (23), the following equations can be obtained based
on HB method

(−4Aγ3
1ω2 + 8Bζ1γ3

1ω + 3A3ζ2γ2 + 3AB2ζ2γ2 − 4Aζ2γ3
1 + 8Aζ2γ2

1γ2
+4Aγ3

1k1 − 3A3ζ2 − 3AB2ζ2 − 8Aζ2γ2
1 + 4Faγ3

1)/4γ3
1 = 0,

(25)

(−8Aζ1γ3
1ω− 4Bγ3

1ω2 + 3A2Bζ2γ2 + 3B3ζ2γ2 − 4Bζ2γ3
1 + 8Bζ2γ2

1γ2
+4Bγ3

1k1 − 3A2Bζ2 − 3B3ζ2 − 8Bζ2γ2
1)/4γ3

1 = 0.
(26)

Thus, the frequency and amplitude response relationship curves will be obtained
based on (25) and (26). Different values of γ2 are set as γ2 = 1.35, γ2 = 2.45 and γ2 = 3.15,
as shown in Figure 7a.

(a) (b)

Figure 7. Amplitude and frequency response curve for various (a) γ2 and (b) ζ1.

Next, different external excitations are considered, let ze = Fa cos (ωt), P/m = −k1u,
(KHzh)/m = −Fa cos (ωt). Similarly, substituting the excitations into Equation (23), one
can obtain

ü + 2ζ1u̇ +
(

ζ2

(
1 + 2α

(γ2−γ1−1)
γ1

)
+ KH

m

)
u + ζ2

(
α
(γ2−1)

γ3
1 L2

o

)
u3 = −

(
ω2 + 1

)
Fa cos(ωt)− k1u. (27)

Then, the following equations can be obtained

(−4Aγ3
1ω2 + 8Bζ1γ3

1ω + 4Faγ3
1ω2 + 3A3ζ2γ2 + 3AB2ζ2γ2 + 12Aζ2γ3

1
−8Aζ2γ2

1γ2 + 4Aγ3
1k1 − 3A3ζ2 − 3AB2ζ2 + 8Aζ2γ2

1 + 4Faγ3
1)/4γ3

1 = 0,
(28)
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(−8Aζ1γ3
1ω− 4Bγ3

1ω2 + 3A2Bζ2γ2 + 3B3ζ2γ2 + 12Bζ2γ3
1 − 8Bζ2γ2

1γ2
+4Bγ3

1k1 − 3A2Bζ2 − 3B3ζ2 + 8Bζ2γ2
1)/4γ3

1 = 0.
(29)

Different values of ζ1 are set as ζ1 = 0.4, ζ1 = 0.45 and ζ1 = 0.5. The amplitude and
frequency response curves can be obtained in Figure 7b.

3. Impedance Control of Integrated Robotic Systems

In this section, the dynamics model of the SEA-driven robot is proposed, impedance
control is considered and a theorem is given for the control system of an exoskeleton robot.

3.1. Dynamic Model of SEA-Driven Robot

In this subsection, the dynamics model of the SEA-driven robot is presented in Carte-
sian space. Consider an exoskeleton robot connected by compliant joints, the schematic
structure of the dynamics of the SEA-driven robot is shown in Figure 8.

Figure 8. Schematic diagram of the dynamics of the SEA-driven robot.

The dynamic model is described as follows{
M1z̈e − FNSS = Fd,
M2z̈m + FNSS = ua,

(30)

where M1 ∈ Rn×n is the symmetric inertia matrix and M2 ∈ Rn×n is the symmetric inertia
matrix of actuator, zd ∈ Rn and ze ∈ Rn represent position vectors for HRI. zm ∈ Rn

represent position vector of actuator. ua ∈ Rn denotes the input torque exerted on the
actuator. Fd denotes the interaction force between human and robot. FNSS denotes the
force between robot and actuator and can be described by

