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Abstract: The nonlinear modeling and analyzing of wound-rotor synchronous starter/generators
(WRSSGs) plays a vital role in the analysis and monitoring of aircraft power systems. Moreover, they
are of great significance with regard to the establishment of a future aircraft smart grid. However,
owing to its nonlinear, high-dimensional, and strong coupling characteristics, this modeling has
always remained in the frequency domain stage and the progress of more intuitive time domain
modeling has been slow. This paper presents a nonlinear model of a WRSSG in a generating state.
When the WRSSG is in power generation mode, most cases indicate that the aircraft is in flight mode.
The establishment of the nonlinear model of the system in the power generation state is of great
significance for the research of the health management and state monitoring of the aircraft power
system and can improve the safety and reliability of the aircraft during flight. The model uses FE
analysis and neural network to solve the nonlinear problem of the motor in the system and uses the
improved variable parameter average model to solve the nonlinear problem of the rotating rectifier.
According to the principle of signal transmission, a time domain model for the whole system is
developed. Finally, the model is compiled by the RT-LAB real-time simulator. The nonlinear model
performs well when compared with FE analysis results and tested against the MIL-STD-704F standard.
The proposed nonlinear model and analysis results can be used for the condition monitoring and fault
diagnosis of aircraft power systems. The hardware-in-the-loop test platform based on an accurate
nonlinear model is a feasible means to study the failure of expensive equipment, and it can aid the
study of irreversible failures of equipment at a low cost.

Keywords: condition monitoring; more electric aircraft (MEA); nonlinear modeling; wound-rotor
synchronous starter/generator (WRSSG); hardware-in-the-loop

1. Introduction

In recent years, the concept of the more electric aircraft (MEA) has developed rapidly.
As a type of secondary energy for aircrafts, electric energy has the characteristics of low
emissions, low cost, and high stability, which other secondary energy sources do not possess.
Electrical energy accounts for an increasing proportion of the types of secondary energy in
aircrafts [1,2]. Moreover, MEAs will be an inevitable trend of future aircraft development
in both the civil and military fields. For example, the Boeing 787 and Airbus A380 (civil)
and the F-35 (military) are outstanding representatives of more electric aircrafts [3–5].

WRSSGs play a crucial role in aircraft power systems. From the perspective of future
developments in aircraft electrical power systems (EPSs), there are four possible options [6]:

