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Abstract: Typical engineering cable structures, such as high-voltage wire and wire rope, usually
bring a damping effect which cannot be ignored due to the technological problems of manufacturing.
For such problems, especially the damping of cable structures undergoing large displacement and
severe deformation, few studies have been reported in the past. In this work, the fractional derivative
viscosity model is introduced into the cables described by the absolute nodal coordinate formulation.
The computer implementation algorithm of the proposed cable damping model is given based on the
three-parameter fractional derivative model. Two numerical examples demonstrate the effectiveness
and convergence property of the proposed cable damping model. An experiment is proposed in
which a wire is tensioned and released. Configurations are captured by the high-speed camera and
compared with the results obtained from the numerical simulation. The agreement of the simulation
and experimental results validates the proposed cable damping in application.

Keywords: fractional derivative viscosity; cable damping; absolute nodal coordinate formulation;
flexible multibody system dynamics

1. Introduction

Cables are widely used in engineering applications such as electricity [1], cranes [2],
cable-driven manipulators [3], deployable antennas [4], etc. In such systems, the dynamic
simulation usually needs to face problems including large deformation and overall motion,
material nonlinearity, impact and contact, etc. In particular, cables usually work with
other rigid components to form a rigid-flexible coupled multibody system. Therefore, a
sophisticated method is demanded to describe the motion of the cables.

The development of flexible multibody system dynamics has undergone the stages of
the finite section method, the finite element method, the floating frame reference method,
the geometrically exact method and the absolute nodal coordinate formulation (ANCF)
method. Among these modeling tools, ANCF can be seen as a combination of continuous
mechanics and the finite element method and is suitable for large deformation problems [5].
It has the advantages of a constant mass matrix and zero centrifugal and Coriolis forces.
There has been a rich element library and increasing engineering applications based on
ANCF. The spatial cable element, which is suitable for modeling cables, was first developed
by Sugiyama et al. [6]. It uses the Euler–Bernoulli beam assumption, so the deformation of
the cross-section and the shear deformation are omitted. Only the position and gradient
vectors at two ends are preserved as nodal coordinates [7]. As fewer nodal coordinates and
integration points are used, the cable element usually exhibits higher efficiency in computer
implementation. Wang et al. discussed the contact between two or more ropes represented
by the ANCF cable element. The beam-to-beam contact was performed by assuming a
continuous contact zone and executing integration in the contact zone [8,9]. Li et al. utilized
the ANCF cable element in the dynamic analysis of a deployable mesh reflector of a satellite
antenna. A parallel computation algorithm was proposed and used in a deployment
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simulation [10,11]. Lan et al. investigated the application of the ANCF cable element in
the high-voltage wire modeling. The pre-tension algorithm and the non-linear sliding
joints between the wire and the iron tower are studied [12]. Gu et al. studied the dynamic
interaction between the high-voltage wire and the large-scale steel structure [1]. Boumann
and Bruckmann proposed an emergency strategy for cable failure in cable robots [13]. Bulin
and Hajzman developed an efficient approach for the non-linear elastic forces of the ANCF
cable element by the pre-computation of various terms that are constant when evaluated
numerically at Gaussian points [14]. Fotland and Haugen examined the performance of the
Runge–Kutta method and the generalized alpha method in the dynamical simulation of the
ANCF cable element [15]. It can be summarized that the ANCF cable element is capable of
describing the complex deformation of the cable, which is the main reason for its successful
application in engineering.

In engineering practice, both the steel rope and high-voltage transmission wire are
manufactured by twisting metal threads. Due to the friction between the threads, they usu-
ally exhibit certain damping characteristics under intense dynamic behavior. Many efforts
have been made to investigate the damping effect of the cable in civil engineering [16],
deployable space structure [17], and so on. It is reported that the vibration characteristics of
the cable can significantly affect the performance of the whole system [18]. As an advantage
of ANCF, it is convenient to add material damping into the multibody system dynamic
equations. In research reported by Garcia-Vallejo et al., the internal damping based on linear
viscoelasticity in multibody system simulations performed via ANCF was investigated [19].
Lee et al. investigated the damping characteristics of a flexible multibody under different
working conditions [20]. Kim reported their experimental research of two damping models
based on ANCF [21]. In an article published in 2011, a non-linear viscoelastic constitutive
model was introduced to the flexible multibody system represented by ANCF [22]. Grossi
and Shabana researched high-frequency modes based on ANCF [23]. A new objective
large rotation and large deformation viscoelastic constitutive model defined by the Navier–
Stokes equations and its implicit numerical integration algorithm was proposed. Yu et al.
studied the viscoelastic beam element via ANCF and used it in the dynamic analysis of
two-link flexible manipulators [24]. Tian et al. proposed a new viscoelastic ANCF solid
element to model the components of dielectric elastomers [25].