FNSS = (KS + KN)(zm − ze) + C(żm − że), (31)

where C ∈ Rn×n is the vector of Coriolis and centripetal forces, KS ∈ Rn×n and KN ∈ Rn×n

are the stiffness vectors of SEA.
Considering the robot dynamics in Cartesian space by substituting the kinematic

constraints (31) into the dynamic model (30), we obtain

M1z̈e + Ksze + Cże = Kszm + KN(zm − ze) + Cżm + Fd, (32)

and
M2z̈m + Kszm + Cżm = Ksze − KN(zm − ze) + Cże + ua. (33)
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Then, letting dr = KN(zm − ze) + Cżm and da = −KN(zm − ze) + Cże represent the
unknown nonlinear function, one has

M1z̈e + Ksze + Cże = Kszm + dr + Fd, (34)

and
M2z̈m + Kszm + Cżm = Ksze + da + ua. (35)

Property 1 ([37]). Matrices 2C− Ṁ1 and 2C− Ṁ2 are skew-symmetric matrices. Matrices M1
and M2 are symmetric and positive definite.

3.2. Impedance Control

Impedance control is integrated into the system; the robot is controlled to be compliant
to the force applied by the human partner. The schematic diagram of impedance control is
shown in Figure 9.

Figure 9. Schematic diagram of impedance control.

Equivalently, the dynamics of the target impedance model is as follows [37],

ME(z̈e − z̈d) + CE(że − żd) + KE(ze − zd) = Fd, (36)

where ME, CE and KE are the inertia, damping, and stiffness matrices that can be designed,
respectively. zd is the desired position for the human–robot.

To achieve compliance control of the robot systems. The error signal should be constructed:

v = ME ḧe + CE ḣe + KEhe − Fd, (37)

where he = (ze − zd) is the error. There exist two positive definite matrices Λ and Γ
such that

Λ + Γ = M−1
E CE,

Λ̇ + ΛΓ = M−1
E KE,

ėl + Γel = M−1
E Fd.

(38)

By substituting the above equations, one can obtain

v = ḧe + (Λ + Γ)ḣe +
(
Λ̇ + ΛΓ

)
he − ėl − Γel . (39)

Then, define
z = ḣe + Λhe − el . (40)

One can obtain
v = ż + Γz. (41)
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Assume that lim
t→∞

ż(t) exists; lim
t→∞

z(t) = 0 will lead to lim
t→∞

ż(t) = 0. Therefore, we

have lim
t→∞

v(t) = 0 if lim
t→∞

z(t) = 0. Then, an augmented state variable is defined as

z = że − żr. (42)

where zr = żd −Λhe + el is a reference vector. In order to propose the controller. First, (34)
is rewritten as

M1z̈e + Ksze + Cże = Kszmu + Ks∆zm + dr + Fd, (43)

where ∆zm = (zm − zmu), zmu ∈ Rn represents a fictitious desired input. Considering the
variable Equation (42), the above equation can be rewritten as

M1ż + Cz + M1z̈r + Cżr + Ksze = Kszmu + KS∆zm + dr + Fd. (44)

Then, the desired input for the robot dynamics is proposed as

zmu = ze + K−1
S

(−Kzz− krsgn(z)− Fd + M1z̈r + Cżr), (45)

where Kz ∈ Rn×n is positive definite, kr is a positive constant, and sgn(·) is a sign function.
Substituting (45) into (44), the dynamic equation of the robot system can be

obtained as
M1ż + (C + KZ)z + krsgn(z) = KS∆zm + dr. (46)

Next, a sliding vector is introduced for the actuator dynamics (35) as

s = żm − żmr = żm − żmu + α1∆zm, (47)

where żmr = żmu − α1∆zm represents another reference vector, and α1 is a positive
constant, żmd .

By considering the sliding vector, the actuator dynamics (35) can be rewritten as

M2 ṡ + Cs + M2z̈mr + Cżmr + Kszm = Ksze + da + ua. (48)

Next, the control input is proposed as

ua = KS(zm − ze)− kasgn(s) + M2z̈mr + Cżmr − KSs, (49)

where ka is a positive constant.
Substituting (49) into (48), the dynamic equation of the actuator subsystem can be

obtained as
M2 ṡ + (C + Ks)s + kasgn(s)− da = 0. (50)

As a result, the impedance control model of the closed-loop system of the SEA-driven
compliant robot is obtained, and in the next subsection, the system stability analysis will be
performed.

