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Abstract: For rotor–bearing systems, their dynamic vibration models must be built to simulate the
vibration responses that affect the safe and reliable operation of rotating machinery under different
operating conditions. Single physics-based modeling methods can be used to produce sufficient
but inaccurate vibration samples at the cost of computational complexity. Moreover, single data-
driven modeling methods may be more accurate, employing larger numbers of measured samples
and reducing computational complexity, but these methods are affected by the insufficient and
imbalanced samples in engineering applications. This paper proposes a physics-informed hybrid
modeling method for simulating the dynamic responses of rotor–bearing systems to vibration under
different rotor speeds and bearing health statuses. Firstly, a three-dimensional model of a rolling
bearing and its supporting force are introduced, and a physics-based dynamic vibration model
that couples flexible rotors and rigid bearings is constructed using multibody dynamics simulation.
Secondly, combining the simulation vibration data obtained using the physics-based model with
measured vibration data, algorithms are designed to learn vibration generation and data mapping
networks in series connection to form a physics-informed hybrid model, which can quickly and
accurately output the vibration responses of a rotor–bearing system. Finally, a case study on the
single-span rotor platform is provided. By comparing the signal output by the proposed physics-
informed hybrid modeling method with the measured signal in the time and frequency domains,
the effectiveness of proposed method under both constant- and variable-speed operating conditions
are illustrated.

Keywords: dynamic vibration response; physics-informed; modeling; rotor–bearing system

1. Introduction

The rotor–bearing system plays a crucial role in rotating machinery, and its behavior
directly affects the safety and stability of machinery operation. Rolling bearings are im-
portant supporting components used to transmit motion and carry load. They are widely
adopted in high-precision and high-speed rotating machinery, such as motors, aero engines,
and wind turbine gearboxes [1,2]. The vibration caused by bearing faults, once it exceeds
an allowable level, leads to unexpected failures and shorter lifetime of the bearings [3–5].
Therefore, it is necessary to explore the modeling methods used to simulate the dynamic
response of the rotor–bearing systems to vibration for different bearing health statuses and
rotor rotational speeds.

In recent years, many scholars have studied physics-based modeling methods of
dynamic vibrations for rotor–bearing systems under different operating conditions [6].
Singh et al. [7] reviewed the development of analytical and finite element models for
predicting the vibration response of rolling element bearings with localized and extended
defects. McFadden et al. [8] established a dynamic vibration model for rolling bearings that
considers the vibration caused by the inner-race fault of bearings and modeled vibration as
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a pulse sequence with a constant frequency. Ren et al. [9] expanded the dynamic vibration
model of rolling bearings to the outer-race and rolling element fault conditions, and they
studied the influences of load distribution and fault location on the dynamic vibration
characteristics. Liu et al. [10] constructed a dynamic model with 12 degrees of freedom for a
rigid rotor–bearing system. This model includes a half-sinusoidal function to represent the
additional excitation caused by bearing faults, and the influence of coupling between rigid
rotor and bearing is taken into account. Wang et al. [11] introduced a nonlinear bearing
model and established a dynamic model of a dual-rotor system based on the finite element
method. Li et al. [12] and Brouwer et al. [13] used the finite element method to build a
dynamic vibration model for a flexible rotor–bearing system. The two models integrate the
rigid motion and elastic vibration of a rotor and revealed that the flexible deformation of a
rotor affects the bearing displacement and orientation. Wang et al. [14] used the multibody
dynamic simulation method to establish a dynamic three-dimensional vibration model
for rotor–bearing systems, which can be used to simulate the actual bearing fault pattern
by changing the geometric model. Liu et al. [15] discussed the influence of the relative
motion of a bearing caused by the cage clearance on the lubrication characteristics of the
local contact area. This also inevitably affects the calculation of contact and friction and
introduces flexible vibrations into the bearing force. These above models reflect the impact
of bearing faults on the dynamic vibration response and generate a large and diverse
amount of simulated vibration data. However, due to the numerous vibration sources
in complex rotor–bearing systems, the vibration signals simulated using physics-based
models often differ from actual measured signals.

Data-driven dynamic vibration modeling methods are used to analyze the intrinsic
relationship between dynamic vibration responses and operating conditions via mining the
actual measured vibration data [16]. Popescu et al. [17] presented a novel method for the
detection and optimal segmentation of changes in vibrating signals to investigate the points
of vibration response change generated by the faults. Yan et al. [18] proposed a health index
to describe machine faults and explored the relationship between the health index and
fused vibration spectrum amplitudes. Wang et al. [19] proposed a multi-input and multitask
convolutional neural network to construct a numerical model that autonomously learn fault
characteristics from vibration signals in the time, frequency, and time–frequency domains.
This model describes the dynamic vibration responses for different defect locations and
rolling bearing sizes. Wang et al. [20] developed a coupled hidden Markov fusion method
that integrates the fault characteristics extracted from multichannel measured vibration
signals, which better fit the analytical relationship between dynamic vibration responses
and bearing faults. Shao et al. [21] built an auxiliary classifier generative adversarial
network (GAN) for modeling the signal generation process, and they generated synthetic
vibration signals with bearing fault labels. Zhang et al. [22] proposed a Wasserstein
GAN based on the quality assessment of samples. The Wasserstein distance allows the
discriminator to provide more meaningful gradient information to the generator and
improves the consistency of the generated vibration samples with the actual measured
samples. Liu et al. [23] proposed a deep feature enhanced GAN, and the self-attention
module in this network was designed to enhance the feature extraction ability, which
improved the accuracy and diversity of the generated vibration samples under different
bearing faults. The above models, driven by measured vibration signals, more closely
mimic actual rotor–bearing systems, but their modeling accuracy depends heavily on the
number and distribution of the measured samples. In the absence of a sufficient number of
measured samples, the generated vibration signal is inconsistent with the measured signals.

