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Abstract: This paper reports the design of an iterative-learning-scheme-based fault-estimation
method for interconnected nonlinear multi-flexible manipulator systems with arbitrary initial value.
For state estimation, observers are employed to reconstruct the state. The proposed scheme ensures
that each flexible manipulator subsystem’s states can track their desired reference signals within
a finite time. In the next step, an iterative learning fault-estimation law is proposed to track the
actual fault signal. In contrast to the previous literature, this approach utilizes potential information
from previous iterations to enhance the accuracy of the estimation in the current iteration. Based on
these efforts, the obstacle caused by the arbitrary initial value is circumvented, and addressing the
fault-estimation errors of each flexible manipulator subsystem are uniformly ultimately bounded is
successfully achieved. Then, the λ-norm is developed to explore the convergence conditions of the
presented methods. Finally, the effectiveness and feasibility of the proposed approach are verified
through assessment of simulation results.

Keywords: fault estimation; interconnected multi-flexible manipulator systems; iterative learning
scheme; arbitrary initial value

1. Introduction

With the rapid advancement of industrialization, control systems have become in-
creasingly intricate. Interconnected multi-flexible manipulator systems, which can achieve
mutual coordination and cooperation among multi-flexible manipulator and complete
complex parallel tasks, have received widespread attention. This technology has found
widespread application across various domains, including industrial automation, health-
care, aerospace and more. In these applications, when the flexible manipulator suffers from
faults, these tasks are difficult to complete, and can cause significant security incidents and
economic losses. It is well-known that there is information transmission among subsystems
within interconnected multi-flexible manipulator systems, implying that a malfunction
in one subsystem can lead to anomalies in another [1–3]. In other words, the impact of
faults and the resultant losses in interconnected multi-flexible manipulator systems far
exceed those in individual flexible manipulator systems. Therefore, the safety and reliability
requirements of flexible manipulators have become more stringent, and it is now necessary
to undertake research on fault estimation for interconnected multi-flexible manipulators.

Fault estimation [4–6] as a significant means of fault diagnosis and prediction not
only enables early fault detection but also provides precise fault information, including the
fault magnitude and shape. This provides a basis for system control decisions, effectively
reducing the accident occurrence rate. In recent years, the design and analysis of fault-
estimation methods have produced fruitful results within interconnected systems and
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flexible manipulator systems. In ref. [7], a distributed fault-estimation and fault-tolerant
control system for continuous-time interconnected systems is proposed. This method fully
utilizes the associated information between subsystems to improve the accuracy of fault
estimation. Reference [8] reports the proposal of a new distributed fault-estimation observer
with adjustable parameters for a class of nonlinear interconnected systems. It can achieve a
lower performance level in quantitative analysis compared with existing fault-estimation
approaches. In [9], a robust fuzzy observer design method is proposed to estimate both
the state and faults for the considered class of a single-link flexible joint manipulator. In
reference [10], a hidden Markov model method is used to represent the asynchronous
mode variations between the original systems and the fault estimator. Although these
existing methods exhibit good performance in fault estimation for interconnected systems
or flexible manipulator systems, they do not consider the repetitive operation characteristics
of flexible manipulator systems. A number of works have drawn attention to interconnected
multi-flexible manipulator systems that can perform repetitive operations.

