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Abstract: A novel concept of a rotary electromagnetic actuator for positioning with ultra-low power
consumption is presented. The device is based on harnessing potential magnetic energy stored
between permanent magnets facing each other with opposing magnetization polarities. When
combined with an active electromagnetic control and passive stabilization system, the rotor of the
device can switch between stable equilibrium positions in a fast way with a minimal fraction of the
power and energy consumption of a traditional electromagnetic actuator. In this paper, a theoretical
model, supported by finite element analysis results, is presented. The actuator has been designed
in detail to operate as an optical filter wheel actuator. Calculations demonstrate that the device has
the potential to provide a power-consumption saving of up to 86.6% and an energy consumption
reduction of up to 58.6% with respect to a traditional filter wheel actuator.
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1. Introduction

Energy consumption of actuation systems is an engineering problem of particular
relevance due to the constant need to increase the energy efficiency and sustainability of pro-
duction processes and final user applications. Electromagnetic actuators are used in various
applications where fast and accurate positioning is required. Examples of such applications
are process feeding, serial manufacturing systems, and tool change systems for machin-
ing centers [1], robotic manipulators [2], and actuators for biomedical applications [3,4].
Other significant applications require actuators with high dynamic performance, capable
of providing high accelerations and powerful braking or damping systems [5–7], which
frequently have high associated costs and energy and power requirements.

An application of particular interest for the present development is filter wheel mech-
anisms found in numerous optical applications. A filter wheel is a rotating device that
carries a series of optical filters for different wavelengths. Optical filters can be designed to
transmit, block, or reflect light over any wavelength range from UV to IR [8]. Filter wheels
are a very common piece of equipment in optical laboratories and are also frequently
used in ground and space telescopes. In the case of flight equipment actuation with low
power consumption, these are of particular relevance due to the reduced power budgets
on board satellites [9,10].

In particular, the low power consumption requirement is critical in missions that
operate in cryogenic environments at very low temperatures [11–13]. A good example of
such missions is the James Webb Space Telescope [14]. On this telescope, there are various
filter wheels with different functionalities. The NIRCam instrument has a double-wheel
assembly with 12 filters each, consisting of a pupil wheel and a filter wheel placed in parallel.
The collimator light passes first through the active element of the pupil wheel and then
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through the active element of the filter wheel. The two wheels can rotate independently
to select specific combinations of the optical elements that define the observation modes
of the NIRISS [15]. On the other hand, the MIRI instrument contains a filter wheel that
carries 18 selectable optical elements: narrowband and broadband filters, a prism, and four
chronographic masks. The two nearly identical grid/dichroic wheels carry combinations of
grids and dichroics with only three positions for each wheel [16]. Table 1 summarizes the
main performance of the DC electromagnetic actuators incorporated into the mentioned
filter wheels of the James Webb Space Telescope.

Table 1. Performance of the engines of the MIRI and NIRCam instruments of the James Webb
telescope [15–17].

Instrument FWA DM Cryo 84 NIRCam Actuator

Parameter Value Value

Actuator diameter 96 mm 91.4

Actuator length 22 mm n/a

Rotor inertia 0.25 gm2 n/a

Mass 0.53 kg n/a

Number of magnets 24 n/a

Number of coils 12 n/a

Resistance winding (293 K) 370 ohms 82 ohms

Winding inductance 19 mH n/a

Maximum current 250 mA 130 mA

Maximum voltage 40 V n/a

Consumption max. (293 K) 23 watts 3.3 watts

Temperature range 4.2–300 K 6–300 K

Acting torque 200 mNm 149.5 mNm

Change time of filter 500 ms n/a

Energy consumed for position change
(estimated) 11.5 J n/a

Power consumption can be significantly reduced in both cases when instruments
operate under cryogenic conditions due to reduced winding ohmic resistance [18]. How-
ever, despite the optimization achieved by some of the aforementioned developments,
their operational concept prevents the optimization of the electrical consumption of these
devices since a large amount of energy is needed to accelerate and brake the payload to
meet the strict requirements of filter change.