Essentially, the abovementioned material damping models are based on the Maxwell
model and the Kelvin-Voigt constitutive model. The damping force is related to the chang-
ing rate of the strain, which makes these models cumbersome in computer implementation,
as there are lots of coefficients that need to be calibrated [26]. It should be pointed out that
there is a new kind of calculus in which the derivative order could be a fractional number.
In recent years, a fractional-order derivative was gradually used to deal with numerous
engineering problems, due to its indispensable role in the research of dynamic behavior,
system optimization and other engineering problems. The applications of fractional-order
derivatives in engineering problems are mainly in the fields of dynamics and control [27].
In the field of dynamics, the fractional-order derivative was commonly used to model engi-
neering materials with memory properties, such as viscoelastic components. By defining
more accurate constitutive relations of materials, the vibration characteristics of non-linear
systems can be more reasonably analyzed [28]. With the development of numerical cal-
culation methods, fractional derivative damping materials have been used in multibody
system dynamics with numerical calculation as the main simulation method [29]. Zhang
et al. introduced the fractional derivative damping model to the flexible multibody system
dynamic simulation [30]. Lan et al. combined the fractional derivative viscosity with
the ANCF thin plate element and applied it in tire modeling [31]. It was reported that
compared with the traditional Maxwell model and the Kelvin–Voigt constitutive model, the
damping model which assumed the viscous force related to the fractional derivative of the
strain could reflect the dynamic behavior of the viscoelastic material more accurately [32].

From the summary above, one can find that the implementation of the fractional
derivative material damping model in the ANCF cable element still remains blank, which
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will be the main, original work of this investigation. The performance of this damping
constitutive model will be checked both numerically and experimentally. The algorithm
presented in this research will provide a more sophisticated benchmark in cable viscosity
and can be used in engineering applications such as the dynamic analysis of the electric wire
and steel rope-pulley system. The following part of this paper will be organized as follows:
Sections 2 and 3 give a brief review of the kinematic description and elastic force formulation
of the ANCF cable element, which are the bases of the proposed damping model. In
Section 4, the implementation of the fractional-order derivative material damping in the
ANCF cable element is given in detail. Section 5 discusses the computer implementation of
the system equation of motion. Numerical and experimental results are given in Section 6,
whereas Section 7 is the concluding remarks.

2. Element Kinematic Description

The ANCF cable element shown in Figure 1 is developed based on the Euler–Bernoulli
beam model. The cross-section of the element is assumed to be undeformed and perpendic-
ular to the centerline. Therefore, only the axial material coordinate of the centerline is used
in the element shape function. The global position and gradient vectors of two end-points
are taken as nodal coordinates so the total degree of freedom is 12. The global position of

an arbitrary point on the element is defined as r = Se. e =
[
riT , riT

x , rjT , rjT
x

]T
is the element

nodal coordinate vector, and the shape function is:

S = [S1I3×3, S2I3×3, S3I3×3, S4I3×3] (1)

where the components of the element shape function matrix are:{
S1 = 1− 3ξ2 + 2ξ3, S2 = l

(
ξ − 2ξ2 + ξ3)

S3 = 3ξ2 + 2ξ3 , S4 = l
(
−ξ2 + ξ3) (2)

In this equation, the dimensionless material coordinate ξ = x/l. l is the element length
of its reference configuration. The element mass matrix has the following expression:

M =
∫

V
ρSTSdV (3)

It can be found that the mass matrix of the flexible body described by ANCF is
constant. The matrix decomposition can be performed at the pre-processing stage to
improve simulation efficiency.
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3. Element Elastic Model

The strain energy of an ANCF cable element is constituted by the stretch and the
curvature of the centerline [33]:

U =
1
2

∫ l

0
EA(εxx)

2dx+
1
2

∫ l

0
EI(K)2dx (4)

In this equation, l is the length of the element, E is the modulus of elasticity, A is the
cross-section area and I is the second moment of the cross-section. εxx is the strain at the
longitudinal direction, which has the following definition:

εxx = |rx| − 1 (5)