An iterative learning scheme [11,12] has been proposed to achieve the perfect tracking
of a prescribed reference trajectory for systems that operate repetitively. This scheme utilizes
important information from past experiences to improve the system’s current behavior,
making it a popular topic in existing research. In reference [13], an iterative learning
observer is developed to achieve fault estimation and state reconstruction simultaneously
for nonlinear systems with varying trial lengths. In reference [14], aiming at a class of
nonlinear systems that contains faults, a novel iterative learning scheme is applied to
fault detection, and a novel algorithm for fault detection is used to achieve the goal of
fault detection in these systems. In reference [15], a state/fault simultaneous estimation
observer based on iterative learning methods is designed for random repetitive systems
with Brownian motion. It accurately estimates both the state and faults through iterations.
However, the authors did not consider the initial value problem of the system. Traditional
iterative learning fault-estimation methods require strict consistency between the initial
state and the expected initial state for each iteration. However, with regard to the fault-
estimation problem of flexible joint robotic arm systems that perform repetitive operations,
the influence of the material properties of flexible robotic arms leads to deviations in the
initial state in each iteration, resulting in failure to meet the strict consistency requirement
between the initial state and the expected initial state. Currently, research on the initial
value problem includes the following four cases in terms of scientific studies: (1) the case
where the ideal initial value is exactly equal to the system initial value; (2) the case where
the system initial value is not equal to the ideal initial value, but the system initial value
remains fixed at the same value for each iteration; (3) the case where the system initial
value can be any value at each iteration, but its magnitude varies within a certain range
of the ideal initial value; and (4) the case where the system initial value can be any value.
The existing literature focuses more on iterative learning control methods for systems with
inconsistent initial states and ideal initial states. Reference [16] describes iterative learning
control for a fractional order nonlinear system with a fixed initial value. In reference [17],
a novel practical ILC updating law is proposed to improve the path-tracking accuracy
of nonholonomic mobile robots with a fixed initial value. In reference [18], a different
initial state that shifts the rectifying schemes and solves the problem of iterative learning
control for high-order nonlinear systems with arbitrary initial state error is described.
However, there are few studies that have simultaneously considered the initial shifts
and faults. Regarding the case of a single-link flexible robotic arm experiencing a driver
failure, ref. [19] proposed an adaptive boundary fault-tolerant control method, ref. [20]
introduced an adaptive compensatory control method, and [21] suggested an adaptive PID
control strategy. These control methods assume that the type of mechanical arm fault is
known. However, during the operation of the mechanical arm, the type of driver failure
is often unknown. Among these fault estimations, the tracking error and the system state
error in previous iterations are not considered in the current iteration. Therefore, it is a
challenging and necessary research task to design a fault-estimation method based on an
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iterative learning strategy to detect faults in a timely manner and to accurately estimate the
fault signals.

Based on the above discussion, a novel iterative-learning-based fault-estimation
method is proposed in this paper to solve the problem of fault estimation for interconnected
nonlinear flexible manipulator systems with arbitrary initial value.

The main contributions of this paper are as follows:

(1) To address the problem of arbitrary initial value offsets in each subsystem of an
interconnected multi-flexible manipulator system, a novel initial value reconstruction
method based on an iterative learning strategy is proposed, which eliminates the
adverse effects induced by arbitrary initial value offsets within interconnected multi-
flexible manipulator systems.

(2) Considering the interconnections among the flexible manipulator subsystems, an
iterative learning fault-estimation method is designed. This method can quickly and
accurately estimate the fault signals occurring in each subsystem.

The paper is organized as follows: Section 2 provides a description of the observer
system and the proposed iterative learning method. Section 3 describes the convergence
conditions for this method, and Section 4 presents simulation examples of an interconnected
dual-flexible manipulator system with arbitrary initial value to illustrate the theoretical
findings of the paper. Finally, the conclusions are presented in Section 5.

2. Problem Formulation and Preliminaries
2.1. Interconnected Nonlinear System

This paper considers an interconnected system consisting of N single-link flexible
manipulators. The system repetitively executes a given trajectory within the finite time
interval [0, T]. A dynamic model of the subsystem i is as follows [22]:

Iq̈i,k + K(qi,k − θi,k) + Mgl sin qi,k = 0

Jθ̈i,k − K(qi,k − θi,k) = ui,k + fi,k
(1)

where k denotes the index of the iterative number, i ∈ {1, 2, · · ·, N}, qi,k ∈ R1, θi,k ∈ R1

ui,k ∈ R1 and fi,k ∈ R1 correspond to the rotational angle of the manipulator arm, the motor
angle, the motor input torque and the motor fault of the i-th flexible manipulator subsystem,
respectively. I represents the moment of inertia of the manipulator arm, J denotes the
inertia matrix of the motor, K represents the joint’s elastic stiffness coefficient, M is the mass
of the manipulator arm, l denotes the center of mass position of the manipulator arm, and
g represents the gravitational acceleration.