• EPS-A1: constant frequency AC EPS (115 V/400 Hz AC);
• EPS-A2: hybrid AC and DC EPS (115 V/360–800 Hz AC and 270 V DC);
• EPS-A3: hybrid HVAC and HVDC EPS (230 V/360–800 Hz AC and ±270 V DC);
• EPS-A4: pure HVDC EPS (±270 V DC).
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Regardless of whether it is an AC or HVDC power generation system, the WRSSG
represents their best choice. This system can be directly used as an AC power generation
system and can be combined with a rectifier to operate as a high-voltage DC power genera-
tion system for aircraft. Currently, starter/generators are used in advanced more electric
aircrafts, such as the Boeing 787 and Airbus A380 [7]. The core element of starter/generators
is a wound-rotor synchronous generator, and their most commonly used format is a three-
stage power generation system [8–10]. The structure of a three-stage power generation
system is displayed in Figure 1.
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As the main power source in aircraft power supply systems, WRSSG is important for
safe flights and mission achievement. When the WRSSG is operating in a power generation
state, it usually means that the aircraft is in flight. Therefore, it is of great significance for the
research of state monitoring and fault diagnosis of WRSSG systems in this state. As shown
in Figure 1, the system uses a multistage motor combined with a rotary rectifier (three-phase
bridge uncontrolled rectifier circuit) to excite the main generator. The excitation mode is
different from the traditional excitation mode. While completing the non-contact excitation
function, it also causes a series of problems. According to the analyses of Batzel and
Swanson, the two faults with the highest failure rate and the largest failure cost within this
system are inter-turn short circuits of the main generator and rotating rectifier faults [11].
However, both of these faults occur on the rotating part of the system and are difficult to
measure directly. Therefore, fault diagnosis and condition monitoring of the system are
difficult and related research remains at the component level [12–14]. Accordingly, the
establishment of a WRSSG model with high fidelity, high computational efficiency, and
high versatility will be conducive to the development of digital twin technologies for the
system. This will allow accurate estimates of the state quantities, which are difficult to
measure in the system. Ultimately, achieving accurate fault diagnosis and state monitoring
of the system will facilitate the formation of an aircraft smart grid.
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Figure 1 demonstrates that the digitization tasks of this system in generating state
mainly comprise nonlinear modeling of the motor, nonlinear modeling of the rotating
rectifier, and the overall construction of the system. In recent years, for the modeling and
analysis of motors, many studies have used finite element analysis (FEA) to solve the
problem of the nonlinear relationship of motors. [15–19]. Compared to linear modeling and
analysis using a traditional mathematical model, motor modeling and analysis using the FE
method achieves higher fidelity [20]. Accordingly, using FE software (Version: 19.0) to build
the motor body and combining ANSYS/Simplorer (Version: 19.0) and MATLAB/Simulink
(Version: R2022a) software to build the external circuit is currently the main method used
for power system co-simulation [21]. This method can effectively avoid errors caused by
motor nonlinearities during system simulations. However, FEA is expensive in terms of
both computation and time. For WRSSGs, the problem of computational cost is magnified
by the presence of three motor components. The lookup table is also widely used in solving
the nonlinear relationship of motors [22,23]. The method can solve the nonlinear problem
in motor modeling and overcome the problem of computational cost in data collection by
using the parallel computing function of FE software (Version: 19.0). However, lookup
tables have strict requirements on the form of data, which is not conducive to update
and supplement data. At the same time, there are also problems of interpolation and
fitting. In the 1980s, intelligent algorithms such as neural networks were used to solve
nonlinear problems in motors [24]. But what was established at that time was a direct
connection between the input and output of the motor, which was similar to the black box
model. This black box model has low interpretability and cannot analyze the relationship
inside the motor. In terms of the nonlinear modeling of rotating rectifiers, Sudhoff and
Wasynczuk extensively analyzed the working principle of a three-phase bridge uncontrolled
rectifier circuit by adopting a rotating rectifier and established the average value model
(AVM) considering the commutative process [25]. However, this model requires extensive
information regarding the parameters to determine the commutation process of the three-
phase bridge rectifier circuit. Moreover, the model has low compatibility with the front and
back motor models and is difficult to build. A fixed-parameter AVM for three-phase bridge
uncontrolled rectifier circuits has been used for frequency domain analyses of three-phase
power generation systems [26,27]. However, the fixed parameter AVM cannot accurately
predict the output voltage drop phenomenon caused by the commutation process in the
time domain analysis of three-stage power generation systems. Owing to the commutation
process, the output voltage of the rotating rectifier is lower than in the ideal state [12].
Accordingly, Jatskevich et al. proposed an AVM with variable parameters and simplified
the model [28,29]. Although the model has a certain accuracy when the circuit state is
stable, a lot of load parameter scanning is required before the model can be run. The effect
of load parameter scanning is too dependent on the operator’s experience. The WRSSG, as
an important part of the power generation and starting engines of MEAs, occupies a very
important position in the aviation field. At present, the main achievements still focus on
frequency domain modeling and analysis [26,27]. However, the frequency domain model is
less compatible with the hardware-in-the-loop platform than the time domain model. The
time domain model can directly use the simulator, power amplifier, and other components
to convert the calculated electrical signal into the actual electrical signal. Moreover, with
traditional modeling methods, it is difficult to conduct a time domain modeling analysis of
this system in the generating state. Therefore, it is necessary to introduce modern intelligent
algorithms and models to enhance the interpretability of the system in the generating state.

To solve the previously mentioned problems and establish a nonlinear model with
high fidelity and low computational cost with time domain analysis, this paper presents a
rapidly developing intelligent algorithm and improvements of the original model to build a
nonlinear model of the system in generating state. The results of this work are summarized
as follows:

• A method based on FE analysis and neural network is used to solve the nonlinear
relationship between current and flux in the motor.
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• An improved variable parameter AVM is proposed to solve the output voltage drop
and initial value problems of the rotating rectifier.

• In the time domain analysis, the d-q coordinate system is used as the reference frame
to determine the signal transmission logic of the system in the power generation state.
The control capability of the system is verified.

This paper contributes to the nonlinear modeling of WRSSGs in the power generation
state using intelligent algorithms, improved circuit models, and the logical analysis of
system signal transmission. This is conducive to the construction of a future aircraft smart
grid and the application of digital twin technology in aircraft power systems. The remainder
of the paper is arranged as follows: in Section 2, the working principle of the WRSSG is
introduced; in Section 3, the nonlinear modeling of a motor based on the current-flux neural
network is established; in Section 4, the original variable parameter AVM of the rotating
rectifier is improved to reduce output voltage errors; in Section 5, the signal transmission
logic of the system in the power generation state is described and the closed-loop control
of the system is formed; and in Section 6, the effectiveness of each component and the
whole system is verified based on RT-LAB real time simulator, and the controllability of the
system model is verified by combining MIL-STD-704F with FE analysis. Finally, a summary
is presented in Section 7.