To resolve the above problems, the combination of physics-based and data-driven
modeling methods is regarded as effective; examples of these methods include physical-
informed neural networks [24] and digital twins [25]. Li et al. [26] integrated physical
information into a neural network to construct the network structure of Reynolds-equation-
controlled flow neural networks. With a physical-informed neural network, the aerody-
namic characteristics of gas bearing were then predicted. Thelen et al. [27] pointed out
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that digital twins integrate the best available physical models, sensor updates, and history
data to mirror the life of a physical entity. In [28], the adopted artificial intelligence model
invokes a numerical model and sensor data as the input to predict the structural perfor-
mance of key components of heavy equipment. Piltan et al. [29] proposed an adaptive
algorithm for fault diagnosis and crack size identification in bearings. The mathematical
model of dynamic vibrations under normal operating conditions was firstly built with
the Gaussian process regression method, and vibration responses for different types and
sizes of bearing faults were then estimated using the designed residual signal observer.
Qin et al. [30] proposed a data model combined with a digital twin of the life cycle of a
rolling bearing. The predicted evolution of bearing defectd was introduced into a math-
ematical dynamic model of a bearing, and CycleGAN, driven by the measured life-cycle
data, was designed to correct the vibration responses of the mathematical dynamic model.
Wang et al. [31] established a dynamic model of a rotor system used for unbalanced quan-
tification and localization. The dynamic vibration model with rotor imbalances was built
using multiphysics simulation; a model update strategy, with measured critical speed and
vibration amplitude as the updated references, was used to optimize the dynamic model.
However, the above methods mostly focus solely on the rotor or bearing components in
physics-based modeling, and the rotor–bearing coupling and the operating condition of
variable speeds on dynamic vibrations have not been taken into account. Moreover, the
number of vibration samples is often insufficient, despite this situation being common
during the actual operation of rotating machinery under a wide speed range; however, the
above methods pay little attention to dynamic vibration modeling in this scenario.

This study developed a physics-informed hybrid modeling method for a dual-disc
rotor–bearing system for typical bearing health statuses to simulate its dynamic responses
to vibration at different speeds. Considering the geometric morphology of rolling bearings
and the structural characteristics of flexible rotors, a physics-based dynamic vibration
model was firstly constructed with the support of dynamics mechanism and professional
multibody simulation software. To improve the efficiency of the physics-based model, the
simulated vibration dataset was then established, and the vibration generation network was
trained to quickly generate vibration signals at different speeds and typical bearing health
statuses. After that, the data mapping network was designed to map the generated vibration
samples onto their measured vibration sample counterparts. With the combination of the
two networks, the physics-informed hybrid model of dynamic vibrations was formed,
which is expected to output simulated dynamic vibration responses that approximate the
measured ones.

In remainder of this article, Section 2 describes the vibration mechanism of a rotor–
bearing system and introduces the implementation of the numerical simulation using the
physics-based dynamic vibration model. Section 3 describes the physics-informed hybrid
modeling method based on the combination of a simulated vibration dataset, a measured
vibration dataset, and the learning algorithms of the vibration generation network and data
mapping network. Section 4 takes a single-span rotor platform as example and illustrates
this specific implementation and experimental results. Section 5 concludes this paper.

2. Physics-Based Dynamic Vibration Model of Rotor–Bearing System
2.1. Preliminary

Figure 1 shows a schematic diagram of a dual-disc rotor–bearing system. As shown in
Figure 1, two discs are fixed on the rotor, and both ends of rotor are supported by rolling
bearings. O2 and O3 are the centroids of two discs. O1, and O4 are the geometric centers
of two rolling bearings. xi and yi are displacements, respectively, in the x-axis and y-axis
directions at Oi, where i = 1, 2, 3, 4.

According to Newton’s second law and the Lagrange equation, the differential equa-
tion of the motion of a rotor–bearing system is represented as,
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m1 ẍ1 + cs1 ẋ1 + k1(x1 − x2) = Fax
m1ÿ1 + cs1ẏ1 + k1(y1 − y2) = Fay −m1g
m2 ẍ2 + cd1 ẋ2 + k2(x2 − x1) + k2(x2 − x3) = 0
m2ÿ2 + cd1ẏ2 + k2(y2 − y1) + k2(y2 − y3) = −m2g
m3 ẍ3 + cd2 ẋ3 + k3(x3 − x2) + k3(x3 − x4) = 0
m3ÿ3 + cd2ẏ3 + k3(y3 − y2) + k3(y3 − y4) = −m3g
m4 ẍ4 + cs2 ẋ4 + k4(x4 − x3) = Fbx
m4ÿ4 + cs2ẏ4 + k4(y4 − y3) = Fby −m4g

(1)

where m1 and m4 are the equivalent masses of he rotor at O1 and O4. m2 and m3 are the
masses of the discs. cs1 and cs2 are the damping of the rotor at O1 and O4. cd1 and cd2 are
the damping of the rotor at O2 and O3. k1, k2, k3, k4 indicate the stiffness of the rotor at Oi.
g is the acceleration due to gravity.

Figure 1. Schematic diagram of dual-disc rotor–bearing system.

It can be observed from (1) that the dynamic characteristics of a rotor–bearing system
are not only affected by rotor speed but also by the supporting force of the bearing. Ac-
cording to Hertzian contact theory, the nonlinear supporting forces Fbx and Fby of a rolling
bearing in the x and y directions are the sum of the contact forces between rolling elements
and races. The supporting forces are represented as

Fbx(x, y, ω, t) = kb

Nb
∑

j=1
δ3/2

j sin θj

Fby(x, y, ω, t) = kb

Nb
∑

j=1
δ3/2

j cos θj

(2)

where kb is the Hertz elastic coefficient. j is the index of rolling elements, where j = 1, 2, . . . ,
Nb. Nb is the number of rolling elements. θj denotes the rotating angle at time t of the jth
rolling element.