To facilitate designing subsequent fault-estimation methods, the dynamic equation
of the i-th single-link flexible manipulator system can be expressed based on the intercon-
nected flexible manipulators system (1) as follows:

ẋi,k(t) = Aixi,k(t) + Biui,k(t) + g1(xi,k(t)) + Ei fi,k(t) +
N

∑
j=1,j 6=i

Hijg2

(
xj,k(t)

)
yi,k(t) = Cixi,k(t)

(2)

where xi,k(t) =
[

qi,k q̇i,k θi,k θ̇i,k
]T is the state vector, ui,k(t) ∈ R1 represents the input

vector, fi,k(t) ∈ R1 denotes the bounded actuator fault signal and satisfies fi,k + 1(t) = fi,k(t),
and yi,k(t) ∈ R4 is the output vector. The parameter matrices Ai, Bi, Ei, Hij and Ci are
constant real and with appropriate dimensions. The system matrices satisfy Assumption 1.
It is noted that Hij is the interconnected matrix between the subsystems i and j, and t is the
time index. Specially, the vectors g1(xi,k(t)) and g2(xi,k(t)) denote the continuous Lipschitz
nonlinear terms satisfying the following Assumption 2.
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Assumption 1. The pairs (Ci, Bi) and (Ai, Ci) are controllable and observable, respectively. The
matrix Ci and Ei are of full rank.

Assumption 2. There exists a Lipschitz constant ρ; thus, the nonlinear functions satisfy∥∥gj(x̂i,k(t))− gj(xi,k(t))
∥∥ ≤ ρj

∥∥x̂i,k(t)− xi,k(t)
∥∥, j = 1, 2 (3)

2.2. Fault-Estimation Design Based on Iterative Learning Control

For the interconnected nonlinear system (1), the following observer for the i-th subsys-
tem is constructed:

˙̂xi,k(t) = Ai x̂i,k(t) + Biui,k(t) + g1(x̂i,k(t)) + Ei f̂i,k(t)

+
N

∑
j=1,j 6=i

Hijg2

(
x̂j,k(t)

)
+ L(yi,k(t)− ŷi,k(t))

ŷi,k(t) = Ci x̂i,k(t)

(4)

where x̂i,k(t) ∈ R4×1, ŷi,k(t) ∈ R4×1 and f̂i,k(t) ∈ R1×1 denote the state estimation, the
output estimation, and the fault estimation, respectively. L ∈ R4×4 represents the observer
gain matrix to be determined. The fault-estimation law based on the iterative learning
scheme is represented by Equation (5). The term f̂i,k(t) denotes the fault estimate based on
the iterative learning scheme, which is presented as follows:

f̂i,k + 1(t) = f̂i,k(t) + Ki,1∆yi,k(t) + Ki,2∆ẏi,k(t) (5)

where Ki,1 and Ki,2 are the estimating gain matrices, ei,k(t) is the state estimation error,
∆yi,k(t) is the output estimation error, ∆ẏi,k(t) is the derivative of the output estimation
error, and ri,k(t) is the fault-estimation error.

ei,k(t) = x̂i,k(t)− xi,k(t)
∆yi,k(t) = ŷi,k(t)− yi,k(t)

ri,k(t) = f̂i,k(t)− fi,k(t)

(6)

Based on the observer and the estimator designed above, the main purpose of this
paper is to find the appropriate parameters to ensure convergence of the two error terms. lim

k→∞
ei,k(t) = 0

lim
k→∞

ri,k(t) = 0
(7)

Remark 1. The flexible manipulator system runs on a finite time interval of [0, T], and then
repeatedly runs k times. The convergence result we seek is that the fault estimation fully tracks the
actual fault throughout the interval of [0, T] after k iterations.

Lemma 1. If ak is the sequence of real numbers, which satisfies

‖ak+1‖ ≤ α‖ak‖+ β 0 ≤ α < 1, β > 0 (8)

then, lim
k→∞
‖ak‖ ≤

β
1−α .

2.3. Problem Analysis

Due to the material properties of flexible joint robotic arms, which cause the system to
deviate from the initial state in each iteration, there is a failure to meet the strict requirement
of iterative learning strategies for the initial value to be consistently identical to the ideal
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initial value. This significantly constrains the application of an iterative-learning-scheme-
based fault-estimation approach for flexible manipulator systems.