K is the spatial measurement of curvature:

K =
|rx × rxx|
|rx|2

(6)

Then, the element generalized elastic force can be determined by deriving the strain
energy with respect to the nodal coordinate:

Qe =
∂U
∂e

=
∫ l

0
EAεxx

∂εxx

∂e
dx +

∫ l

0
EIK

∂K
∂e

dx (7)

In this equation, the partial derivative of the longitudinal strain with respect to the
i-th component of the element nodal coordinate vector is:

∂εxx

∂ei
=

∂(|rx| − 1)
∂ei

=
1
|rx|

ST
x,i · rx (8)

where Sx,i is the i-th column of the partial derivative of the element shape function with
respect to the material coordinate. Denote f = |rx × rxx| and g = |rx|2; the partial derivative
of the curvature measurement is:

∂K
∂ei

=
∂

∂ei

(
f
g

)
=

1
g2

(
∂ f
∂ei

g− f
∂g
∂ei

)
(9)

In the equation above, the derivatives of the numerator f and denominator g are:
∂ f
∂ei

=
1
f
(Sx,i × rxx + rx × Sxx,i)

T · (rx × rxx)

∂g
∂ei

= 2 · ST
x,i · rx

(10)

where Sxx,i is the i-th column of the second-order partial derivative of the element shape
function. If the implicit integrator is used to solve the system equation of motion, the
Jacobian matrix J of the elastic force with respect to nodal coordinates should be calculated:

Ji,j =
∂2U

∂ei∂ej

=
∫ l

0 EA
∂εxx

∂ei

∂εxx

∂ej
dx +

∫ l
0 EAεxx

∂2εxx

∂ei∂ej
dx +

∫ l
0 EI

∂K
∂ei

∂K
∂ej

dx +
∫ l

0 EAK
∂2K

∂ei∂ej
dx

(11)

In this equation, the second derivative items can be formulated as:

∂2εxx

∂ei∂ej
=

∂

∂ej

(
1
|rx|

ST
x,i · rx

)
=

1
|rx|

(
ST

x,i · Sx,j − ST
x,j · Sx,i

)
(12)
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and:
∂2K

∂ei∂ej
=

∂

∂ej

(
g−1 ∂ f

∂ei
− f g−2 ∂g

∂ei

)
= − 1

g2
∂g
∂ej

∂ f
∂ei

+
1
g

∂2 f
∂ei∂ej

− 1
g2

∂ f
∂ej

∂g
∂ei

+
2 f
g3

∂g
∂ej

∂ f
∂ei
− f

g2
∂2g

∂ei∂ej

(13)

where the second derivatives of f and g are:

∂2 f
∂ei∂ej

= − 1
f 2

∂ f
∂ej

(Sx,i × rxx + rx × Sxx,i)
T · (rx × rxx)

+
1
f
(
Sx,i × Sxx,j + Sx,j × Sxx,i

)T · (rx × rxx)

+
1
f
(Sx,i × rxx + rx × Sxx,i)

T ·
(
Sx,j × rxx + rx × Sxx,j

)
∂2g

∂ei∂ej
= 2 · ST

x,i · Sx,j

(14)

It should be pointed out that the items Sx,i × Sxx,j, Sx,j × Sxx,i and ST
x,i · Sx,j only

depend on the material coordinate of the integration point and the element dimension.
They are not relevant to the current configuration, which means that they can be calculated
at the pre-processing stage to save the calculation time.

4. Fractional Derivative Cable Damping

The traditional Kelvin–Voigt constitutive model is presented as follows [34]:

σ(t) = E · ε(t) + C · ∂ε(t)
∂t

(15)

In this model, the stress is divided into two parts associated with the strain and the
changing rate of the strain, respectively. Bagley and Torvik introduced the three-parameter
fractional derivative model, which can be stated as [35]:

σ(t) = E · ε(t) + C · dαε(t)
dtα

(16)

It can be seen that the changing rate of the strain in Equation (15) is replaced by
the fractional derivative of the strain with respect to time. α is the fractional derivative
order, whose value varies in the interval (0, 1). By picking α appropriately, the three-
parameter fractional derivative model could perform better than the traditional viscosity
model [30]. The fractional order derivative operator dα/dt can be approximated by the
Grünwald definition:

dαε(t)
dtα

≈ (h)−α
Nt

∑
j=0

Aj+1ε(t− jh) (17)

where Nt is the truncation number, h is the time step of the integrator and Aj+1 is the
Grünwald coefficient, given by a recursive form:

Aj+1 =
j− α− 1

j
Aj, A1 = 1 (18)

C is the viscosity coefficient matrix, which is obtained by multiplying an extra ratio τ
by the elastic coefficient matrix Ev. Therefore, the stress associated with the viscosity σv
could be expressed as:

σv = τEv ·
dαεxx(t)

dtα
= τEv(h)

−α
Nt

∑
j=0

Aj+1εxx(t− jh) (19)
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Therefore, in this investigation, the energy related to the viscosity stress Uv can be
written as:

Uv =
1
2

∫
V

εT
xxτEv(h)

−α
Nt

∑
j=0

Aj+1εxx(t− jh)dV (20)

Afterwards, the corresponding generalized viscous force Qv can be obtained by taking
the partial derivatives of the viscosity energy Uv with respect to nodal coordinates e:

Qv =
∂Uv

∂e
=

∂

∂e

[
1
2
∫

V εT
xxτEv(h)−α

(
Nt
∑

j=1
Aj+1εxx(t− jh) + A1εxx(t)

)
dV

]

=
1
2

τ(h)−α
∫

V
∂εT

xx
∂e

Ev

Nt
∑

j=1
Aj+1εxx(t− jh)dV + τ(h)−α

∫
V

∂εT
xx

∂e
Ev A1εxx(t)dV

= Qv(t− jh, t) + Qv(t)

(21)

In order to use the implicit integrators to solve the system equation of motion,
the second derivative of the viscosity energy with respect to nodal coordinates should
be presented:

∂Qv
∂e

=
∂Qv(t− jh, t)

∂e
+

∂Qv(t)
∂e

=
1
2

τ(h)−α
∫

V
∂2εT

xx
∂e2 Ev

Nt
∑

j=1
Aj+1εxx(t− jh)dV

+τ(h)−α
∫

V
∂2εT

xx
∂e2 Ev A1εxx(t)dV + τ(h)−α

∫
V

∂εT
xx

∂e
Ev A1

∂εxx
∂e

(t)dV

(22)

The second derivative of the strain with respect to nodal coordinates has been pre-
sented in Equation (12). It should be pointed out that the history of the strain is constant
at the current time step. At the computer implementation stage, the viscous force can
be calculated together with the elastic force because there are lots of duplicated terms in
their expressions.

5. Computation Strategy

By introducing the generalized damping force proposed in the previous section into the
traditional multibody system dynamic equations [36], one can obtain the system equation
of motion: {

M
..
e + Qe + Qv + CT

e λ = Q
C = 0

(23)

where C is the constraint equations, λ is Lagrange’s multiplier and Q is the external force
vector, including the gravity force and the contact force, etc. In multibody system dynamic
simulation procedures, the constraint equations can be time-invariant, which is also called
the continuity condition. Such constraints can be handled in the pre-processing stage.
The Jacobian matrix of this type of constraint is constant so it can be used to identify
independent and dependent variables, for example, the cantilever boundary condition
used in Section 6.1 and the spherical joint used in Sections 6.2 and 6.3. Another type of
constraint is time-varying which can only be solved along with the system equation of
motion. The number of unknown variables of the system becomes large as Lagrange’s
multiplier is used [37].

The system equation of motion given in Equation (23) is a set of Index-3 differential-
algebraic equations. In this investigation, the generalized alpha method is chosen to solve
the system equation of motion as this method achieves an optimal combination of accuracy
at the low-frequency range and numerical damping at the high-frequency range. Such a
method exhibited good applicability to many tough problems [8]. More details about how
to implement this integrator, including variable discretization and choosing appropriate
solving parameters, can be found in the literature [38].
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In this research, all the numerical examples are run in MATLAB R2021a. The program-
running hardware is a Dell tower workstation. The processor is an Intel Xeon W-2235 with
3.8 GHz. The computer has 32 GB RAM, a 256 GB SSD and a 1 TB HDD. The operating
system is Windows 10 Professional.