2. Working Principle of WRSSG

Switched reluctance motors, induction motors, permanent magnet synchronous mo-
tors, and wire-wound synchronous motors can be used, in theory, as the main structure of
starter/generators. Because the three-stage power generation system has been used as an
aircraft power generation system for many years, the relevant technology maturity is rela-
tively high compared to other types of motors. Therefore, the current structure of aircraft
starter/generator systems is widely adopted in WRSSGs based on the three-stage power
generation system. The three-stage starting/generation system’s basic structure is shown
in Figure 1. The system is mainly composed of a WRSSG body and a starting/generation
control unit (SGCU). In the main body of the WRSSG, the sub-exciter (SE) is a perma-
nent magnet synchronous generator; the main exciter (ME) is a rotating armature-type
electric excitation synchronous motor; the main generator (MG) is an electrically excited
wire-wound synchronous motor; and the rotating rectifier (RR) is a three-phase bridge
uncontrolled rectifier circuit. The SGCU is the key to complete the power generation and
starting engine functions of a WRSSG, which is mainly composed of a generation control
unit (GCU) and starting control unit (SCU).

When the system is in the power generation state, the working principle is shown
in Figure 1. The blue line in the SGCU represents the signal transmission logic of the
power generation state. The aircraft engine outputs torque, which drives the rotating part
of the system to rotate. The SE is excited by a permanent magnet, which generates an
exciting magnetic field. The rotating shaft drives the permanent magnet to rotate, and
the magnetic field rotates with the permanent magnet. Thus, the magnetic field cuts the
armature winding of the SE and generates three-phase AC. The three-phase AC generated
by the SE passes through the rectifier circuit and outputs DC to the field winding of the
ME. An exciting field is generated in the field winding of the ME. The armature winding
of the ME is located on the rotating part, which is rotated by the rotating shaft and moves
relative to the exciting field generated on the ME’s field winding. Therefore, three-phase
AC is generated on the armature winding of the ME. The three-phase AC generated by
the ME is rectified by the RR, and the DC is used for MG excitation. The magnetic field
generated in the field winding of the MG rotates with the rotation of the field winding
and cuts the armature winding of the MG. The three-phase AC output is generated on
the armature winding of the MG, or the DC output is rectified by the rectifier circuit. The
output voltage of the MG is collected by the voltage regulator and converted into PWM
control signal output after processing, which is used to control the switching tube in series
with the field winding of the ME. By controlling the field voltage of the ME, the output
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voltage of the system can be controlled so that the output of the system can meet the power
supply quality.

According to the literature [30,31], this system can also be used as a starter for starting
engines. In Figure 1, the red line in the SGCU represents the signal transmission logic of the
starting engine status. In the starting engine state, the SE (permanent magnet synchronous
motor) part of the system does not participate in the work. The system operates as an
electric motor to drive the engine to its rated speed. Initially, the system rotates at a low
or zero speed. The SGCU provides an alternating current (AC) to the ME single-phase
field winding, which creates a varying magnetic field in the ME air gap. At this time, the
working principle of the ME is similar to that of a single-phase to three-phase transformer,
and the induced voltage is generated in the rotor armature winding of the ME. Then, the
RR (three-phase bridge type uncontrolled rectifier circuit) supplies power to the excitation
winding of the MG. At the same time, the SGCU is used to supply a three-phase alternating
current (AC) with variable frequency and variable voltage to the stator windings of the
MG. At this point, the MG operates as an electric motor and the MG rotor will rotate and
provide an acceleration torque and start the engine.

3. Motor Nonlinear Model Based on FE Analysis and Neural Network

As displayed in Figure 1, there are three motors in the WRSSG: a permanent magnet
synchronous generator and two electrically excited synchronous generators. The nonlinear
relationship between these motors directly affects the accuracy of the system. In the motor
model, nonlinear relations (such as magnetic field saturation and spatial harmonics) are
implied in the relationship between the current and the flux. In the traditional motor d-q
model, the relationship between current and flux in each winding is established by using a
large number of self-inductance and mutual-inductance parameters, as shown in (1).

d− axis :
{

vd(t) = d
dt ψd(t)− Rdid(t)−ωψq(t)

ψd(t) = −Ld(t)id(t) + Md f (t)i f (t)

q− axis :
{

vq(t) = d
dt ψq(t)− Rqiq(t) + ωψd(t)