When the health status of a bearing is normal, the contact deformation δj of the jth
rolling element is represented as

δj = (xin − xout) cos θj + (yin − yout) sin θj − µ (3)

where µ is the initial radial clearance of the rolling bearing. (xin, yin) are the displacements
of the inner race, and (xout, yout) are the displacements of the outer race.

When the health status of a bearing is defected, an additional displacement excitation
δd is injected. As the rolling element passes through the defected area, periodic vibration
occurs in the supporting force of the bearing. The contact deformation δj of the jth rolling
element is expanded as

δj = (xin − xout) cos θj + (yin − yout) sin θj − µ− βδd (4)

where β is the switching variable indicating the health status of the bearing. In bearing
damage scenarios, the manifestations typically include cracks, spalling, and pitting, with
these forms of damage often presenting in irregular shapes. In this paper, the outer-race
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bearing fault is discussed as a representative defect, and the shape of defect area is assumed
to be a square. This assumption is predicated on the fact that a square shape provides
distinct boundary conditions, thereby facilitating a more detailed analysis of the impact
of the status of bearing health on the vibration characteristics of a rotor system. Thus, the
bearing’s health state includes normal bearings and defected bearings, which correspond
to two values of variable β. To be specific, normal refers to a healthy bearing, and defect
refers to a bearing that contains a defected area of defined length, width, and depth.

When the rolling element is located within the angular span of the defect area, there is
deformation release. The displacement excitation caused by an outer-race fault of a bearing
can be represented as [10]

δd =

{
δd max cos

(
(θj−ϕ0)π

2ϕd

)
, ϕ0 − ϕd < θj ≤ ϕ0 + ϕd

0, otherwise
(5)

where ϕ0 is the initial angular of the defect area, and ϕd is the angular span of the defect area.
δd max denotes the maximum value of the displacement excitation and is represented as

δd max = r−
√
(r)2 − (L/2)2 (6)

where r is the radius of the rolling element, and L is the length of the defect area.
It can be observed from the above analysis that the dynamic vibration model of a

rotor–bearing system is affected by the rotating speed of the rotor, health status of the
bearing, and size of the defect area.

2.2. Numerical Simulation Implementation Using Physics-Based Model

To implement the physics-based dynamic vibration modeling for a rotor–bearing sys-
tem, ADAMS (Automatic Dynamic Analysis of Mechanical System) software was adopted
for numerical simulations. This numerical simulation focused on the vibration acceleration
responses under different rotating speeds of the rotor and health statuses of the bearing. Its
implementation included the following procedures

Procedure 1: Modeling of multibody rotor–bearing system.
Firstly, the overall geometric model of the rotor–bearing system was drawn in Solid-

Works and imported into ADAMS. As shown in Figure 2, the geometric model included
the rotor, discs, cage, outer race, inner race, rolling elements, bearing pedestals, and base.
Secondly, by adding material parameters to these geometric bodies and substituting the
rotor and two bearing pedestals with flexible bodies, physical properties such as mass,
centroid position, stiffness, and moment of inertia were provided to the geometric model.

Figure 2. The overall geometric model of a rotor–bearing system.

Figure 3 presents the finite element models of the flexible rotor and bearing pedestals,
which are connected to other rigid bodies through rigid nodes. The flexibility of the rotor
was considered in the inherent structural and material characteristics of the rotor itself,
which result in vibrations during its operation. Given the complexity of rigid–flexible
coupling modeling and in the interest of enhancing simulation efficiency, a free meshing
method was selected in ANSYS APDL for the rotor’s solid meshing, with the smart mesh
sizing level set to 3. Key points were created at the center of the bearing locations on both
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sides of the rotor mesh model, leading to the generation of nodes 40490 and 40491, as
shown in Figure 3a. Utilizing these key points as primary nodes and the surrounding nodes
as secondary nodes, a spider-web-like rigid region was established. This configuration
ensured that the forces applied through the primary node were distributed across various
secondary nodes on the rotor’s cross-section. As shown in Figure 3a, the flexible model of
the rotor primarily employed triangular elements to accommodate regions with deforma-
tion or highly nonlinear behavior. On both sides of the rotor, quadrilateral elements were
automatically selected. This choice was motivated by the enhanced precision offered by
quadrilateral elements when applying boundary conditions at the two nodes. Their size
compared to the diameter of the shaft was about one-quarter of the scale. Similarly, the free
meshing approach with the smart mesh sizing level set to 3 was employed for the mesh
division of the bearing pedestal model, as shown in Figure 3b. This division was predicated
on the ability to obtain nodes corresponding to the positions where accelerometer sensors
were mounted on the experimental platform, thereby facilitating the measurement of the
vibration response at these specific nodes.

Figure 3. Finite element models of flexible bodies. (a) Rotor, (b) bearing pedestal.

Thirdly, connections between different geometric bodies are defined, as shown in
Table 1, and employed to constrain the motion of the rotor–bearing system. The stiffness
and damping parameters of the spring-damping constraint between the bearing pedestal
and the base were set to 15.1× 106 N/m and 2210.7 Ns/m according to [14]. Finally, the
numerical simulation for dynamics of the rotor–bearing system was driven by adding a mo-
tion that rotated around the z-axis at the end of the rotor. The WSTIFF integration method
is an implicit numerical integration algorithm with the ability to adaptively adjust step
size and order for numerical simulation solutions, which exhibits high numerical stability
in long-term simulations. Meanwhile, considering the high computational complexity
caused by rigid–flexible coupling and the contact constraints in numerical simulation
model, the I3 integrator form was employed. Thereupon, the vibration acceleration re-
sponse Facc(ω, x0, y0, z0, t) of arbitrary coordinates (x0, y0, z0) at different rotating speeds ω
of rotor was solved using the WSTIFF I3 integrator.

Table 1. Connections between geometric bodies of rotor–bearing system.