In this paper, the system initial value can be any value at each iteration, but its
magnitude varies within a certain range of the ideal initial value and satisfies x̂i,k(0) =
xi,k(0) + δi,k, where δi,k is an arbitrary number within a certain range of xi,k(0). Hence, the
main problems considered in this paper are the following:

(1) How to track the fault signal well?
(2) How to eliminate the effect of initial value changes?

To address the first question, we design the state observer and fault-estimation law
shown in Equations (5) and (6). The next step is to obtain the convergence conditions of the
proposed method. For the second question, the initial state estimation is presented as

x̂i,k+1(0) = x̂i,k(0) + mi∆yi,k(0) (9)

where mi ∈ R4×4 are the estimating gain matrices.
Then, the main questions addressed in this paper include finding out the appropriate

parameters of the designed iterative-learning-scheme-based estimating law for fault signal
reconstruction and the initial value estimation.

3. Convergence Analysis

In this section, the behavior of the proposed observers for the interconnected nonlinear
system (1) are analyzed and the convergence condition for fault reconstruction and the
initial state estimation are obtained.

Theorem 1. Consider the system (2) satisfying Assumptions 1 and 2. If there exist the gain
matrices Ki,1 and Ki,2, such that

Γ = max
1≤i≤N

{‖(I + Ki,2CiEi)‖} < 1 (10)

then, the fault-estimation errors ri,k(t) of each subsystem are uniformly ultimately bounded over the
entire time interval [0,T] under the action of the learning scheme (5).

Proof of Theorem 1. Based on the definition in (6), it can be obtained that

ėi,k(t) = ˙̂xi,k(t)− ẋi,k(t)
= (Ai − LCi)ei,k(t) + Eiri,k(t) + g1(x̂i,k(t))− g1(xi,k(t))

+
N

∑
j=1,j 6=i

Hij

(
g2

(
x̂j,k(t)

)
− g2

(
xj,k(t)

)) (11)

Integrating both sides of the above expression over [0, T], it can be obtained that

ei,k(t) = ei,k(0) +
∫ t

0
(Ai − LCi)ei,k(τ)dτ

+
∫ t

0
Eiri,k(τ)dτ +

∫ t

0
(g1(x̂i,k(t))− g1(xi,k(t)))dτ

+
N

∑
j=1,j 6=i

Hij

∫ t

0

(
g2

(
x̂j,k(τ)

)
− g2

(
xj,k(τ)

))
dτ

(12)
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Then, the following Equation (13) can be computed by taking the Euclidean norm on
both sides of Equation (12):

∥∥ei,k(t)
∥∥ ≤∥∥ei,k(0)

∥∥ +
∫ t

0
(‖Ai − LCi‖)

∥∥ei,k(τ)
∥∥dτ

+
∫ t

0
‖Ei‖

∥∥ri,k(τ)
∥∥dτ +

∫ t

0

(∥∥g1(x̂i,k(t))− g1(xi,k(t))
∥∥)dτ

+
N

∑
j=1,j 6=i

Hij

∫ t

0

(∥∥∥g2

(
x̂j,k(τ)

)
− g2

(
xj,k(τ)

)∥∥∥)dτ

(13)

Based on Assumption 2, one has

∥∥ei,k(t)
∥∥ ≤∥∥ei,k(0)

∥∥ +
∫ t

0
(‖Ai − LCi‖+ ρ1)

∥∥ei,k(τ)
∥∥dτ

+
∫ t

0
‖Ei‖

∥∥ri,k(τ)
∥∥dτ +

N

∑
j=1,j 6=i

∥∥Hij
∥∥ ∫ t

0
ρ2

∥∥∥ej,k(τ)
∥∥∥dτ

(14)

Then, multiplying both sides by a function e−λt, it can be obtained

e−λt∥∥ei,k(t)
∥∥ ≤ e−λt∥∥ei,k(0)

∥∥ + e−λt
∫ t

0
(‖Ai − LCi‖+ ρ1)

∥∥ei,k(τ)
∥∥dτ

+ e−λt
∫ t

0
‖Ei‖

∥∥ri,k(τ)
∥∥dτ + e−λt

N

∑
j=1,j 6=i

∥∥Hij
∥∥ ∫ t

0
ρ2

∥∥∥ej,k(τ)
∥∥∥dτ

(15)