ψq(t) = −Lq(t)iq(t)

f ield :

{
v f (t) = d

dt ψ f (t) + R f i f (t)
ψ f (t) = −M f d(t)id(t) + L f (t)i f (t)

(1)

where vd, ψd, Rd, and id are the d-axis armature voltage, flux linkage, resistance, and current,
respectively. Terms vq, ψq, Rq, and iq are the q-axis equivalents, respectively. Terms v f , ψ f ,
R f , and i f are the field voltage, flux linkage, resistance, and current, respectively. Terms Ld,
Lq, and L f are the d-axis, q-axis, and field inductances, respectively. Terms Md f and M f d
are the mutual inductances between the field winding and the d-axis winding, respectively,
while ω is the angular speed in electrical degrees. Equation (1) represents the voltage
and flux equations of the conventional motor d-q model. The inductance parameters of
the motor are constantly changing during the process from voltage building to stability.
The accuracy of the motor model with fixed inductance parameters is low. The motor
model with variable inductance parameters needs to establish the variation relation for
each inductance parameter, which is too complicated. The motor model based on lookup
table has strict requirements on the format of lookup table, which is not conducive to
updating and supplementing the data. The problems of interpolation and data fitting
exist simultaneously. The black box model based on neural networks directly establishes
the input–output relation of motor has low explanatory ability and cannot explain the
electromagnetic relation of motor. In this paper, the FE model of the motor is established
based on the actual motor parameters, and then the nonlinear relation of current-flux is
extracted. The current–flux neural network is trained using nonlinear current–flux data. By
embedding a current–flux neural network into the improved motor d-q model, a nonlinear
motor model with high fidelity, high computational efficiency, and strong interpretation
is formed.
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Firstly, the traditional d-q model is reformed. The reform principle is to avoid the use
of differential form as much as possible and reduce the calculation cost. The inductance
parameters in the flux equations are time-varying parameters that change according to
the state of the motor. For high-precision motor modeling, it is necessary to establish the
variation in data of each inductance parameter with respect to each current in advance.
Furthermore, complete decoupling of the d- and q-axis does not happen in real situations.
Therefore, the current in the d- and q-axis will also affect the flux linkage on the other
winding. To use the traditional motor d-q model to complete the modeling task with high
fidelity, it is necessary to introduce more mutual inductance parameters for correction. In
order to solve these problems and complete the processing of nonlinear relations, the most
direct way is to introduce intelligent algorithms into the model. As one of the most widely
used algorithms at present, the neural network algorithm has outstanding predictive ability
and computational efficiency. The single hidden layer feedforward neural network has
been developed for many years and its technology is mature. In this paper, based on the
conventional motor d-q model, a single hidden layer feedforward neural network is used to
establish the relationship between current and flux directly. Simultaneously, the influence
of the rotor position on the relationship between current and flux linkage is considered.
The flux equations of the model are re-established as follows:

ψd(t) = NNs_d(id(t), iq(t), i f (t), θ(t))
ψq(t) = NNs_q(id(t), iq(t), i f (t), θ(t))
ψ f (t) = NNs_ f (id(t), iq(t), i f (t), θ(t))

(2)

where θ is the electrical angle. The term NNs represents the corresponding current-flux
linkage neural network, and (2) is the simplified flux equation set in the conventional
motor d-q model. Equation (2) establishes the relationship between flux linkage and
current according to rotor position. It should be noted that the complex and time-varying
inductance parameters are omitted. Simultaneously, the problem that the d- and q-axis
cannot be completely decoupled is solved by introducing the d- and q-axis currents into
each term’s flux expression. In order to obtain the nonlinear relation data of the motor,
ANSYS Electronics Desktop software (Version: 19.0) was used to scan the parameters of the
motor. This software (Version: 19.0) has high precision for motor modeling. This software
can solve the problem of saturation of magnetic field by using functions such as customized
core materials. This software can also solve the problem of spatial harmonics by using
2D or 3D structural modeling. While ensuring high precision, the software also has the
function of parallel parameter scanning, which can shorten the time of parameter scanning.
Here, the FEA software (Version: 19.0) (ANSYS Electronics Desktop) is used to scan the
parameters of the specific motor and obtain the data describing the current-flux linkage
relationship in (2). Then, the single hidden layer feedforward neural network is trained by
using this data, and the current-flux linkage neural network is obtained. Compared with
the traditional model, this method reduces the complexity of the flux equations. Owing to
the introduction of neural networks, the model also has the ability to predict the unscanned
operating points, which expands the working scope of the model. Moreover, compared
with modeling the motor using FEA, the computational cost is reduced. The proposed
model is as follows:

f ield
{

ψ f (t) =
∫
(v f (t)− i f (t)R f )dt

i f (t) = NNs_ f−1(ψd(t), ψq(t), ψ f (t), θ(t))

d− axis
{

ψd(t) =
∫
(vd(t) + id(t)Rd + ψq(t)ω)dt

id(t) = NNs_d−1(ψd(t), ψq(t), ψ f (t), θ(t))

q− axis
{

ψq(t) =
∫
(vq(t) + iq(t)Rq − ψd(t)ω)dt

iq(t) = NNs_q−1(ψd(t), ψq(t), ψ f (t), θ(t))

(3)
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Here, (3) is the nonlinear model of the motor. The model uses the FE software (Version:
19.0) to scan out the nonlinear relationship of the motor to obtain the nonlinear relationship
data, and then uses the data to train the current-flux neural network, and finally the current
flux neural network is embedded in the model body. The model can solve nonlinear
problems such as saturation of magnetic field and space harmonic in motor. In order to
verify the validity of the proposed model, the generator platform in the laboratory is used
to verify the FE motor model. Then, the FE model is compared with the proposed model
to verify the effectiveness of the proposed model. The generator platform is shown in
Figure 2:
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Figure 2. Electrically excited synchronous generator platform.

The electrically excited synchronous generator is driven by a DC motor. DC excitation
is applied to the field winding of the electrically excited synchronous generator. The output
voltage of the electrically excited synchronous generator is collected and displayed by the
input and output display panel. Under the same input and output conditions, the output
voltage comparison of the synchronous generator platform, FE model and the proposed
model is shown in Figure 3.
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It can be seen from Figure 3 that the FE model is highly consistent with the proposed
model. Compared with the experimental platform of synchronous motor, the proposed
model and FE model have high fidelity. In the first half cycle, the peak voltage of the FE
motor model and the proposed model appears slightly later than that of the synchronous
motor experimental platform. In the second half of the cycle, the three remained consistent.
The RMS output phase voltage of the experimental platform of synchronous motor is 115 V,
and the RMS output phase voltage of FE model and the proposed model is 114 V, all of
which meet the output voltage standard of MIL-STD-704F.

On the basis of verifying the validity of FE model, FE analysis is used to verify the
validity of the proposed model (3). At the same time, in order to verify the simulation ability
of the proposed model for nonlinear relations, the paper also introduced the traditional
dq linear motor model into the comparison. FE software (Version: 19.0) is used to scan the
inductance parameters of the motor when the output power is 20 kVA. These inductance
parameters are used in the traditional motor dq model. To make the results more straight-
forward, the paper not only compared the results at 20 kVA, but also compared the results
at 40 kVA. In order to ensure fairness, the traditional dq model uses the inductance data
obtained by FE scanning at 20 kVA, and the proposed model reduces the scanning range
during FE scanning and does not scan 40 kVA working state. The AC output of the aircraft
power generation system is required to meet the standard phase voltage RMS between
108 V and 118 V. In FE software (Version: 19.0), the input voltage and load of the motor are
adjusted so that the output power of the motor can reach 20 kVA and 40 kVA, respectively
while meeting the output voltage requirements. Then, the recorded input voltage and load
conditions are applied to the proposed model and the traditional linear dq model, and the
output currents of different models under different output power conditions are obtained.
The relevant results are shown in Figure 4.

Figure 4 shows the output currents of these three models under different working
conditions. Because the load conditions are the same, the output voltage condition is the
same as the output current condition. Figure 4 shows that the proposed model maintains a
high degree of consistency with FE modeling under different working conditions, which
reflects the high fidelity of the proposed model. The increase in the output power of the
motor requires a larger excitation current in the field winding. Under certain conditions,
the increase of the excitation current will make the motor enter the state of saturation of the
magnetic field. Figure 4 shows that when the output power of the motor increases from
20 kVA to 40 kVA, the gap between the output current of the traditional linear motor dq
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model and the output current of the FE simulation increases significantly. This phenomenon
indicates that the nonlinear (magnetic field saturation) characteristics of the motor have
begun to play a role. The output results of the proposed model can still track the FE
modeling results after the power increase, which shows that the proposed model has the
ability to simulate the nonlinear relationship of the motor.
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Figure 4. Comparison of the output current of FE model, the proposed model and the traditional dq
linear model under the output power of 20 kVA and 40 kVA conditions.

In the αβ coordinate system, the current radius is taken as the index, and the relevant
comparison results are shown in Table 1.