This research paper presents a novel rotary electromagnetic actuator based on the
use of potential magnetic energy to minimize the power and electrical consumption of
the device. Potential magnetic energy can be stored by facing permanent magnets with
opposite polarities [19]. This approach has been previously explored with good results
for the optimization of energy harvesting devices [20,21]. The potential energy is released
in a controlled manner by an active actuation system, minimizing the time of position
change and minimizing the energy consumed by the system. The power requirements
of the actuator are also reduced, which may also reduce the size, cost, and weight of the
associated power electronics.

In this paper, the theoretical framework for the operation of such a device and its
detailed design as an actuator for a filter wheel application is presented. The estimated
performance of the device has been calculated using a theoretical model supported by finite
element model (FEM) simulations.
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2. Principle of Operation

The proposed device is composed of three main elements:

1. A rotor, mainly composed of permanent magnets.
2. A stator, mainly composed of a second set of permanent magnets. Their magnetization

directions are coincident with those of the stator and axis of rotation of the device.
However, the sense of magnetization of these permanent magnets is opposite to that
of rotor magnets.

3. A stabilization and actuation system, placed in the stator, mainly composed of a series
of ferromagnetic elements that stabilize the equilibrium positions of the actuator and
a set of coils or electromagnets that allow the actuator to rotate in both directions.

Figure 1 schematizes these elements in a section view of a radial actuator with four
equilibrium positions based on this novel concept. Because the permanent magnets of
the rotor and the stator present opposing polarities, a large amount of potential magnetic
energy is stored in the device when the rotor and stator magnets are close to each other.
However, without the aid of soft magnetic materials for stabilization in the stator (stabilizer),
the equilibrium positions n = 1, 2, 3, and 4 shown in Figure 1 would be positions of unstable
equilibrium. Consequently, under the presence of any external disturbance, the rotor
would uncontrollably abandon these equilibrium positions. The problem is solved by
incorporating a set of parts made of soft magnetic materials in the surroundings of the
equilibrium positions. When properly dimensioned, these parts generate a local magnetic
potential that stabilizes the rotor in positions 1 to 4. Then, the rotor will remain in these
positions, even if there are small external disturbances present.
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Figure 1. Main elements and stable equilibrium positions of the radial actuator.

Finally, the stored potential magnetic energy can be released and transformed into
kinetic energy by a set of actuation coils in the stator of the actuator. By controlling the
current level and current flow direction, the rotor is allowed to move in both directions
and change from one equilibrium position to another. To do so, only a minimal fraction of
energy is required to overcome the potential well, saving a significant amount of energy
in each position change. If any other energy dissipation phenomenon is present in the
system, for example, eddy currents dissipation or friction in the bearing, extra energy shall
be provided by the actuation system to be able to change from one equilibrium position
to another.

Figure 2 illustrates the rotor potential energy vs. the angular position of the actuator
shown in Figure 1.
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The principle of harnessing the potential energy stored between magnets in repulsion
is what allows for a significant reduction in the requirements of power and energy of
actuation. It is no longer necessary to supply the energy to accelerate and brake the rotor,
but simply the energy needed to get the rotor out of its stable equilibrium position, which
as will be demonstrated, is much lower than the previous one.

3. Theoretical Model

From a theoretical point of view, it can be established, based on the principle of
conservation of the angular momentum (L) of the rotor, that:

∂
→
L

dt
= [I]·→α +

→
ω ×

(
[I]·→ω

)
= ∑

→
M (1)

where [I] is the inertia matrix of the rotor,
→
α its angular acceleration,

→
ω its angular velocity,

→
M any external moment applied, and t is time.

As long as rotation takes place around the main axis of inertia of the rotor (such as the
z-axis), the above equation can be reduced to:

∑ Mz = Iz·αz (2)

Equation (2) can be modified using a variable change, such as:

∑ Mz = Iz·
dωz

∂θ
·∂θ

∂t
(3)

Or:

∑ Mz = Iz·
∂ωz

∂θ
·ωz (4)

where ωz is the angular velocity of the rotor, and θ its angular position.
By operating and integrating the previous equation for a given displacement range of

the rotor: ∫
Mz_total ·∂θ = Iz

∫
ωz·∂ωz (5)
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And finally, for the given angular displacement θ f − θi, it can be said that:

ωz_ f =

√√√√
2·
∫ θ f

θi
Mztotal ·∂θ

Iz
+ (ωz_i)

2 (6)

where ωz_ f is the final angular velocity of the device at the angular position θf, ωz_i is
the initial angular velocity for the starting position θi, and Mztotal is the summation of all
external momentum applied to the rotor.