1st Body 2nd Body Constraint Type

Base Ground Fixed joint
Bearing pedestal Base Spring-damping
Outer race Bearing pedestal Fixed joint
Inner race Rotor Fixed joint
Rolling element Outer race, inner race Contact force
Rolling element Cage Spherical joint
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Procedure 2: Modeling of bearing supporting force.
According to (1), the supporting force of a bearing is one of the critical factors affecting

the dynamic responses of rotor–bearing systems. In a previous work [31], a spring-damper
was often used in the numerical simulation to simplify the actual support of a rolling bear-
ing. The simplified supporting force generated by the spring-damper can be expressed as

Fbx = −keq(u− u0)− cequ̇ + Fpreload (7)

where keq is the stiffness coefficient of the rolling bearing, and ceq is the damping coefficient.
u is the length of the spring. Fpreload is the preload of the spring, and u0 is the displacement
caused by the preload.

According to (2), the supporting force of a rolling bearing is essentially related to the
contact force of each rolling element. Nevertheless, the spring-damper expressed in (7)
struggles to describe the interaction between rolling elements and raceways and especially
the influence of raceway defects on the dynamic responses of rotor–bearing systems. Here,
the contact constraints between the rolling element, inner-race raceway, and outer-race
raceway, as well as the geometric model of the rolling bearing, were introduced to improve
the dynamic vibration model of rotor–bearing systems. The contact between the rolling
element and raceway was regarded as a solid-to-solid type, and the impact function method
was adopted to calculate the contact force. In the ADAMS environment, the normal contact
force between each rolling element and raceway is represented as [32]

Fj =

{
K(r− xj)

ς − cmax ẋj × STEP(xj, r− d, C, r, 0), i f xj > r
0, i f xj ≤ r

(8)

where d is the penetration depth, and its value was set to 1× 10−5 m. ς is the force exponent;
from experience, it can be said that hard metals require a value of 2.2. K is the equivalent
contact stiffness, and C is the equivalent contact damping, which were evaluated with
Hertzian contact theory. Here, the contact stiffness and damping were set to 1× 1011 N/m
and 20 Ns/m according to reference [14]. xj is the distance from the geometry center of the
jth rolling element to the raceway.

For the friction force, the Coulomb friction model was adopted, which was calculated
through multiplying the coefficient of friction µ0 for every slip velocity vs by the normal
force [14]. The coefficient of friction can be represented as

µ0 =


µs × STEP(abs(vs),−Vs,−1, Vs, 1)× sgn(vs), i f abs(vs) < Vs
STEP(abs(vs), Vs, µs, Vd, µd)× sgn(vs), i f Vs < abs(vs) < Vd
µd × sgn(vs), i f abs(vs) > Vd

(9)

where µs and µd are the static and dynamic coefficients of friction, which can be found for
different contact materials in reference [33]. Vs and Vd are the static and dynamic transition
velocities, which can be designated according to experience. The four parameters here were
set to µs = 0.8, µd = 0.76, Vs = 1× 10−4 m/s, and Vd = 1× 10−2 m/s.

Procedure 3: Modeling of outer-race bearing fault.
Benefiting from the introduction of a geometric bearing model, outer-race faults can

be modeled by selecting different shapes of slots and sections on the geometry model.
Figure 4 shows geometric bearing models without and with outer-race faults. Through
replacing the normal bearing at the far end of the motor driver with a bearing with an
outer-race fault, the dynamic vibration model of a rotor–bearing system with a bearing
fault was further established. Here, the bearing health status is embedded as an additional
variable β to expand the dynamic vibration model, and the vibration acceleration response
Facc(ω, β, x0, y0, z0, t) at different rotor speeds and bearing health statuses can be obtained
via numerical simulation.
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Figure 4. Geometric models of bearing. (a) Normal bearing without fault, (b) defected bearing with
outer-race fault.

3. Physics-Informed Hybrid Modeling Method

In this section, a physics-informed hybrid modeling method, as sketched in Figure 5,
is proposed. With the simulated vibration responses obtained using the physics-based
dynamic model, the vibration generation network was designed to quickly generate vi-
bration signals under different operating conditions, including different rotor speeds, and
bearing health statuses. To improve the accuracy of the dynamic vibration model, which
was combined with measured vibration signals, a data mapping network was designed
to correct the generated vibration signals into corresponding signals that approximate the
measured ones. In this way, through combination with the physics-based model, algorithms
of vibration generation and data mapping, and measured vibration data, a physics-data
hybrid model was established, as shown in Figure 5a.

Figure 5. The proposed physics-informed hybrid modeling method. (a) Overall architecture, (b) dia-
gram of Cartesian coordinate system involved in ADAMS.

3.1. Description of Simulated and Measured Vibration Datasets

Samples of the simulated vibration dataset were observed from the physics-based
numerical simulation model, and samples of the measured vibration dataset were collected
from an actual rotor–bearing test rig. The simulated and measured vibration datasets
included radial horizontal vibration signals collected at different rotor speeds and bearing
health statuses, which were observed on the bearing pedestal away from the motor driver.
They both contained 22 sets of operating conditions for 11 types of rotor speeds and 2 types
of bearing statuses. The specific numerical simulation parameters of the physics-based
model are listed in Table 2.
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Table 2. Numerical simulation parameters of physics-based model.