Table 1. The output of the proposed model is compared with that of the FE model under the output
power of 20 kVA and 40 kVA conditions.

Proposed Model FE Analysis

Current radius of 20 kVA 81.8844 A 82.4045 A
Current radius absolute error of 20 kVA 0.5201 A 0 A
Current radius relative error of 20 kVA 0.6312% 0%

Current radius of 40 kVA 162.6027 A 162.7775 A
Current radius absolute error of 40 kVA 0.1748 A 0 A
Current radius relative error of 40 kVA 0.1074% 0%
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It can be seen from Table 1 that the relative errors of the proposed model relative to the
FE analysis model are all below 1%, indicating a high fidelity of the model. For simulation
time comparison, this paper compares the traditional motor d-q model, the proposed
model and the FE motor model. FE motor model runs in FE analysis software (Version:
19.0), traditional motor d-q linear model and proposed model run in MATLAB/Simulink
(Version: R2022a). The three models use the step size of 8.33 × 10−5 s to calculate 1 s. The
actual operation time of FE motor model is 28,609 s. The calculation efficiency of FE motor
model is low and the operation cycle is long. The traditional d-q linear model and the
proposed model are each run 20 times to avoid accidental phenomena because of their
high computational efficiency and short computing cycle. The actual operation time of the
traditional d-q model is 2.048925 s, and the actual operation time of the proposed model is
2.222805 s. These results show that the computational efficiency of the proposed model
is comparable to that of the traditional d-q linear model, and much higher than that of
the FE motor model. The proposed model achieves a good balance between fidelity and
computational efficiency. For the FE parameter-scanning work in the proposed method,
the time cost of FE parameter scanning can be reduced by using the function of parallel
calculation in FE software (Version: 19.0), and the time cost is much lower than the serial
calculation of FE motor model. FE parameter scanning only needs to be completed once,
instead of running it from scratch multiple times like FE analysis simulations. The proposed
model not only retains the nonlinear simulation capability of FE analysis, but also greatly
reduces the calculation cost. This method can be used for the nonlinear modeling and
analysis of WRSSGs.

The motor modeling method combining FE analysis and a neural network was used
to model the three motors in a WRSSG, respectively. The relevant models are as follows:

d− axis
{

vd−se(t) = d
dt ψd−se(t)− id−se(t)Rd−se − ψq−se(t)ω

ψd−se(t) = NNs_d(id−se(t), iq−se(t), θ(t))

q− axis
{

vq−se(t) = d
dt ψq−se(t)− iq−se(t)Rq−se + ψd−se(t)ω

ψq−se(t) = NNs_q(id−se(t), iq−se(t), θ(t))

(4)

f ield
{

ψ f−me(t) =
∫
(v f−me(t)− R f−mei f−me(t))dt

i f−me(t) = NNs_ f−1(ψd−me(t), ψq−me(t), ψ f−me(t), θ(t))

d− axis
{

vd−me(t) = d
dt ψd−me(t)− id−me(t)Rd−me − ψq−me(t)ω

ψd−me(t) = NNs_d(id−me(t), iq−me(t), i f−me(t), θ(t))

q− axis
{

vq−me(t) = d
dt ψq−me(t)− iq−me(t)Rq−me + ψd−me(t)ω

ψq−me(t) = NNs_q(id−me(t), iq−me(t), i f−me(t), θ(t))

(5)

f ield
{

ψ f−mg(t) =
∫
(v f−mg(t)− i f−mg(t)R f−mg)dt

i f−mg(t) = NNs_ f−1(ψd−mg(t), ψq−mg(t), ψ f−mg(t), θ(t))

d− axis
{

ψd−mg(t) =
∫
(vd−mg(t) + id−mg(t)Rd−mg + ψq−mg(t)ω)dt

id−mg(t) = NNs_d−1(ψd−mg(t), ψq−mg(t), ψ f−mg(t), θ(t))

q− axis
{

ψq−mg(t) =
∫
(vq−mg(t) + iq−mg(t)Rq−mg − ψd−mg(t)ω)dt

iq−mg(t) = NNs_q−1(ψd−mg(t), ψq−mg(t), ψ f−mg(t), θ(t))

(6)

The subscript -se, -me, and -mg represent the parameters of the SE, ME and MG,
respectively. In addition, (1), (2), and (3) represent the SE model, the ME model, and the
MG model, respectively. Whether the voltage equation in the model adopts integral form
or differential form follows the voltage dominant type mentioned in the literature [28], as
shown in Figure 5:
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single-hidden-layer feedforward neural networks with multiple input single output tech-
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Figure 5. The signal transmission logic diagram of the motor. (a) ME, and (b) the connection between
ME and RR.