The external momentums applied to the rotor include the momentum exerted by the
magnets arranged in the stator of the device, which mainly depends on the angular position
of the rotor. In addition, other electromagnetic interactions (such as those induced by the
ferromagnetic cores of the coils) exert an action on the rotor too. These interactions are
extremely complex to calculate analytically; therefore, finite element software has been
used to determine the dependence of the moments exerted on the rotor based on its angular
position. Finally, any other external momentum, such as the bearings’ friction torque, shall
be included in the calculations.

From the angular velocity and torque profile of the rotor, a set of useful variables can
be calculated. Indeed, the elapsed time can be approximated (∆t) between two angular
positions very close to each other by applying finite differences, so that:

∆t =
∆θ

ωz
(7)

where ωz is the average angular velocity between the two angular positions:

ωz =
ωz_ f + ωz_i

2
(8)

Once the performance of the device in terms of torque, angular velocity, and position
change time has been calculated, it is necessary to estimate the electrical power and its
energy consumption. The instantaneous electrical power consumption of the actuation
system can be calculated as:

Wact = I2·R (9)

where I is the current through the winding and R is the total resistance of the winding. As
it will be mentioned later, only one actuation phase is required in this device; therefore, the
total power consumption is the power consumption of the single-phase winding.

The resistance of the winding is determined by the section of the magnetic wire and
its length. This resistance is dependent on temperature; therefore:

R = ρ·(1 + α(T − 20))· l
A

(10)

where ρ is the resistivity of copper, ρ = 1.7·10−8 Ohm·m, α is the temperature coefficient
of copper resistivity α = 3.9·10−3 ◦C−1, T is the temperature of the wire in ◦C, A the wire
section, and l its length.

To obtain the potential power saving of the actuator, the previously calculated power
consumption (Wact) is compared to what is called the apparent power consumption (Wap)
of the device. The latter represents the power consumption that a classical electromagnetic
actuator should provide to reproduce the same torque vs. angular position characteristic
curve, regardless of the electric motor configuration. The instantaneous apparent power
consumption is calculated as:

Wap = Mz_total ·ωz (11)
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Then, the ideal ratio of power saving is defined considering the peak power apparent
power consumption and the peak actuation power consumption, which do not consider
any energy dissipation phenomena:

ηW_ideal [%] =

[
1− Wact_max

Wap_max

]
·100 (12)

Note that the actuation system should be operative for only a short fraction of the time
required for the rotor to leave the potential well. Therefore, the energy consumed for a
change of position can be estimated via integration of the torque vs. angular position curve
in the displacement range where the stabilization occurs.

Eact =
∫ θ f _stab

θi_stab

∣∣Mztotal

∣∣·∂θ (13)

where θ f _stab is the end of the stabilization zone and θi_stab is the initial position of equilibrium.
On the other hand, the apparent energy consumed by a classical actuator could be

obtained as:

Eap =
∫ θ f

θi

∣∣Mztotal

∣∣·∂θ (14)

where, for a contiguous position change, θ f is the final equilibrium position angular position
and θi is the initial angular position.

Finally, the ideal energy-saving ratio is defined as:

ηE_ideal [%] =

[
1− Eact

Eap

]
·100 (15)

However, in a realistic device, there will be other sources of energy dissipation
such as magnetic losses or friction in the bearings that shall be considered. Therefore,
Equations (12) and (15) can be easily modified to accommodate any additional energy
dissipation phenomena as:

ηW [%] =

[
1− Wact + W loss_act

Wap + W loss_ap

]
·100 (16)

where ηW is the power-saving ratio, W loss_act represents the average power loss induced
by any physical phenomena in the actuator (for example, friction in the bearings or eddy
currents dissipation), and W loss_ap is the average power loss induced in the classical elec-
tromagnetic actuator to be compared. For the sake of simplicity, we will consider the
additional power losses of the novel and the classical actuator approximately equivalent;
therefore, W loss_act ≈W loss_ap.