Considering the definition of λ-norm, one obtains

∥∥ei,k(t)
∥∥

λ
≤
∥∥ei,k(0)

∥∥
λ
+

1− e−λt

λ

(
(‖Ai − LCi‖+ ρ1)

∥∥ei,k(τ)
∥∥

λ

+‖Ei‖
∥∥ri,k(τ)

∥∥
λ
+

N

∑
j=1,j 6=i

ρ2
∥∥Hij

∥∥∥∥∥ej,k(τ)
∥∥∥

λ

) (16)

Taking the sum of the above expression for i from 1 to N, one can obtain

N

∑
i=1

∥∥ei,k(t)
∥∥

λ
≤

N

∑
i=1

∥∥ei,k(0)
∥∥

λ
+

1− e−λt

λ

(
(‖Ai − LCi‖+ ρ1)

N

∑
i=1

∥∥ei,k(τ)
∥∥

λ

+‖Ei‖
N

∑
i=1

∥∥ri,k(τ)
∥∥

λ
+

N

∑
j=1,j 6=i

∥∥Hij
∥∥ N

∑
i=1

ρ2

∥∥∥ej,k(τ)
∥∥∥

λ

)

≤
N

∑
i=1

∥∥ei,k(0)
∥∥

λ
+

1− e−λt

λ

(
c1

N

∑
i=1

∥∥ei,k(τ)
∥∥

λ

+ c2

N

∑
i=1

∥∥ri,k(τ)
∥∥

λ
+

N

∑
j=1,j 6=i

c3

N

∑
i=1

∥∥∥ej,k(τ)
∥∥∥

λ

)

≤
N

∑
i=1

∥∥ei,k(0)
∥∥

λ
+

1− e−λt

λ

(
c4

N

∑
i=1

∥∥ei,k(τ)
∥∥

λ

+c2

N

∑
i=1

∥∥ri,k(τ)
∥∥

λ

)

(17)
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where c1 = max
1≤i≤N

{(‖Ai − LCi‖+ ρ1)}, c2 = max
1≤i≤N

{(‖Ei‖)}, c3 = max
1≤i≤N

{(
ρ2
∥∥Hij

∥∥)}, and

c4 = c1 + (N − 1)c3. It is noted that the condition 1−e−λt

λ c4 < 1 is satisfied when the
parameter λ is large enough. Hence, it can be concluded that

N

∑
i=1

∥∥ei,k(t)
∥∥

λ
≤ 1

c5

N

∑
i=1

∥∥ei,k(0)
∥∥

λ
+

c2

c5

1− e−λt

λ

N

∑
i=1

∥∥ri,k(τ)
∥∥

λ
(18)

where c5 = 1− 1−e−λt

λ c4
Then, based on the fault-estimation law (5) and the estimating error (6), one can

obtain that
ri,k+1(t) = f̂i,k+1(t)− fi,k(t)

= f̂i,k(t) + Ki,1∆yi,k(t) + Ki,2∆ẏi,k(t)− fi,k(t)
=ri,k(t) + Ki,1∆yi,k(t) + Ki,2∆ẏi,k(t)

(19)

Together with (11), we have

ri,k+1(t) = ri,k(t) + Ki,1∆yi,k(t) + Ki,2∆ẏi,k(t)
= (Ki,1Ci + Ki,2Ci(Ai − LCi))ei,k(t)

+ (I + Ki,2CiEi)ri,k(t) + Ki,2Ci(g1(x̂i,k(t))− g1(xi,k(t)))

+ Ki,2Ci

N

∑
j=1,j 6=i

Hij

(
g2

(
x̂j,k(τ)

)
− g2

(
xj,k(τ)

)) (20)

The Euclidean norm can be obtained as follows:∥∥ri,k+1(t)
∥∥ ≤(‖(Ki,1Ci + Ki,2Ci(Ai − LCi))‖+ ρ1)

∥∥ei,k(t)
∥∥

+ ‖(I + Ki,2CiEi)‖
∥∥ri,k(t)

∥∥ +
N

∑
j=1,j 6=i

∥∥Ki,2Ci Hijρ2
∥∥∥∥∥ej,k(t)

∥∥∥ (21)

Multiplying both sides by a function e−λt and applying the λ-norm, one can obtain that∥∥ri,k+1(t)
∥∥