When the motor is connected to the rectifier circuit, the relevant armature winding
adopts the voltage main type (differential form), and the current is determined by the
voltage and the load property. When the motor load is not a rectifier circuit, the relevant
winding uses the integral form in order to reduce the calculation cost. In order to better
simulate and explain the armature reaction of the motor, the voltage main type is used in
the related winding. The ME is taken as an example to explain the relevant phenomena.
The field current flows through the field winding of the ME to generate an excitation field,
which cuts across the armature winding of the ME and generates a back electromotive force
(back-EMF) on the armature winding. The armature current of the ME is determined by
both the back-EMF and the load circuit. The armature current forms the armature magnetic
field, which affects the original magnetic field. This is the armature reaction of the ME.
Owing to the armature reaction, the flux linkage generated on each winding is iteratively
updated until a new equilibrium is reached. Therefore, the voltage main type (differential
form) is used in the armature winding of the SE and the ME. In the model, the single-
hidden-layer feedforward neural networks with multiple input single output technology
are used to fit the relationship between the current and the flux linkage (which is difficult to
decouple) and the fidelity is higher than the traditional model. Equation (6) represents the
MG model. To reduce the computational cost, the voltage equations are all in integral form
when there are no specific requirements. Hence, the voltage equations of the MG armature
winding are in an integral form. If desired, the same differential form as the ME can also
be used. Given the requirements of ensuring accuracy and computational efficiency, the
presented model also has strong generality and good interpretability. Although the ME
and the MG are both electrically excited synchronous generators, the field winding of the
ME is fixed on the stator and the armature winding is fixed on the rotor. In comparison, the
form adopted by the MG is completely opposite, although the model framework adopted
by both is similar. In the case of a WRSSG followed by a rectifier circuit, the model used
by both is also the same. Although a large number of neural networks were used to fit the
relationship between the current and flux linkage in the previous model, the effectiveness
of this model is analyzed from the working principle of the motor. Since the d-q axis cannot
be completely decoupled, the influence factors on each other are introduced into the d-q
axis current-flux linkage relationship. Moreover, in the process of establishing the SE model,
the flux generated by the permanent magnet and by the d-axis current is integrated into
the d-axis flux, ensuring the model has high fidelity. The single-hidden-layer feed-forward
neural network is only used for fitting the relationship between the current and the flux
linkage. Therefore, the interpretability of the model is maintained at a high level under the
condition of ensuring the model’s high fidelity.
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4. Improved Variable Parameter AVM

As the connection circuit between the motors, the RR directly determines the per-
formance of the WRSSG. The RR uses a three-phase bridge uncontrolled rectifier circuit
(Figure 6) and is installed on the rotating shaft with high-speed rotation.
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For the condition monitoring and fault diagnosis of the WRSSG, condition monitoring
of the RR is one of the emphases. In the literature [25,26], based on an analysis of the
working state of the three-phase bridge uncontrolled rectifier circuit [24], researchers have
used the AVM with fixed parameters to complete its modeling to achieve certain results in
the frequency domain analysis. The AVM with fixed parameters is as follows:

vdc(t) =
3
√

3
π (vd−me(t) sin δ(t) + vq−me(t) cos δ(t))

id−me(t) =
2
√

3
π idc(t) sin(δ(t) + ζ)

iq−me(t) = 2
√

3
π idc(t) cos(δ(t) + ζ)

δ(t) = arctan vd−me(t)
vq−me(t)

(7)

where vdc and idc are the output voltage and current of the RR, respectively. Terms vd−me,
vq−me, id−me, and iq−me are the armature voltages and currents of the ME under the d-q
frame. Term δ is the power angle of the ME and ζ is the angle of the armature current
behind the armature voltage of the ME. There is a fixed ratio relationship between the
input and output electrical signals in an AVM with fixed parameters. From Figure 6, it
is evident that both the input and output terminals are connected to the motor winding.
These windings are all perceptual. Therefore, in the process of commutation of the rectifier
circuit, there will be a commutation delay in the circuit, which will cause an output voltage
drop. The output voltage of a real RR will be lower than the AVM output with fixed
parameters when the WRSSG works stably. Moreover, the commutation delay of the
three-phase bridge uncontrolled rectifier circuit depends on the circuit properties of the
input and output. Therefore, the fixed parameter AVM cannot achieve good results in
the time domain analysis, regardless of how the parameters are adjusted. Hence, it is
necessary to introduce the circuit properties of the input and output terminals into the
analysis of the three-phase bridge uncontrolled rectifier circuit to obtain improved time
domain analysis results.
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In [28,29], the researchers introduced the circuit properties of the input and output
terminals into the AVM and established the variable parameter AVM, as follows:

body :



vr
qs(t) = α(t) ∗ v f (t) ∗ cos(δr(t))

vr
ds(t) = α(t) ∗ v f (t) ∗ sin(δr(t))

idc(t) = β(t) ∗
√
(irds(t))