Parameter Type Parameter Value

Opecrating conditions Rotor angular speed (ω/rpm) 1000–2000
Bearing health status (β) 0, 1

Process-dependent
parameters

Width of defect area (W/mm) 1
Length of defect area (L/mm) 0.5
Observed Cartesian generalized coordinates (mm) (45, 4.5, 0)

Simulation parameters Length per sample (s) 1
Step size per sample 1/2000

To obtain the simulated vibration samples, these steps were followed: Firstly, the
original health status of the bearing was defined as normal, where β was set to 0. When the
health status of the bearing was switched to 1, the geometric model of the normal bearing
was substituted with a defected bearing with an outer-race fault. The length of the defect
area in the outer race was 0.5 mm, and the width was 1 mm. Secondly, a motion around the
z-axis was applied to drive the rotor to rotate. The speed of motion ranged from 1000 rpm to
2000 rpm, and numerical simulations were repeated in 100 rpm intervals. At the same time,
the simulated vibration acceleration signals were observed and recorded. As illustrated in
Figure 5b, the Cartesian coordinate system was defined in ADAMS, with node 40490 of
the rotor’s flexible model serving as the origin, which was assigned coordinates of (0 mm,
0 mm, 0 mm). This node coincided with the center point of the inner race of the bearing
as well as the flexible model node 423 of the bearing pedestal. The observation point was
located at the center of the side surface of the bearing pedestal at the nondriving end of the
rotor, with the corresponding coordinates being (45 mm, 4.5 mm, 0 mm). It corresponded to
the right point of the bearing pedestal away from the motor driver. The coordinate for the
point of motor drive application on the rotor was (0 mm, 0 mm, −358.5 mm). The length of
each vibration sample was 1 s, and the step size was set to 1/2000. And these observed
vibration samples made up the simulated vibration dataset.

3.2. Construction of Vibration Generation Network

Figure 6 presents a flow chart of the physics-informed hybrid modeling method
based on vibration generation and data mapping networks. With the simulated vibration
dataset, the vibration generation network G was designed to convert the physics-based
numerical simulation model of dynamic vibration into a reduced numerical model. This
network takes the operating condition vectors {vn}Nv

n=1(vn ∈ V) as the input, and takes the
vibration signals {sn}Ns

n=1(sn ∈ X) simulated via numerical simulation as the truth. The
basic structure of this network adopts a fully connected network and is described as

s̃n = G(vn(ω, β)) (10)

where s̃n denotes the signal generated by the trained vibration generation network.
A structure diagram of the vibration generation network is shown in Figure 7a, and

the specific network parameters are listed in Table 3. It is noted that the first three linear
layers utilize the leaky ReLU nonlinear activation function, and the network adopts the He
initialization method. This initialization method does not drastically change the strength of
the input signal, which allows the network to capture more useful data features.

Table 3. Structure parameters of the vibration generation network.

Network Layer Output Size Operator

Linear1 11 × 1 × 128 Leaky_ReLU
Linear2 11 × 1 × 256 Leaky_ReLU
Linear3 11 × 1 × 512 Leaky_ReLU
Linear4 11 × 1 × 1000 Tanh
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Figure 6. Flow chart of hybrid modeling method based on vibration generation and data map-
ping networks.

Figure 7. The structure diagram of two networks. (a) The vibration generation network, (b) the data
mapping network.

Considering the periodic characteristic of vibration signals, the loss function LG of the
generation network adds a constraint on the basis of the traditional mean squared error
(MSE). The improved loss function LG was designed to constrain both the frequency and
phase of the vibration signals and to achieve better performance for sequence generation
tasks. The improved loss function LG is represented as

LG = λ1
1
N

p=N

∑
p=1

(s̃p − sp)
2 + λ2

2
N

p=N/2

∑
p=1

(T(s̃p)− T(s̃p))
2 (11)

where N is the number of sampling points. p is the index of the sampling points, and its
value is defined as p = 0, 1, . . . , N − 1. λ1 and λ2 are optional weight coefficients. In the
specific case in our study, the first parameter λ1 was set to 0.25, and the second parameter
λ2 was set to 0.75. T denotes the discrete Fourier transform.

The reduced numerical model trained based on (10) and (11) could generate vibration
signals according to the actual working conditions of the rotor–bearing test rig. This
provides effective and efficient support for the following data mapping process.
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3.3. Construction of Data Mapping Network

The data mapping network in Figure 6 was then designed to correct the generated
vibration signals obtained using the vibration generation network, making them consistent
with the distribution of the measured signals. It is supposed that the simulated samples
{sn}Ns

n=1(sn ∈ X) and the measured samples {Sn}Nm
n=1(Sn ∈ Y) are subject to different dis-

tributions pdata(s) and pdata(S). An encoder–decoder network is adopted as the basic
structure for realizing data mapping. A structure diagram of the mapping network is
shown in Figure 7b. Table 4 lists the specific parameters of the network.

Table 4. Structure parameters of the encoder–decoder network.

Module Network Layer Output Size Operator

Encoder

Conv1 11 × 3 × 501 ReLU, MaxPool
Conv2 11 × 6 × 249 ReLU, MaxPool
Linear1 11 × 512 ReLU
Linear2 11 × 256 ReLU
Linear3 11 × 10 –

Decoder

Linear4 11 × 128 Leaky_ReLU
Linear5 11 × 256 Leaky_ReLU
Linear6 11 × 512 Leaky_ReLU
Linear7 11 × 1000 Tanh

The mapping function M: X→ Y is described as

YS∼pdata(S) ≈ M(Xs∼pdata(s)) (12)

In (12), the mapping function M consists of an encoder subnetwork E and a decoder
subnetwork D. And the process of the mapping network can be expanded as

S̃n = D(concat(vn(ω, β), E(s̃n))) (13)

where S̃n denotes the signal output by the trained data mapping network.
As expressed in (13), the encoder network firstly represents the generated vibration

signal as a low-dimensional eigenvector. The operating condition vector is then concate-
nated to the eigenvector, and the decoder network converts them into corrected simulated
vibration signals. The loss function adopted in this data mapping network is consistent
with (11). To summarize, the vibration generation network and data mapping network
constitute the physics-informed hybrid model, which outputs the corrected simulated
vibration responses. Combined with (10) and (13), the constructed hybrid model can output
vibration responses corresponding to the given operating conditions.