6. Numerical Simulation and Experimental Validation
6.1. Axial Stretch of Beam

A straight cantilever beam model composed of a 0.1% axial initial strain is modeled
to demonstrate the application of the fractional derivative viscosity in the ANCF cable
element. The initial configuration and the parameters of the model are shown in Figure 2.
A 0.1% strain is initially applied on the beam so the free tip of the beam would experience
longitudinal vibration. The x component of the position vector for the free tip is given in
Figure 3, with the fractional order α set to be 0.5. As a comparison, the results obtained
under different combinations of the parameter τ and the truncation number Nt are shown.
The results show that the vibration would be damped distinctly under the effect of viscous
force, and the damping effect would become more intense with the increase in the ratio τ
and the truncation number Nt. Figure 4 presents how the value of alpha affects the damping.
Theoretically, when alpha is equal to 0, the pure elastic material is obtained. When alpha
is equal to 1, the fractional derivative model will degenerate to the traditional Kelvin–
Voigt constitutive material. From Figure 4, one can find that the damping effect becomes
significant with the increase in the alpha value. It can be concluded that the fractional
derivative viscosity model is apparently introduced into the ANCF cable element.
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6.2. Flexible Pendulum

In order to demonstrate the performance of the proposed cable damping model in the
large overall motion and large deformation, a convergence test is performed on the flexible
pendulum model shown in Figure 5. The material properties of the pendulum are given
in Table 1. The simulation time is 1.5 s. The damping parameters used in this example
are τ = 0.1, Nt = 10 and α = 0.5. The pendulum is discretized into 4, 8 and 16 elements,
respectively. The vertical displacements of the free tip and the total strain energy are
compared in Figures 6 and 7, respectively. The configurations at different moments are
shown in Figure 8.
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Table 1. Parameters of the flexible pendulum.

Properties Length
(m)

Radius
(mm)

Gravity Acceleration
(m/s2)

Density
(kg/m3)

Young’s Modulus
(GPa) Poisson Ratio

Value 2 3 9.81 2320 63 0.33
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From these results, one can find that when increasing the number of elements, the
curves become closer. It means that the convergence property of the cable element can
still be preserved when the fractional derivative damping model is applied to the ANCF
cable element.
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6.3. Wire–Sheave Contact Experiment and Computational Simulation

Wire rope failure is a kind of common issue in space engineering, which has a great
influence on the control and safe operation of spacecraft. In this section, an experimental
study is proposed to test the performance of the proposed fractional derivative cable
damping model. Figure 9 gives the schematic view of the experiment. A wire is fixed at one
end by a spherical joint, and the other end is tensioned and passes through two sheaves by
a tensioner. A tension release device controlled by a wireless signal is connected in series in
the wire, as shown in Figure 10. A tension sensor is also connected in series in the wire to
record the tension force at the moment that the wire is released. When the wire is released,
the timer starts, and the high-speed camera begins to capture the configurations of the wire.
They will be compared with the numerical simulation results. It should be pointed out that
the weight of the release device is large, making it difficult to keep the wire straight only by
tension. Therefore, a load rope is set above the experimental wire to bear the weight of the
wire releaser (as can be seen in the first subfigure of Figure 10).
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Figure 10. Some experiment devices ( 1©release device, 2©tension sensor, 3©wireless communication module).

The wire was tensioned by a force of 7890 N, which is 10% of its breaking force. The
experiment was conducted outdoors. The day of the experiment was clear and windless.
The temperature was 28 degrees Celsius. At the computer implementation part, the static
equilibrium configuration of the wire was solved and used as the initial configuration of the
dynamic simulation [1,12]. The contact between the wire and the sheaves was implemented
based on the penalty methods [8]. The simulation was performed for 4 s. Table 2 gives the
geometry and material parameters of the wire. Figure 11 presents the comparative results
of the wire configurations. They were obtained at 1 s, 2 s, 3 s and 4 s, respectively. The
configurations from the simulation are colored by vertical velocity.

Table 2. Parameters of the wire.

Properties Length
(m)

Radius
(mm)

Density
(kg/m3)

Young’s Modulus
(GPa) Poisson Ratio

Value 21 13.45 2320 63 0.33

It can be observed that when the wire is released, it first retracts violently under
the initial tension. Afterwards, under the influence of its own kinetic energy, it wraps
around the right sheave at a large warp angle. Due to the large distance between the
two sheaves, the wire falls, making it out of contact with the right pulley and continue
to fall. One can find that the numerical simulation results reflect the dynamic process
well. By comparing the key frame configuration between the numerical simulation results
and the experimental results, it can be concluded that the simulation results reach good
agreement with the experimental results. The feasibility of the proposed cable viscosity can
be demonstrated. In spite of this, it should also be pointed out that in flexible multibody
system dynamic experiments, comparing the configurations obtained from numerical
simulations and experiments is still the dominant method. Any measurement of the contact
of the flexible body itself will change its dynamic behavior. Therefore, in future work, we
will try non-contact measurement methods that are more accurate than the configuration
ratio, so that the experiment can better guide the theory.