3.3. Lyapunov Stability Analysis

Based on the above analysis, a block diagram of the control system of the closed-loop
robot system was given. In addition, the following corollary is given in order to analyze
the stability of the control system.

Corollary 1. Considering the robot dynamics described in (30), the controller parameters α1 and
KZ were chosen such that the condition (C1) λmin

(
α2

1KZKS
)
> 1

4 λmax
(
K2

S
)

is satisfied. The defined
impedance error is guaranteed to converge asymptotically to 0 when t→ ∞, i.e., lim

t→∞
z(t) = 0 and

all signals in the closed loop are bounded by designing the designed impedance control protocol.
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Proof. Consider the following Lyapunov function

V =
1
2

zT M1z +
1
2

sT M2s + α1∆zT
mKS∆zm. (51)

According to Property 1, the time derivative of V is

V̇ = zT M1ż + 1
2 zT Ṁ1z + 1

2 sT Ṁ2s + sT M2 ṡ + 2α1∆zT
mKS∆żm

= zT(M1ż + Cz) + sT(M2 ṡ + Cs) + 2α1∆zT
mKS∆żm

= zT(−KZz− krsgn(z) + KS∆zm + dr)
+ sT(−KSs− kasgn(s) + da) + 2α1∆zT

mKS∆żm.

(52)

By considering Br and Ba as the upper bounds of dr and da, respectively, the following
inequalities hold

zT(dr − krsgn(z)) ≤ ‖z‖(Br − kr),
sT(da − kasgn(s)) ≤ ‖s‖(Ba − ka).

(53)

By choosing constants kr and ka, such that Br ≤ kr and Ba ≤ ka, the above inequalities
are less than or equal to 0.

Substituting s = ∆żm + α1∆zm into (52), we obtain

V̇ = −zTKZz + KS∆zm − ∆żT
mKS∆żm − α2

1∆zT
mKS∆zm

= −
[
zT , ∆zT

m
]
Q
[
zT , ∆zT

m
]T ,

(54)

where Q = [KZ,− 1
2 KS;− 1

2 KS, and α1
2KS]. Then, the controller parameters α1 and KZ are

chosen such that
λmin

(
α2

1KZKS

)
>

1
4

λmax

(
K2

S

)
. (55)

where λmin[·] and λmax[·] denote the minimum and the maximum eigenvalues.
If the chosen control parameters satisfy the condition (C1), then Q is non-negative

definite and V̇ ≤ 0. This implies that V converges to a non-negative constant, since V0 is
bounded. Therefore, when t → ∞, lim

t→∞
z(t) = 0; the impedance control

objective is achieved.

3.4. Simulation Results

Based on the above analysis, the dynamics model of the SEA-driven robot was pro-
posed, and impedance control was integrated into the system. Moreover, numerical simula-
tions were carried out in order to show the effectiveness of the control method proposed in
this paper.

The desired trajectory for a human knee joint is specified as a sine wave, i.e.,
zd = 0.15 sin(0.1t). The main parameters are chosen as γ1 = 0.95, γ2 = 1.2, α1 = 1,
g = 9.8 m/s2, ζ1 = 3, ζ2 = 1. The control input parameters are set as KZ = 1 m/s2,
C = 6 Ns/m. By utilizing the proposed impedance control strategy, the simulation
results are obtained. The desired gait trajectory is set as zd, and the position and velocity
tracking trajectories are depicted in Figure 10; it can be seen that the desired position and
velocity tracking trajectories can be tracked using the impedance control strategy. Thus,
the given control strategy has good performance. The position and velocity trajectory of
the SEA actuator is depicted in Figure 11. The interaction force variation curve is depicted
in Figure 12, which shows that the interaction force tends to be compliant through the
impedance control method.
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Figure 10. The position and velocity trajectory of the robot.
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Figure 11. The position and velocity trajectory of the SEA actuator.
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Figure 12. The interaction force of the human–robot.