4. Experimental Verification
4.1. Experimental Setup

In order to evaluate the effectiveness of the proposed hybrid modeling method, the
dual-disc rotor–bearing test rig presented in Figure 8 was adopted for experiments. The
Hall sensor built into the motor driver was employed to collect rotor speed signals. A
single-axis accelerometer (ULT2019/V), which was installed on the right side of bearing
pedestal, was used to collect vibration signals in the radial horizontal direction. The rotor
speed signal and vibration acceleration signal were synchronously recorded using an
acquisition card (NI USB-6210) at a frequency of 2000 Hz.

Table 5 lists the parameters of the experimental rotor–bearing platform. The equipped
rolling bearing was the SKF 6200Z type. The outer-race fault of bearing was preprocessed
via the electrical discharge machining. The length of the defect area was 0.5 mm, and the
width was 1 mm. The experimental results were as follows.
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Figure 8. Experimental setup of the dual-disc rotor–bearing platform.

Table 5. Parameters of the experimental rotor–bearing system.

Parameter Numerical Value

Length of shaft (mm) 460
Radius of shaft (mm) 5
Radius of disc (mm) 38
Thickness of disc (mm) 18
Diameter of rolling element (mm) 4.76
Diameter of inner race (mm) 10
Diameter of outer race (mm) 30
Number of rolling elements 8
Contact angle (◦) 49.3

4.2. Numerical Analysis of Physics-Based Dynamic Vibration Model

To evaluate the effectiveness of the numerical simulation in modeling dynamic vi-
brations, a rotor–bearing system equipped with a normal bearing and equipped with an
outer-race bearing fault were separately simulated. Figures 9 and 10 show the simulation
results of the rotating speed and vibration acceleration when the rotor was supported
by two normal bearings. Theoretically, the rotating speed of the cage can be represented
as [32,34]

ωcage =
1
2
[ω(1− γ) + ω0(1 + γ)] (14)

where γ is the ratio of the rolling element radius r to its center-circle radius rc. ω0 is the
rotating speed of the bearing’s outer race.

Figure 9. Simulated speed signals of different bearing components when rotor rotates at 2000 rpm.
(a) Cage, (b) rolling element.
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Figure 10. Comparison of vibration signals of a rotor–bearing system under a speed-up condition
from 0 rpm to 4000 rpm. (a) The measured signal, (b) the simulated signal, (c) their spectrum results.

The rotating speed of the rolling element can be represented as [32,34]

ωroller =
rc

2r
(ω0 −ω)(1− γ)(1 + γ) (15)

When the rotor operates at a constant speed of 2000 rpm, the theoretical rotating speeds
of the cage and rolling element are calculated as 762 rpm and −3963.6 rpm according to
(14) and (15). Since the rolling element not only moves with the rotation of the cage but
also rotates around itself under the contact of the inner-race and outer-race raceway, its
rotational direction is opposite to that of the rotor. Figure 9a presents the simulated rotating
speed signal of the cage when the rotor operates at 2000 rpm, and its average speed is
769.65 rpm. Figure 9b presents the simulated speed signal of the rolling element when
the rotor operates at 2000 rpm, and its average speed is −3649.2 rpm. Comparing the
theoretical and simulated values, the error is less than 7.93%.

When the rotor operates under speed-up conditions, due to the natural frequency
characteristics of the rotor, strong vibration occurs at a specific critical speed. The operating
condition was set to increase from 0 rpm to 4000 rpm in 10 s for both the experiment and the
numerical simulation, and the acceleration process followed the designed S-shaped velocity
curve. Figure 10a depicts the measured vibration acceleration signal, which reaches a
critical speed of 3788 rpm at 8.58 s. Figure 10b depicts the simulated vibration acceleration
signal, which reaches a critical speed of 3821 rpm at 8.72 s. Figure 10c presents their
spectrum results, and it can be observed that the frequency component corresponding to
the largest vibration amplitude in the measured signal is 61.95 Hz. And, the uppermost
frequency component in the simulated signal is 62.71 Hz. The critical speeds and the
corresponding frequency components obtained through the numerical simulation and the
physical sensor are highly consistent. Therefore, it can be considered that the constraints
given in Table 1 and the numerical simulation procedures are feasible.

For a rolling bearing system, a comparison between the numerical simulation and
the theoretical model represented in Equations (2)–(6) was conducted. Since the vibration
caused by the bearing considered in this study is mainly from a bearing fault, the bearing
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system was modeled using the defected bearing with a 1 mm defect width in the outer
race. The accuracy of the bearing force was evaluated using the vibration acceleration
response, which is proportional to the vibration force and can be easily measured in physical
systems. The vibration response calculated using the theoretical model was obtained by
solving Equations (2)–(6) using the ode45 algorithm. Similarly, for the numerical simulation
model of the bearing system, only the bearing and the bearing pedestal were imported
into ADAMS. The contact constraints expressed in Equations (7)–(9), the spring-damping
constraint between the bearing pedestal and the ground, and the spherical joint constraint
between the cage and rollers were applied according to Table 1. Figure 11 presents a
comparison of the vibration signals solved using Equations (2)–(6) and simulated using
Equations (7)–(9) at 2000 rpm. It can be observed that both the calculated signal and the
simulated signal have 10 shocks within 0.1 s. The corresponding frequency is about 100 Hz.
The overall amplitude and curve shape of the calculated signal are basically consistent with
those of the simulated signal. Therefore, it is considered reasonable to calculate the bearing
force by applying the contact force constraint expressed in Equations (7)–(9) in ADAMS,
which can reflect its most obvious vibration characteristics.

Figure 11. Comparison of vibration responses solved using Equations (2)–(6) and simulated by
Equations (7)–(9).

For a rotor–bearing system, a further comparison between the numerical simula-
tion and experimental values was conducted. The whole solid model of a rotor–bearing
system with a defected bearing was imported into ADAMS for numerical simulation.
Figure 12 presents the numerical simulation results of vibration acceleration when the rotor
is supported by one normal bearing and one bearing with an outer-race fault at 2000 rpm.
According to (4) and (5), the defected bearing with an outer-race fault introduces additional
periodic components into the vibration forces. The theoretical characteristic frequency of
the fault in the introduced vibration component can be represented as [14]

fouter =
Nb
2
(1 + γ) fω (16)

where fω denotes the rotating frequency, which is proportional to the rotating speed of the
the rotor.