Finally:

ηE[%] =

[
1− Eact + Eloss_act

Eap + Eloss_ap

]
·100 (17)

where ηE is the energy-saving ratio, Eloss_act represents the energy loss induced by any
physical phenomena in the actuator and Eloss_ap is the energy loss induced in the classical
electromagnetic actuator to be compared. For the sake of simplicity, we have considered the
additional energy losses of the novel and the classical actuator approximately equivalent;
therefore, Eloss_act ≈ Eloss_ap.

Furthermore, the presence of any energy dissipation phenomena would inexorably
reduce the kinetic energy of the rotor, ultimately preventing it from achieving the next
stable position. In order to overcome this limitation, as discussed in Section 2, the actuation
system provides the extra energy required to compensate for those losses. By measuring
the position and velocity of the rotor, a feedback control strategy could be potentially
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defined in order to provide an accurate control of the positioning of the actuator. Although
the definition of this control strategy is out of the scope of this paper, a set of Hall effect
sensors, to be used with control purposes, have been foreseen in the design of the actuator
in Section 4.

4. Mechanical and Electrical Design

A rotary actuator with eight equilibrium positions has been designed. The electro-
magnetic actuator was designed in an axial configuration. It is known, from classical
electromagnetic and magneto-mechanical devices’ design, that axial configurations typi-
cally provide superior torque density and specific actuation torque, therefore minimizing
the device weight and volume [22]. Figure 3 shows the detailed design of the actuator and
its main elements.
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The actuator measures 92 mm in diameter and has an estimated weight of 1.2 kg. The
eight equilibrium positions are equidistant from each other by 45 degrees. The actuator is
mainly composed of a rotor (1) and a stator (2). The rotor consists of an AISI 304 stainless
steel wheel of 67 mm of outer diameter on which 16 permanent magnets of SmCo 30 are
assembled, with a remanence value Br = 1.12 T and a coercivity Hc = 835 kA/m. The
magnets’ dimensions are 10 × 10 × 3 mm and they are magnetized in the direction of the
actuator shaft (z-axis) parallel to the magnet’s thickness of 3 mm. A solid AISI 304 shaft
measuring 8 mm in diameter and 82 mm in length mainly completes the rotor design. The
moment of inertia of the rotor is calculated in 2.15·10−5 kgm2.

The stator (2) of the device is split into two cylindrical parts as shown in Figure 3. The
airgap between the rotor and the stator is 0.5 mm. The actuator stator is mainly composed
of a set of 16 permanent magnets of the same characteristics as the rotor magnets, assembled
in two structural pieces of AISI 420 ferromagnetic stainless steel. The magnets of the stator,
however, present an opposite magnetization direction with respect to the magnets of the
rotor, generating the potential energy necessary for the actuation. In each equilibrium
position, a stabilization trap made of AISI 1010 ferromagnetic steel is provided. This
trap mainly generates the potential well required for the stabilization of the equilibrium
positions and each of them measures 13 × 20 × 1 mm. A total of 32 small ferromagnetic
core coils (3) are placed in the stator. Each coil core is 13 × 7.5 × 1 mm, and they are placed
adjacent to both sides of each stabilization trap. Each coil is designed with 75 turns of
magnetic wire AWG 28 with an estimated fill factor of 85%. The resistance of each coil
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is estimated at 0.34 Ohm (at 70 °C) and its inductance at 0.45 µH. The actuation system
only requires one phase of actuation. The magnetic field generated by coils is parallel to
the magnetization direction of the permanent magnets (z-axis). The direction of motion
is established by the current flow direction in the coils. Finally, the actuation winding is
split into a nominal winding composed of 16 coils assembled in a series, and a secondary
redundant winding composed of the remaining 16 coils. Redundant windings are required
in space applications to improve the reliability of the system and to provide a solution in
case of critical failure of one of the windings. The total resistance when both windings are
operating at the same time is calculated at 11 Ohm (at 70 °C) and the total inductance at
14.5 µH. When the windings are operating in redundant mode (only one active), the total
resistance is about 5.5 Ohm and the inductance 7.3 µH. Figure 4 shows a detailed view of
the magnetic components in the device and their position.
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Figure 4. Half of the stator of the device (left) and rotor (right).