Next, through the method of parameter tuning, various parameters of the system are
discussed by selecting different values so as to find the suitable range. Different values of
ζ1 and ζ2 were tuned; the main parameters were chosen as γ1 = 0.95, γ2 = 1.2, ζ1 = ζ2 = 1.
By utilizing the proposed impedance control strategy, the simulation results were obtained.
The desired gait trajectory is set as zd, and the position and velocity tracking trajectories
are depicted in Figure 13; it can be seen that desired position and velocity tracking tra-
jectories can be tracked using the impedance control strategy. Thus, the given control
strategy has good performance. The position and velocity trajectory of the SEA actuator is
depicted in Figure 14. Set ζ1 = 12, ζ2 = 1.5; similarly, through the proposed impedance
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control strategy, Figures 15 and 16 are obtained. It can be seen that, compared with ζ1 = 3,
ζ2 = 1, the tracking curve will oscillate when ζ1 and ζ2 increase or decrease in a certain
range, and the oscillation is smaller when ζ1 = 3, ζ2 = 1.
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Figure 13. The position and velocity trajectory of the robot.
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Figure 14. The position and velocity trajectory of the SEA actuator.
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Figure 15. The position and velocity trajectory of the robot.



Actuators 2023, 12, 147 16 of 18

0 50 100 150 200 250 300

Time(s)

-0.2

-0.1

0

0.1

0.2

D
is

p
la

c
e

m
e
n

t 
(m

) Actual displacement of actuator

0 50 100 150 200 250 300

Time(s)

-0.04

-0.02

0

0.02

0.04

V
e

lo
c
it
y
 (

m
/s

)

Actual velocity of actuator

Figure 16. The position and velocity trajectory of the SEA actuator.

Then, the desired trajectory is tuned. The desired trajectory for a human knee joint
is specified as zd = 0.1 sin(0.1t). The main parameters are chosen as γ1 = 0.95, γ2 = 1.2,
α1 = 1, g = 9.8 m/s2, ζ1 = 3, and ζ2 = 1. The results are depicted in Figures 17 and 18. It
can be seen that desired position and velocity tracking trajectories can be tracked.
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Figure 17. The position and velocity trajectory of the robot.
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Figure 18. The position and velocity trajectory of the SEA actuator.
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4. Conclusions

In this paper, a novel impedance control method for lower limb exoskeleton robots
driven by SEA was presented. An SEA structure with NSS was designed to achieve
vibration isolation. The response of the NSS structure isolation system in the time and
frequency domains was given numerically. In addition, the analytical solution of the
designed negative stiffness-isolation system was given with the HB method and the effect
of different characteristic parameters on the isolation system was analyzed. In addition,
the impedance control method was given and the stability of the control system was
demonstrated through the Lyapunov method. Finally, numerical simulations showed that
the given control strategy has good performance.

Author Contributions: writing—review and editing, Y.S.; project administration, J.H.; funding
acquisition, R.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China under grant
number 62003073.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Qiao, H.; Wang, M.; Su, J.; Jia, S.; Li, R. The concept of “attractive region in environment” and its application in high-precision

tasks with low-precision systems. IEEE/ASME Trans. Mechatron. 2015, 20, 2311–2327. [CrossRef]
2. Guo, Q.; Yin, J.M.; Yu, T.; Jiang, D. Coupled-disturbance-observer-based position tracking control for a cascade electrohydraulic

system. ISA Trans. 2017, 68, 367–380. [CrossRef]
3. Chen, M.; Shao, S.-Y.; Jiang, B. Adaptive neural control of uncertain nonlinear systems using disturbance observer. IEEE Trans.