λ
≤(‖(Ki,1Ci + Ki,2Ci(Ai − LCi))‖+ ρ1)

∥∥ei,k(t)
∥∥

λ

+ ‖(I + Ki,2CiEi)‖
∥∥ri,k(t)

∥∥
λ
+

N

∑
j=1,j 6=i

∥∥Ki,2Ci Hijρ2
∥∥∥∥∥ej,k(t)

∥∥∥
λ

≤c6
∥∥ei,k(t)

∥∥
λ
+ Γ

∥∥ri,k(t)
∥∥

λ
+

N

∑
j=1,j 6=i

c7

∥∥∥ej,k(t)
∥∥∥

λ

(22)

where c6 = max
1≤i≤N

(‖(Ki,1Ci + Ki,2Ci(Ai − LCi))‖+ ρ1), Γ = max
1≤i≤N

(‖(I + Ki,2CiEi)‖), and

c7 = max
1≤i≤N

(∥∥Ki,2Ci Hijρ2
∥∥).

Then, taking the sum of both sides of Equation (22), it can be derived that

N

∑
i=1

∥∥ri,k+1(t)
∥∥

λ
≤c6

N

∑
i=1

∥∥ei,k(t)
∥∥

λ
+ Γ

N

∑
i=1

∥∥ri,k(t)
∥∥

λ
+

N

∑
j=1,j 6=i

c7

N

∑
i=1

∥∥∥ej,k(t)
∥∥∥

λ

≤c8

N

∑
i=1

∥∥ei,k(t)
∥∥

λ
+ Γ

N

∑
i=1

∥∥ri,k(t)
∥∥

λ

(23)

where c8 = c6 + (N − 1)c7. Substituting (18) into (23) results in
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N

∑
i=1

∥∥ri,k+1(t)
∥∥

λ
≤ c8

(
1
c5

N

∑
i=1

∥∥ei,k(0)
∥∥

λ
+

c2

c5

1− e−λt

λ

N

∑
i=1

∥∥ri,k(τ)
∥∥

λ

)
+ Γ

N

∑
i=1

∥∥ri,k(t)
∥∥

λ

≤ c8

c5

N

∑
i=1

∥∥ei,k(0)
∥∥

λ
+

(
c8c2

c5

1− e−λt

λ
+ Γ

) N

∑
i=1

∥∥ri,k(t)
∥∥

λ

≤ (c9 + Γ)
N

∑
i=1

∥∥ri,k(t)
∥∥

λ
+ c10

(24)

where c9 = c8c2
c5

1−e−λt

λ , c10 =
c82N max

1≤i≤N
{‖δi,k‖}

c5
.

One can determine c9 + Γ < 1 as λ is sufficiently large. According to Lemma 1, it can
be concluded that the fault estimation can be satisfied (25) if the condition (10) holds.

lim
k→∞

∥∥ri,k(t)
∥∥

λ
≤ G1 (25)

where G1 = c10
1−(c9+Γ) .

Thus, the fault estimation f̂i,k(t) converges to a small neighborhood of the actual fault
fi,k(t) after enough iterations.

Theorem 2. Consider the system (1) and the initial state estimation law (9). If there exist the gain
matrices mi with the condition

Υ = max
1≤i≤N

{‖(I + miCi)‖} < 1 (26)

then, the initial state estimation errors ei,k(0) of each subsystem are uniformly ultimately bounded
over the entire time interval [0,T] under the action of the learning scheme (9).

Proof of Theorem 2. To solve the convergence problem of the initial state estimation, one
can obtain the following description by utilizing the definition (6):

ei,k(0) = x̂i,k(0)− xi,k(0) (27)

Subtracting xi,k(0) on both sides of the initial state estimation law (9), it can be ob-
tained that

x̂i,k+1(0)− xi,k(0) = x̂i,k(0)− xi,k(0) + mi∆yi,k(0)
⇒ x̂i,k+1(0)− xi,k+1(0) + δi,k+1 − δi,k = x̂i,k(0)− xi,k(0) + mi∆yi,k(0)
⇒ ei,k+1(0) = ei,k(0) + miCiei,k(0) + δi,k − δi,k+1

(28)