To allow rotation between the actuator and the rotor, two angular contact ball bearings
(4) of 28 mm outer diameter and 8 mm thickness have been used. The installation of a
series of Hall effect magnetic sensors (5) is also foreseen for position characterization of the
rotor. An operational temperature range has been specified for the device between −0 ◦C
and 70 ◦C. Table 2 summarizes the main constructive characteristics of the device.

Table 2. Device main characteristics.

Parameter Value

Actuator diameter 92 mm

Actuator length 40 mm

Rotor moment of inertia 2.15·10−5 kgm2

Actuator weight 1.2 kg

Rotor: Number of magnets 16

Stator: Number of magnets 16

Permanent magnets material SmCo 32

Number of coils (single phase) 32 (simultaneous), 16 (redundant)

Wire section AWG 28

Winding resistance at 70 °C (both windings) 11 Ohms

Coil inductance (both windings) 14.5 µH
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5. Finite Element Model (FEM)

The performance of the prototype is evaluated using two different FEMs that have
been set up and solved using Ansys Electronics 2021 R1 software. In the first place, a
magnetostatic simulation model has been set up. This FEM was used for the calculation of
the torque vs. angular displacement function of the prototype and consists of a reduced
system with the main magnetic elements of the actuator: coils, permanent magnets, and
ferromagnetic yokes, but without bearings and other accessories. Figure 5 shows an image
of the model.
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Figure 5. Magnetostatic FEM.

The model has been tuned with a maximum convergence error of 1%, with a typical
number of approximately 300,000 elements. Solving the model provides the electromagnetic
fields and, through post-processing techniques, the forces, and moments in the different
components of the actuator. Figure 6 shows the airgap magnetic flux density at two rotor
angular positions (angular position = 0 degrees and angular position = 22.5 degrees).
Magnetic flux density is calculated in a circumference of radius (R) equivalent to the
distance between the center of the device and the center of mass of the external PMs of
the rotor (R = 28 mm) and located at half the distance between that PM surface and the
stabilizer. Such a circumference is drawn in Figure 4 (right).
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The maximum magnetic flux density is calculated in 0.78 T when the rotor is lo-
cated in any of the generated equilibrium positions (angular position = 0+ n·45 degrees,
being 0 ≤ n ≤ 7).

In addition, the flux leakage is evaluated in a 2D cross section of the device in the XZ
plane in Figure 4. Figure 7 shows the flux lines’ distribution in two alternative positions of
the rotor. In one of these positions, the rotor is located in a stable position (e.g., angular
position = 0 degrees). In the other one, the rotor is located at half the angular distance
between two adjacent stable positions (e.g., angular position = 22.5 degrees). Due to the
symmetry in the device, only half of the cross section is represented.
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It can be observed that magnetic flux leakage is relatively small outside the envelope
of the actuator. In addition, it is also minority inside the envelope, with some limited flux
flowing between the stabilizer and the external yoke of the device and between the stator
PMs and the external PM of the rotor.

On the other hand, a transient simulation model has been generated to obtain the
electromagnetic losses induced by eddy currents and hysteresis. This FEM simulates the
rotation of the rotor at a constant speed during a period of not less than 100 ms at intervals
of 1 ms. Power losses are then calculated, at different rotor velocities, using the Steinmetz
dynamic equation [23]:

Pv = Ph + Pc + Pe = kh f B2
m + kc( f Bm)

2 + ke( f Bm)
1.5 (18)

where Pv is the total specific core losses, Ph is the hystresis core losses, Pc the eddy cur-
rent power losses, and Pe are the excess power losses. Consequently, kh is the hysteresis
coefficient, kc the eddy current coefficient and ke the excess coefficient. Finally, f denotes
frequency, Bm is the amplitude of the AC component of the magnetic flux density.

Figure 8 shows the specific power losses over a random instant of time when the
rotor spins at 500 rpm. The structural parts have been removed in Figure 8 for a better
visualization of the specific power losses; however, they contribute to the calculation of the
system power losses.
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The properties of the materials considered in the simulations are reported in Table 3.
AISI 304 has been considered a perfect austenitic alloy. Although deformations and heat
treatment processes may induce some magnetization effects [24], they are considered
negligible in this study. In addition, the magnetic wire has been considered to be made of
high-purity copper, and to be perfectly paramagnetic.