Cybern. 2017, 47, 3110–3123. [CrossRef]
4. Yu, X.; He, W.; Li, Y.; Xue, C.; Li, J.; Zou, J.; Yang, C. Bayesian estimation of human impedance and motion intention for

human-robot collaboration. IEEE Trans. Cybern. 2021, 51, 1822–1834. [CrossRef]
5. Maciejewski, I.; Meyer, L.; Krzyzynski, T. Modelling and multi-criteria optimisation of passive seat suspension vibro-isolating

properties. J. Sound Vib. 2009, 324, 520–538. [CrossRef]
6. Abbas, W.; Emam, A.; Badran, S.; Shebl, M.; Abouelatta, O. Optimal seat suspension design for a half-car with driver model using

genetic algorithm. Intell. Control Autom. 2013, 4, 199–205. [CrossRef]
7. Corbridge, C.; Griffin, M.J. Vibration and comfort: Vertical and lateral motion in the range 0.5 to 5.0 Hz. Ergonomics 1986,

29, 249–272. [CrossRef] [PubMed]
8. Palomares, E.; Nieto, A.J.; Morales, A.L.; Chicharro, J.M.; Pintado, P. Dynamic behaviour of pneumatic linear actuators.

Mechatronics 2017, 45, 37–48. [CrossRef]
9. Zhang, J.; Liu, X.; Xia, Y.; Zuo, Z.; Wang, Y. Disturbance observer-based integral sliding-mode control for systems with mismatched

disturbances. IEEE Trans. Ind. Electron. 2016, 63, 7040–7048. [CrossRef]
10. Manevitch, L.I. The Description of Localized Normal Modes in a Chain of Nonlinear Coupled Oscillators Using Complex

Variables. Nonlinear Dyn. 2001, 25, 95–109. [CrossRef]
11. Fang, Z.W.; Zhang, Y.W.; Li, X.; Ding, H.; Chen, L.Q. Integration of a nonlinear energy sink and a giant magnetostrictive energy

harvester. J. Sound Vib. 2017, 319, 35–49. [CrossRef]
12. Fang, Z.W.; Zhang, Y.W.; Li, X.; Ding, H.; Chen, L.Q. Complexification-averaging analysis on a giant magnetostrictive harvester

integrated with a nonlinear energy sink. J. Vib. Acoust. 2017, 140, 021009. [CrossRef]
13. Lu, Z.Q.; Gu, D.H.; Ding, H.; Lacarbonara, W.; Chen, L.Q. A ring vibration isolator enhanced by shape memory pseudoelasticity.

Appl. Math. Model. 2021, 100, 1–15. [CrossRef]
14. Lu, Z.Q.; Brennan, M.J.; Yang, T.J.; Li, X.; Liu Z.G. An investigation of a two stage nonlinear vibration isolation system. J. Sound

Vib. 2013, 332, 1456–1464. [CrossRef]
15. Lu, Z.Q.; Gu, D.H.; Ding, H.; Lacarbonara, W.; Chen, L.Q. Nonlinear vibration isolation via a circular ring. Mech. Syst. Signal.

Process. 2020, 136, 106490. [CrossRef]
16. Lu, Z.Q.; Brennan, M.J.; Ding, H.; Chen, L.Q. High-static-low-dynamic-stiffness vibration isolation enhanced by damping

nonlinearity. Sci. China Tech. Sci. 2019, 62, 1103–1110. [CrossRef]
17. Lu, Z.Q.; Yang, T.J.; Brennan, M.J.; Liu, Z.G.; Chen, L.Q. Experimental Investigation of a Two-stage Nonlinear Vibration Isolation

System with High-static-Low-Dynamic Stiffness. ASME. J. Appl. Mech. 2017, 84, 021001. [CrossRef]
18. Matsumoto, Y.; Griffin, M.J. Dynamic response of the standing human body exposed to vertical vibration: Influence of posture

and vibration magnitude. J. Sound Vib. 1998, 212, 81–94. [CrossRef]