According to (16), the theoretical characteristic frequency of the bearing outer-race
fault is calculated as 101.6 Hz. Figure 12b shows the frequency spectra of the vibration
acceleration signals in Figure 12a. In Figure 12b, there are obvious fault characteristic fre-
quencies, with its frequency multiplications in the simulated spectrum, which are 102.8 Hz,
205.6 Hz, 309.6 Hz, and 412.8 Hz, respectively. The error between the obvious fault charac-
teristic frequencies obtained via numerical simulation and their theoretical values is less
than 2%. Comparing with the simulated and measured vibration signals, their frequency
components are highly consistent. The amplitude at the fault characteristic frequency in
the simulated spectrum is 0.0201 g2/Hz, and the amplitude of the measured spectrum is
0.0195 g2/Hz, which are also in good agreement. To summarize, the physics-based dynamic
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vibration model constructed through numerical simulation is proved to be effective, which
can reflect the primary characteristics of a rotor–bearing system.

Figure 12. Comparison of simulated and measured vibration signals of rotor–bearing system with
bearing outer-race fault at 2000 rpm. (a) Acceleration response, (b) frequency spectrum.

4.3. Generation of Simulated Vibration Samples and Their Validation

To verify the effectiveness of proposed vibration generation network used to efficiently
generate simulated vibration samples under different operating conditions, networks with
different loss functions were compared. For the sake of description, the traditional MSE loss
function is denoted as Loss 1, and the improved loss function expressed in (11) is denoted
as Loss 2. Networks with Loss 1 and Loss 2 were both trained for 300 epochs using the
constructed simulated vibration dataset. The feasibility of the vibration generation network
was verified by comparing the consistency between the generated signal obtained using
the network and the vibration signal obtained from the numerical simulation.

Figure 13 presents the vibration acceleration signals generated using the networks with
Loss 1 and Loss 2 when the rotor is supported by one normal bearing and one outer-race
fault bearing at a speed of 1200 rpm. It can be observed from Figure 13a that the vibration
acceleration response generated using the network with Loss 1 poorly coincides with the
numerically simulated response. The MSE value between the two responses is 0.005. In
Figure 13b, the vibration signal generated using the network with Loss 2 highly coincides
with the numerically simulated response. The MSE value between the two responses is
0.0027. Above results indicate that the proposed loss function can effectively improve
the network performance when generating simulated vibration samples. Moreover, the
numerical simulation took 36 min and 28 s to generate a 1-second vibration sample, while
the trained network took 3.95 s. This proves that the trained vibration generation network
can be utilized as an upgraded alternative to numerical simulation and greatly improve the
efficiency of generating simulated vibration samples.

For extending the evaluation to test cases outside of the training set points but within
the chosen speed range, an additional analysis was conducted. Figure 14 presents a com-
parison of the signals generated using the vibration generation network with Loss 2 and
obtained via simulation at 1250 rpm. It can be seen from Figure 14b that both the generated
vibration signal and the simulation one have an obvious outer-race fault characteristic
frequency, as well as double, triple, and five times the frequency components; the corre-
sponding amplitude differences are in a relatively small range. This result allows us to
demonstrate the network’s generation preference more effectively.
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Figure 13. Comparison of signals generated using vibration generation network at 1200 rpm. (a) Net-
work with traditional Loss 1, (b) network with improved Loss 2.

Figure 14. Comparison of signals generated using vibration generation network with Loss 2 and
obtained via simulation at 1250 rpm. (a) Time-domain signals, (b) frequency-domain signals.

4.4. Performance Analysis of Physics-Informed Hybrid Modeling Method

To verify the effectiveness of the proposed hybrid modeling method, the dynamic
vibration signals output by the hybrid model were compared with the corresponding
measured vibration signals under both constant-speed and variable-speed conditions. And,
the WGAN network driven solely using the measured data was adopted as a comparison
with the proposed hybrid modeling method. The datasets used for the two conditions are
described in Table 6.
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Table 6. Datasets used for constant-speed and variable-speed conditions.

Operating Condition Dataset Rotating Speed (rpm) Number of Samples

Constant-speed Simulated dataset 1900 120
Measured dataset 1900 120

Variable-speed

Simulated dataset
1800
1900
2000

120
120
120

Measured dataset
1800
1900
2000

120
10
120

Under the constant-speed condition, the simulated and measured vibration datasets
both had 120 samples obtained at a speed of 1900 rpm. The bearing heath statuses included
a normal bearing and a defected bearing with an outer-race fault. The simulated and
measured samples were preprocessed in the frequency domain to highlight the primary
vibration characteristics. A total of 96 samples accounting for 80% of all samples were
randomly used for training, and the remaining 20% were used for testing. The proposed
hybrid modeling method consisted of a trained vibration generation network and a map-
ping network to be trained. The proposed hybrid model and the WGAN network were
both trained 500 epochs. Figures 15 and 16 present vibration signals with an outer-race
bearing fault at 1900 rpm, which were, respectively, obtained using the proposed hybrid
model and the WGAN network. As can be observed from Figures 15b and 16b, the fault’s
characteristic frequency and its multiples of the frequency occur in the measured spectrum,
whose amplitudes are prominent. The Pearson correlation was adopted to evaluate the con-
sistency between the output signal of the hybrid method and the measured vibration signal.
The Pearson coefficient between the two vibration spectra in Figure 15b is 0.89, indicating
that the vibration signal output by the proposed hybrid model is strongly correlated with
the measured signal. And, the Pearson coefficient between the two spectra in Figure 16b is
0.86, which also indicates that the signal output by the WGAN network is highly corrected
with the measured signal. The above results prove that the proposed hybrid model and
the WGAN network can effectively simulate the dynamic vibration response under the
constant-speed condition when the numbe rof vibration samples is relatively sufficient.