Actuators 2023, 12, 64 12 of 15Actuators 2023, 12, x FOR PEER REVIEW 12 of 15 
 

 

 
Figure 11. Comparison of the simulation and experimental results. 

It can be observed that when the wire is released, it first retracts violently under the 
initial tension. Afterwards, under the influence of its own kinetic energy, it wraps around 
the right sheave at a large warp angle. Due to the large distance between the two sheaves, 
the wire falls, making it out of contact with the right pulley and continue to fall. One can 
find that the numerical simulation results reflect the dynamic process well. By comparing 
the key frame configuration between the numerical simulation results and the experi-
mental results, it can be concluded that the simulation results reach good agreement with 
the experimental results. The feasibility of the proposed cable viscosity can be demon-
strated. In spite of this, it should also be pointed out that in flexible multibody system 
dynamic experiments, comparing the configurations obtained from numerical simula-
tions and experiments is still the dominant method. Any measurement of the contact of 
the flexible body itself will change its dynamic behavior. Therefore, in future work, we 
will try non-contact measurement methods that are more accurate than the configuration 
ratio, so that the experiment can better guide the theory. 

7. Conclusions  
A novel viscosity model based on the fractional derivative material damping model 

is developed for the cables and wires discretized by the absolute nodal coordinate formu-
lation. The original work of this investigation can be summarized as follows: 
1. The fractional order derivative material damping model based on three-parameter 

formulation is introduced into the ANCF cable element. The generalized damping 
force and its Jacobian matrix with respect to the nodal coordinate are derived accord-
ingly. 

2. A cantilever beam with an initial longitudinal stretching strain is tested. The results 
show that the damping effect becomes more obvious with the increase in the viscoe-
lastic coefficient τ , truncation number tN  and derivative order α . 

Figure 11. Comparison of the simulation and experimental results.

7. Conclusions

A novel viscosity model based on the fractional derivative material damping model is
developed for the cables and wires discretized by the absolute nodal coordinate formulation.
The original work of this investigation can be summarized as follows:

1. The fractional order derivative material damping model based on three-parameter for-
mulation is introduced into the ANCF cable element. The generalized damping force
and its Jacobian matrix with respect to the nodal coordinate are derived accordingly.

2. A cantilever beam with an initial longitudinal stretching strain is tested. The re-
sults show that the damping effect becomes more obvious with the increase in the
viscoelastic coefficient τ, truncation number Nt and derivative order α.

3. A soft pendulum model is checked to see the performance of the proposed damping
model. It can be observed that when the number of elements used increases, the
curves of the vertical displacement of the free tip and the total strain energy become
closer. The convergence property is proved.

4. An experiment of wire tension release is performed. A wire goes through two sheaves
and is tensioned by 10% of its breaking force. After it is released, it vibrates tempes-
tuously and falls onto the sheaves. The configurations of the wire are captured by
a high-speed camera and compared with the simulation results. The application of
the proposed cable damping model based on the fractional derivative viscosity can
be demonstrated.

The possible applications of the cable damping model in this paper include cable-
driven mechanisms, spatial deployable structures, vibration characteristics of large steel
structures with flexible cables, etc. In the authors’ opinion, the work proposed in this
investigation could be improved from the following two aspects. First, the viscosity was
only developed for the stretch part of the cable element. It can be extended into the
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curvature part. Second, a more precise experiment could be proposed to standardize the
damping coefficients for the wire.
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Nomenclature

r the global position of an arbitrary point on the cable
S the shape function matrix
e the nodal coordinate vector
M the element mass matrix
U strain energy of the ANCF cable element
E Young’s modulus
A area of the cross-section
I second moment of inertia of the cross-section
εxx the temperature and its gradient at the longitudinal direction
K curvature of the cable
Qe element generalized elastic force
Ji,j components in the Jacobian matrix of the elastic force
σ stress
ε strain
C damping coefficient in Kelvin–Voigt constitutive model
h time step
α fractional derivative order
Aj+1 the Grünwald coefficient
Nt truncation number
τ extra ratio
σv stress associated with the viscosity
Ev elastic coefficient matrix
Qv generalized viscous force
Ce Jacobian matrix of the constraint equation
λ Lagrange’s multiplier
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