http://doi.org/10.1109/TMECH.2014.2375638
http://dx.doi.org/10.1016/j.isatra.2017.02.014
http://dx.doi.org/10.1109/TCYB.2017.2667680
http://dx.doi.org/10.1109/TCYB.2019.2940276
http://dx.doi.org/10.1016/j.jsv.2009.02.021
http://dx.doi.org/10.4236/ica.2013.42024
http://dx.doi.org/10.1080/00140138608968263
http://www.ncbi.nlm.nih.gov/pubmed/3956475
http://dx.doi.org/10.1016/j.mechatronics.2017.05.007
http://dx.doi.org/10.1109/TIE.2016.2583999
http://dx.doi.org/10.1023/A:1012994430793
http://dx.doi.org/10.1016/j.jsv.2016.12.019
http://dx.doi.org/10.1115/1.4038033
http://dx.doi.org/10.1016/j.apm.2021.06.018
http://dx.doi.org/10.1016/j.jsv.2012.11.019
http://dx.doi.org/10.1016/j.ymssp.2019.106490
http://dx.doi.org/10.1007/s11431-017-9281-9
http://dx.doi.org/10.1115/1.4034989
http://dx.doi.org/10.1006/jsvi.1997.1376


Actuators 2023, 12, 147 18 of 18

19. Lee, C.M.; Goverdovskiy, V.N.; Temnikov, A.I. Design of springs with “negative” stiffness to improve vehicle driver isolation.
J. Sound Vib. 2007, 32, 865–874. [CrossRef]

20. Lee, C.M.; Goverdovskiy, V.N. A multi-stage high-speed railroad vibration isolation system with “negative” stiffness. J. Sound Vib.
2012, 331, 914–921. [CrossRef]

21. Le, T.D.; Ahn, K.K. Experimental investigation of a vibration isolation system using negative stiffness structure. Int. J. Mech. Sci.
2013, 70, 99–112. [CrossRef]

22. Sun, Y.H.; Zhang, Y.W.; Ding, H.; Chen, L.Q. Nonlinear energy sink for a flywheel system vibration reduction. J. Sound Vib. 2018,
429, 305–324. [CrossRef]

23. Oyelade, A.O. Vibration isolation using a bar and an Euler beam as negative stiffness for vehicle seat comfort. Adv. Mech. Eng.
2019, 11, 1–10. [CrossRef]

24. Tu, L.; Ning, D.; Sun, S.; Li, W.; Huang, H.; Dong, M.; Du, H. A novel negative stiffness magnetic spring design for vehicle seat
suspension system. Mechatronics 2020, 68, 102370. [CrossRef]

25. Phu, D.X.; Choi, S.M.; Choi, S.B. A new adaptive hybrid controller for vibration control of a vehicle seat suspension featuring MR
damper. J. Vib. Control. 2017, 23, 3392–3413. [CrossRef]

26. Kopets, E.; Karimov, A.; Scalera, L.; Butusov, D. Estimating Natural Frequencies of Cartesian 3D Printer Based on Kinematic
Scheme. Appl. Sci. 2022, 12, 4514. [CrossRef]

27. Gholikord, M.; Etemadi, E.; Imani, M.; Hosseinabadi, M.; Hu, H. Design and analysis of novel negative stifness structures with
significant energy absorption. Thin Wall Struct. 2022, 181, 110137. [CrossRef]

28. Kong, K.; Bae, J.; Tomizuka, M.; Control of rotary series elastic actuator for ideal force-mode actuation in human–robot interaction
applications. IEEE/ASME Trans. Mechatron. 2009, 14, 105–118. [CrossRef]

29. Wang, M.; Sun, L.; Yin, W.; Dong, S.; Liu, J.-T. Series elastic actuator torque control approach for interaction application. Acta
Autom. Sin. 2017, 43, 1319–1328.