Figure 15. Comparison of the simulated vibration signal obtained using proposed hybrid modeling
method and the signal measured under the constant-speed condition. (a) Vibration acceleration
response, (b) frequency spectrum.

Under the variable-speed condition, the simulated dataset had a total of 360 samples
obtained via numerical simulation at 1800 rpm, 1900 rpm, and 2000 rpm. The measured
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dataset consisted of 240 samples collected using a sensor at 1800 rpm and 2000 rpm, with
10 samples at 1900 rpm. This is assumed to be a scenario with insufficient samples at
1900 rpm in actual applications. Figures 17 and 18 show the vibration signals with an
outer-race bearing fault at 1900 rpm, which were, respectively, output by the proposed
hybrid modeling method and the WGAN network. As can be seen in Figure 17a, the signal
output by the proposed hybrid model approximates the measured vibration signal, and
the MSE between the two signals is 0.0015. However, the MSE between the signal output
by the WGAN network and the measured vibration signal in Figure 18a is 0.2658, which
indicates that there exists a large difference between the two signals. Moreover, from the
spectral perspective, the Pearson coefficient between the signal output by the proposed
hybrid modeling method and the measured vibration signal in Figure 17b was calculated
as 0.95, which represents a strong correlation. And, the Pearson coefficient between the
signal output by the WGAN network and the measured signal was calculated as only
0.42. The weak correlation between the two signals shows that the WGAN network cannot
perform accurate dynamic vibration modeling when the number of samples is insufficient
in situations with different speeds. As a comparison, the data-driven characteristic of the
WGAN network means that it needs to learn from a large amount of training data and
then generate samples. As shown in Figure 16, when the number of samples at a constant
speed are sufficient, the trained WGAN model can output vibration sequences with high
accuracy. However, when the number samples for a certain speed are not sufficient, the
model that is solely data-driven struggles to capture the complex relationship between the
vibration characteristics of a rotor–bearing system and varying rotating speeds. This leads
to large amplitude differences between the measured and simulated signals, especially
for the amplitudes of each frequency component, as shown in Figure 18. In our proposed
hybrid modeling method, the amount of simulated data at different rotational speeds
provides the basic vibration characteristics. The effective combination of a large amount of
simulated data and accurate measured data makes the hybrid modeling method able to
output vibration responses with high accuracy. In conclusion, the above results demonstrate
the effectiveness and superiority of proposed modeling method for simulating dynamic
vibration responses, especially in scenarios with insufficient samples.

Figure 16. Comparison of the simulated vibration signal obtained using a WGAN network and the
measured signal under the constant-speed condition. (a) Vibration acceleration response, (b) fre-
quency spectrum.
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Figure 17. Comparison of the simulated vibration signal obtained using the proposed hybrid model-
ing and the measured signal under a variable-speed condition. (a) Vibration acceleration response,
(b) frequency spectrum.

Figure 18. Comparison of the simulated vibration signal obtained by WGAN network and the
measured signal under the variable-speed condition. (a) Vibration acceleration response, (b) fre-
quency spectrum.

5. Conclusions

This study explored a physics-informed hybrid approach for modeling the dynamic
vibrations of rotor–bearing systems, which integrates physics-based and data-driven mod-
eling methods. A numerical simulation of a physics-based dynamic vibration model was
firstly built using computer-aided technologies. Then, simulated vibration data obtained
from numerical simulation, measured vibration data, and algorithms from the vibration
generation network and data mapping network were combined to construct a physics-
informed hybrid model. Finally, simulation and experimental results not only verified the
feasibility of the physics-based model but also proved the effectiveness of physics-informed
hybrid modeling for simulating dynamic vibration responses. Moreover, compared with
a traditional data-driven modeling method, the simulated vibration signal output by the
proposed hybrid modeling method is more consistent with the measured signals under
both constant-speed and variable-speed conditions. For increasingly high-speed, complex,
and automated rotating machinery, more complex operating conditions and composite fault
types need to be considered in future work to establish a high-fidelity dynamics model.
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Nomenclature

m1, m4 equivalent masses of rotor at O1 and O4
m2, m3 masses of discs
cs1, cs2 damping of rotor at O1 and O4
cd1, cd2 damping of rotor at O2 and O3
k1, k2, k3, k4 stiffness of rotor at O1, O2, O3 and O4
g acceleration due to gravity
Fbx, Fby supporting forces of bearing in radial x and y directions
kb Hertz elastic coefficient
j index of rolling elements
Nb number of rolling elements
θj rotating angular at time t of the jth rolling element
δj contact deformation of the jth rolling element
µ initial radial clearance of rolling bearing
xin, yin displacements of the inner race in radial x and y directions
xout, yout displacements of the outer race in radial x and y directions
β switching variable indicating the health status of the bearing
δd displacement excitation caused by outer-race bearing fault
φ0 initial angular of defect area
φd span angular of defect area
δdmax maximum value of the displacement excitation
r radius of rolling element
L length of defect area
keq stiffness coefficient of rolling bearing
ceq damping coefficient of rolling bearing
Fpreload preload of spring
u0 displacement caused by preload
Fj normal contact force
d penetration depth
ς force exponent
K equivalent contact stiffness
C equivalent contact damping
xj distance from geometry center of the jth rolling element to raceway
vs slip velocity
µ0 coefficient of friction
µs static coefficient of friction
µd dynamic coefficient of friction
Vs static transition velocity
Vd dynamic transition velocity
ω rotor angular speed
W width of defect area
λ1, λ2 optional weight coefficients
T discrete Fourier transform
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ωcage rotating speed of cage
ωroller rotating speed of rolling element
rc center-circle radius of rolling element
γ ratio of rolling element radius r to its center-circle radius rc
ω0 rotating speed of bearing outer race
fouter fault characteristic frequency of outer-race fault
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