Table 3. Main properties of the materials considered in the model for transient and magnetostatic
simulations. [24,25].

Material Component

Properties

Electrical
Conductivity

[MS/m]

Magnetic
Saturation J [T]
or Remanence

Br [T]

Coercitivity
Hcb [A/m]

AISI 304 Rotor 1.4 ≈0 ≈0

AISI 420 Stator 1.82 J = 1.45 800

AISI 1010 Stabilizer & coil cores 7 J = 2.09 635

Copper Magnetic wire 58.8 N/A N/A

Sm Co17 Magnets 1.82 Br = 1.12 835,000

6. Performance Results

This section presents the theoretical calculations supported by the results obtained
through the finite element analysis (FEA) models detailed in the previous section.

6.1. Actuation Torque and Stability of the Equilibrium Positions

The torque exerted on the rotor vs. its angular position is calculated using the FEA
magnetostatic model. Results are reported in Figure 9.
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Figure 9. Torque vs. rotor angular position obtained via FEM calculations.

It is observed that the maximum actuation torque is 312 mNm. It must be noted that the
magnetic potential energy and the kinetic energy of the system are related to the previous
result. Moreover, the size of the different magnetic elements in the presented design is
susceptible to optimization, for example, in order to maximize the torque, minimize the
PM material, or minimize the device weight. This optimization could be achieved using
the presented FEM. In addition, using more complex Halbach permanent magnet arrays
could also lead to a better energy density of the device. However, such optimization
is out of the scope of the present paper. Eight equilibrium positions are observed at
θeq = 0 + 45◦·(n− 1), where n represents the identification number of each equilibrium
position and can be any integer number between 1 and 8. The zone of stability has an
amplitude of approximately ±2.3 degrees around those equilibrium positions.

The detent torque of the actuator is about 10 mNm. Figure 10 shows a detail of the
torque vs. position curve around a stable equilibrium position. The accuracy in the position
of the actuator can be interpreted from these results. It can be said that the rotor will present
an accuracy better than ±2.3 degrees around the stable positions under normal operating
conditions. The exact position of the rotor would depend on the presence of external static
torques, disturbances, or energy-dissipative phenomena.
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To move from one stability position to another, it will be necessary to overcome
this potential energy well. Through the integration of the area of the curve in Figure 10,
it can be calculated that the minimum required energy to overcome the stabilization
effect is about 13 ± 1 mJ. This energy would be supplied by the actuation system to
generate a position change. Figure 10 shows the influence of the input current density
on the stability zone. See that the direction of the circulating current establishes the
direction of rotation of the actuator. For positive current densities, the actuator tends to
rotate counterclockwise (positive), while the actuator will rotate clockwise (negative) if the
supplied current is negative.

It can be seen that for current densities higher than 3 A/mm2, the rotor has sufficient
energy to overcome the stability zone and initiate rotation to the next stable position. Note
that these results do not consider the action of a static friction pair on the bearings. Such a
friction torque would cause a displacement in the curves described in Figure 10; therefore,
a slightly higher current level would be necessary. Considering the characteristics of the
winding described in the third paragraph, an actuation current density of 3.5 A/mm2 is
defined. Given the characteristics of the magnetic wire, the current maximum current
consumption is estimated in 0.37 A. Results in Figure 10 are reported for both windings
actuating at the same time. Operation in the redundant mode previously described would
require about twice the current density.