30. Li, Y.; Tee, K.P.; Chan, W.L.; Yan, R.; Chua, Y.; Limbu, D.K. Continuous role adaptation for human-robot shared control. IEEE
Trans. Robot. 2015, 31, 672–681. [CrossRef]

31. Li, X.; Liu, Y.H.; Yu, H. Iterative learning impedance control for rehabilitation robots driven by series elastic actuators. Automatica
2018, 90, 1–7. [CrossRef]

32. Hsieh, H.C.; Chen, D.F.; Chien, L.; Lan, C.C. Design of a parallel actuated exoskeleton for adaptive and safe robotic shoulder
rehabilitation. IEEE/ASME Trans. Mechatron. 2017, 22, 2034–2045. [CrossRef]

33. Ju, Z.; Ouyang, G.; Wilamowska-Korsak, M.; Liu, H. Surface EMG based hand manipulation identification via nonlinear feature
extraction and classification. IEEE Sens. J. 2013, 13, 3302–3311. [CrossRef]

34. Noohi, E.; Žefran, M.; Patton, J.L. A model for human–human collaborative object manipulation and its application to hu-
man–robot interaction. IEEE Trans. Robot. 2016, 32, 880–896. [CrossRef]

35. Li, Y.; Tee, K.P.; Yan, R.; Chan, W.L.; Wu, Y. A framework of human–robot coordination based on game theory and policy iteration.
IEEE Trans. Robot. 2016, 32, 1408–1418. [CrossRef]

36. Li, Z.; Kang, Y.; Xiao, Z.; Song, W. Human-robot coordination control of robotic exoskeletons by skill transfers. IEEE Trans. Ind.
Electron. 2017, 64, 5171–5181. [CrossRef]

37. Li, Y.; Ge, S.S. Human–Robot collaboration based on motion intention estimation. IEEE/ASME Trans. Mechatron. 2014, 19,
1007–1014. [CrossRef]

38. Le, T.D.; Ahn, K.K. Active pneumatic isolator system using negative stiffness structure for a vehicle seat. J. Sound Vib. 2014, 333,
1245–1268.

39. Le, T.D.; Ahn, K.K. A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle
seat. J. Sound Vib. 2011, 330, 6311–6335. [CrossRef]

40. Huang, R.; Cheng, H.; Guo, H.; Lin, X.; Zhang, J. Hierarchical learning control with physical human-exoskeleton interaction. Inf.
Sci. 2018, 432, 584–595. [CrossRef]

41. Huang, R.; Cheng, H.; Qiu, J.; Zhang, J. Learning physical human-robot interaction with coupled cooperative primitives for a
lower exoskeleton. IEEE Trans. Autom. Sci. Eng. 2019, 16, 1566–1574. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.jsv.2006.12.024
http://dx.doi.org/10.1016/j.jsv.2011.09.014
http://dx.doi.org/10.1016/j.ijmecsci.2013.02.009
http://dx.doi.org/10.1016/j.jsv.2018.05.025
http://dx.doi.org/10.1177/1687814019860983
http://dx.doi.org/10.1016/j.mechatronics.2020.102370
http://dx.doi.org/10.1177/1077546316629597
http://dx.doi.org/10.3390/app12094514
http://dx.doi.org/10.1016/j.tws.2022.110137
http://dx.doi.org/10.1109/TMECH.2008.2004561
http://dx.doi.org/10.1109/TRO.2015.2419873
http://dx.doi.org/10.1016/j.automatica.2017.12.031
http://dx.doi.org/10.1109/TMECH.2017.2717874
http://dx.doi.org/10.1109/JSEN.2013.2259051
http://dx.doi.org/10.1109/TRO.2016.2572698
http://dx.doi.org/10.1109/TRO.2016.2597322
http://dx.doi.org/10.1109/TIE.2016.2638403
http://dx.doi.org/10.1109/TMECH.2013.2264533
http://dx.doi.org/10.1016/j.jsv.2011.07.039
http://dx.doi.org/10.1016/j.ins.2017.09.068
http://dx.doi.org/10.1109/TASE.2018.2886376

	Introduction
	Problem Formulation and Preliminaries
	SEA Structure with NSS
	Design Procedure of the Vibration Isolation System
	Human-Limb Model
	Numerical Solution of Nonlinear Vibration Isolation System
	Harmonic-Balance Solution for Nonlinear Vibration-Isolation Systems

	Impedance Control of Integrated Robotic Systems
	Dynamic Model of SEA-Driven Robot
	 Impedance Control
	Lyapunov Stability Analysis
	Simulation Results

	Conclusions
	References