That is,
ei,k+1(0) = (I + miCi)ei,k(0) + δi,k − δi,k+1 (29)

Taking the Euclidean norm on both sides of Equation (29)∥∥ei,k+1(0)
∥∥ ≤ ‖(I + miCi)‖

∥∥ei,k(0)
∥∥ + ∆δ (30)

where ∆δ = max
1≤i≤N

{∥∥δi,k
∥∥+ ∥∥δi,k+1

∥∥}. Then, multiplying both sides by a function e−λt, it

can be obtained

e−λt
∥∥ei,k+1(0)

∥∥ ≤ e−λt‖(I + miCi)‖
∥∥ei,k(0)

∥∥+ e−λt∆δ (31)

Considering the definition of the λ-norm, one obtains,∥∥ei,k+1(0)
∥∥

λ
≤ Υ

∥∥ei,k(0)
∥∥

λ
+ e−λt∆δ (32)
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where Υ is defined in Equation (26). According to Lamma 1, it can be concluded that the
initial state estimation can satisfy (33) if condition (26) holds.

lim
k→∞

∥∥ei,k+1(0)
∥∥

λ
≤ G2 (33)

where G2 = e−λt∆δ
1−Υ .

Thus, the initial state estimation x̂i,k(0) converges to a small neighborhood of the
actual initial state xi,k(0) after enough iterations.

4. Simulation Results and Discussion

To validate the feasibility and effectiveness of the proposed method in this paper, this
section presents a numerical analysis for an interconnected dual-flexible manipulator system.

Consider two identical single-link flexible manipulator subsystems as described in
Equation (2). The parameter matrices are set as follows:

Ai =


0 1 0 0

a21 0 a22 0
0 0 0 1

a41 0 a42 0

, Bi =


0
0
0

a43

, Ci = diag(1, 1, 1, 1), Ei =


0
0
0

a43

,

where i = 1, 2, a21 = −K/I, a22 = K/I, a23 = −Mgl/I, a41 = K/J, a42 = −K/J, a43 = 1/J,
M = 2.3 kg, l = 1 m, I = 2.3 kg·m2, J = 0.5 kg·m2, K = 15 N·m/rad, and g = 9.8 m/s2.
The fault signals are simulated as:{

f1,k(t) = 5 sin(0.5πt) 0 ≤ t ≤ 7
f1,k(t) = 0 7 < t ≤ 10

,
{

f2,k(t) = 5 sin(0.5πt) 0 ≤ t ≤ 7
f2,k(t) = 0 7 < t ≤ 10

.

The desired trajectories are set as:

q̈1d = 2 sin 1.5t− 0.5q1d − 1.5q̇1d, q̈2d = 2 sin 1.5t− 0.5q2d − 1.5q̇2d.

The nonlinear terms are set as:

g1(x1,k(t)) =
[

0 a23 sin q1,k 0 0
]T , g1(x2,k(t)) =

[
0 a23 sin q2,k 0 0

]T .

The interconnected term is represented as:
N
∑

j=1,j 6=i
diag(0.1, 0.1, 0.1, 0.1)xj,k(t), i = 1, 2.

The ideal initial values are set as: x1,d(0) = x2,d(0) = [ 0.2 0 0.1 0 ]T .
For comparative analysis, it is initially assumed that the system’s initial state coincides

with the ideal initial value. Based on engineering experience, the convergence effects, and
the convergence condition stated in Theorem 1, the gain matrices are chosen as K1,1 =
K2,1 = [−6,−0.4,−4.0,−0.4], and K1,2 = K2,2 = [−1.5,−0.1,−1.0,−0.1], which imply that
the convergence condition in Theorem 1 is Γ = max

1≤i≤N
{‖(I + Ki,2CiEi)‖} = 0.8 < 1.

The simulation results of system (2) applying the proposed iterative-learning-based fault-
estimation method (5) are shown in Figures 1 and 2.
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Figure 1. Fault-estimation curve for Subsystem 1 under the ideal initial value.
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Figure 2. Fault-estimation curve for Subsystem 2 under the ideal initial value.