6.2. Speed and Position Change Time

Figure 11 shows the profile of angular velocities in an event of position change between
two equilibrium positions when the system has been actuated with a current of 3.5 A/mm2.
The speed increases until reaching its maximum at about 22.5 degrees from the stable
position, its maximum value being about 700 rpm. From that moment, the system begins
to decelerate, braking completely in the next stability zone.
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Using Equation (7) and from the simulated data, the angular position profile with
respect to time can be obtained. The minimum time of position change is calculated at
about 56.4 ms for the device operating without an attached payload. Figure 12 shows the
relationship between the moment of inertia of the payload and the moment of inertia of the
rotor with the time of change of position and the peak speed of rotation.
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6.3. Power and Energy Consumption

An AWG 28 electric wire has been selected for the construction of the coils. The
maximum temperature of this cable is considered equal to the defined limit of operating
temperatures of the device of 70 °C. In such conditions, the resistance of the windings,
and therefore the power consumption of the device, is maximum. In addition, it has
been considered that, due to the intermittent nature of the operation windings and the
short periods of action, the winding temperature does not increase significantly during
operation. The total estimated length of the winding is 44 m. Therefore, using Equation (10),
a maximum winding resistance of 11 Ohm is calculated at an operational temperature
of 70 °C. The expected maximum consumption of the actuation system (Wact) is then
calculated in about 1.5 W. Figure 13 shows the absolute value of the apparent power
(Wapparent) and the power consumed by the device as a function of its angular position.
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By comparing the maximum value of the apparent power (16.2 W) with the value of
the power consumed by the actuator (1.5 W), an ideal power saving can be defined:

ηW_ideal = 90.7 %

However, other sources of energy dissipation must be considered when evaluating
the behavior of the actuator. The two main sources of energy dissipation are:
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• Friction in the bearings;
• Induced magnetic losses.

Magnetic losses induced by hysteresis and eddy currents in actuator materials have
been calculated using the transient FEM described in Section 4. Friction losses in bearings
have been calculated considering a friction torque similar to that of the James Webb Space
Telescope’s NIRCam instrument bearings. A maximum friction torque of 9.6 mNm is
defined [6]. Figure 14 shows the power dissipated due to these losses as a function of the
rotational speed of the rotor.
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A time-averaged actuation speed of 133 rpm is defined. This velocity is considered for
the average power dissipation due to magnetic and friction losses. Then:

Wmag =0.68 W and Wrod = 0.09 W

And
W los = Wmag + Wrod = 0.77 W

Therefore, the power-saving ratio is calculated using Equation (16) as:

ηW_los[%] = 86.6 %

From these values of average power consumption, and considering a position time
change of 56.4 ms, the dissipative energy due to power losses can be calculated.

Elos = W los·∆t = 43.4 mJ

The actuation energy is calculated considering the power consumption of the windings
(1.5 W) and the actuation time, which is calculated at about 15 ms using Equation (7). In
addition, the apparent energy consumption is calculated using Equation (14) with data
from Figure 10:

Eact ≈ 23mJ and Eap ≈ 117 mJ

Finally, the estimated energy-saving ratio is calculated using Equation (17):

ηE_los[%] = 58, 6 %
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When these results are compared to the performance of the actuators reported in
Table 1, it can be appreciated that the proposed novel actuator concept has the potential to
provide a superior actuation torque with less power and energy consumption. In addition,
the time for position change is significantly reduced.

7. Conclusions

In this paper, a novel concept of a rotary electromagnetic actuator for positioning of
a payload based on the harnessing of potential magnetic energy is presented. Its oper-
ational principle is discussed and a theoretical model for its performance calculation is
presented. A prototype for potential application as an actuator in filter wheel applications
is designed with an outer diameter of 92 mm and 40 mm in length. The device includes
eight equilibrium positions and a single-phase redundant winding for position change.
The performance of the prototype has been evaluated by a combination of the theoretical
model described in this paper and both magnetostatic and transient FEM results.

A maximum actuation torque of about 312 mNm and a detent torque of about 10 mNm
have been calculated. By applying an actuation current density in the windings of the
actuator of about 3.5 A/mm2, the rotor is able to change from one stable position to another.
The time required for position change is estimated at 56.4 ms. In addition, the dependency
of the position time change and the rotor speed with the momentum of inertia of the
payload has been described.

Thanks to the harnessing of the potential magnetic energy stored in the equilibrium
positions, a very significant power-saving ratio of up to 86.6% is calculated with regard to
a classical electromagnetic actuator operating in the same conditions. Finally, an energy-
saving ratio of up to 58.6% has been calculated. These promising results support the idea
that the novel actuator concept could lead to very significant power and energy savings
in applications demanding fast and accurate positioning which currently use classical
electromagnetic actuators, such as optical filter wheels.
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