From Figures 1 and 2, it can be observed that the iterative-learning-based fault-
estimation method can effectively and accurately track the fault signal when the system’s
initial state matches the ideal initial state. However, due to the influence of the material
properties of the flexible manipulator, it is difficult to achieve equivalence between the
actual initial state and the ideal initial state. Therefore, assuming a set of arbitrary initial
values such that x1,k(0) = x2,k(0) = [ 0.2 + 2rand 0 0.1 0 ]T , where rand is a random
number between 0 and 1. The simulation results are presented in Figures 3 and 4.
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Figure 3. Fault-estimation curve for Subsystem 1 under the arbitrary initial value.
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Figure 4. Fault-estimation curve for Subsystem 2 under the arbitrary initial value.

As depicted in Figures 3 and 4, even after 15 iterations, the fault-estimation trajec-
tory fails to precisely track the actual fault signal trajectory. It can be observed that there
exists a significant fault-estimation error while the initial value is arbitrary. The arbi-
trary initial value diminishes the accuracy of the iterative-learning-based fault-estimation
method. To accurately track the fault signals within the system and to eliminate the
adverse effects of the arbitrary initial value, we employ the iterative-learning-based fault-
estimation method described in Equation (5), combined with the initial state learning
law (9) proposed in this paper. Based on engineering experience, the convergence ef-
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fects, and the convergence condition stated in Theorem 2, the gain matrices are chosen
as mi = diag(−0.8,−0.8,−0.8,−0.8), which imply that the convergence condition in The-
orem 2 is Υ = max

1≤i≤N
{‖(I + miCi)‖} = 0.2 < 1. The comparative simulation results

based on the proposed method and the VWIL-based fault-estimation method described in
reference [23] are shown in Figures 5–10.
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Figure 5. Fault-estimation results based on the method reported in reference [23] for different
iterations for Subsystem 1.
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Figure 6. Fault-estimation results based on the method reported in reference [23] for different
iterations for Subsystem 2.
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Figures 5–8 depict the estimated results of the fault signal for different iterations. It
is noteworthy that the proposed method successfully tracks the fault signal after only a
few iterations, whereas the method described in reference [23] fails to track the fault after
15 iterations. Figures 9 and 10 show the comparative fault-estimation error results based
on the method reported in reference [23] and the proposed method for 15 iterations. It
is evident that the proposed method achieves better fault-estimation error results. From
the above simulation results, it can be concluded that the proposed method is effective in
ensuring convergence for interconnected multi-flexible manipulator systems with arbitrary
initial value.
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Figure 7. Fault-estimation results based on the proposed method for different iteration index for
Subsystem 1.
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Figure 8. Fault-estimation results based on the proposed method for different iterations for Subsys-
tem 2.
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Figure 9. Fault-estimation error curve for Subsystem 1 at the 15th iteration under arbitrary ini-
tial value.
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Figure 10. Fault-estimation error curve for Subsystem 2 at the 15th iteration under arbitrary ini-
tial value.

5. Conclusions

This paper describes the employment of iterative learning strategies to design a fault-
estimation method for estimating faults in interconnected flexible manipulator systems
with arbitrary initial value. The simulation results obtained demonstrate that the proposed
iterative learning fault-estimation algorithm with initial state learning effectively addresses
the problem of fault-estimation trajectories which do not closely track the actual fault signal
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trajectories caused by initial state errors in the interconnected system. Compared to the
VWIL-based fault-estimation method, the iterative learning law with initial state learning
introduced in this paper enables the rapid and accurate estimation of faults occurring in
flexible manipulator interconnected systems, eliminating the adverse effects of an arbitrary
initial value on the iterative learning fault-estimation method. The convergence conditions
and the parameter ranges are obtained through an analysis of Bellman–Gronwall theory and
λ-norm theory. The algorithm’s effectiveness is validated through simulation experiments
on an interconnected dual-flexible manipulator system as the controlled object.

As previously commented, the presented method is appropriate for interconnected
multi-flexible manipulator systems without uncertainties, time-delay, and so on. Hence,
the application range is limited. In future work, all these influences will be taken into
consideration. As a result, the proposed iterative-learning-scheme-based fault-estimation
method can be applied to more general flexible manipulator systems. Furthermore, only the
simulation results were utilized to illustrate the effectiveness of the method presented, How
to apply the iterative-learning-scheme-based fault-estimation method to actual flexible
manipulator systems is also an important future issue to be addressed.
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