2
+ (irqs(t)

2)

δr(t) = arctan( vr
ds(t)

vr
qs(t)

) = arctan( irds(t)
irqs(t)

)− ϕ(t)


scanning parameter :

{
Z =

v f (t)√
(irds(t))

2
+(irqs(t)

2)

}

updated parameters :


α(t) =

√
(vr

ds(t))
2+(vr

qs(t)
2)

v f (t)

β(t) =
i f (t)√

(irds(t))
2
+(irqs(t)

2)

ϕ(t) = arctan( irds(t)
irqs(t)

)− arctan( vr
ds(t)

vr
qs(t)

)



, (8)

f =
1

TSW

∫ t

t−TSW

f (t)dt. (9)

All electrical parameters in (8) are averaged in the output period of the three-phase
bridge rectifier circuit by Formula (9). For a 1000 Hz AC input, TSW is 1/1000/6 s. The
circuit model (8) is in d-q coordinate system. The three-phase AC at the input is projected
from the abc coordinate system to the d-q coordinate system. In (8), vr

qs(t), vr
ds(t), irqs(t),

and irds(t) represent the q-axis voltage component, d-axis voltage component, q-axis current
component, and d-axis current component of the input three-phase AC in the d-q coordinate
system, respectively. v f (t) and i f (t) represent the output voltage and output current of the
three-phase bridge rectifier circuit. Z represents the parameters that the model needs to
scan, as determined by the nature of the load. α(t) and β(t) represent the input/output
ratio of the three-phase bridge rectifier circuit. ϕ(t) indicates the angle of the input current
lagging voltage, which is determined by the nature of the load. The AVM of variable
parameters works as follows: first, adjust the Z value by changing the nature of the output
load, and scan out the corresponding α(t), β(t), and ϕ(t) values while adjusting the Z value,
and establish the lookup table. When the model is running, the Z value is calculated, and
the corresponding variable ratio is obtained by looking up the table, and the system state is
solved by the variable ratio. The process of parameter scanning exists in this method. The
task of parameter scanning is large, the target is not clear, and the nature of load seriously
affects the simulation results. Therefore, according to the load properties of the RR, this
paper proposes an improved AVM model of the variable parameter, which is as follows:

model body :



v f 1(t) = v f 2(t) + Lleakage
di f (t)

dt
vqds(t) = vr

qs(t) cos(δr(t)) + vr
ds(t) sin(δr(t))

v f 1(t) =
vqds(t)

α(t)

irqs(t) = irqds(t) cos(δr(t) + ϕ(t))
irds(t) = irqds(t) sin(δr(t) + ϕ(t))∥∥∥iqds

∥∥∥ =
i f (t)
β(t)

δr(t) = arctan( vr
ds(t)

vr
qs(t)

)

ϕ(t) = arctan( irds(t)
irqs(t)

)− arctan( vr
ds(t)

vr
qs(t)

)

updated parameters :


α(t) = ‖vqds(t1)‖

v f 1(t1)

β(t) =
i f (t1)

‖iqds(t1)‖

(10)
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Figure 7 shows the specific form of the MG field winding. In (10), variable parameters
such as v f 1(t), v f 2(t), i f (t), and Lleakage are introduced according to the specific form of
the MG field winding after the RR, and the leakage inductance on the MG field winding
is considered to better establish the output circuit of the RR. On the basis of the variable
parameter AVM, hysteresis is introduced to avoid the parameter scanning before the model
is established, and t1 represents the state of the system at the previous time. The initial
values of α(t) and β(t) are π

3
√

3
and π

2
√

3
respectively. It can be seen from (10) that the model

completes the prediction of the output voltage drop phenomenon of the RR by introducing
the property of the specific circuit and the real-time calculation of the variable parameters
α and β. The solution logic of the model is as follows: first, the initial values of α and β

and the specific properties of the circuit are used to drive the model ontology calculation,
and the model ontology calculates the current state of the RR, and then uses the state of
the RR to update the variable parameters α and β, and finally uses the updated variable
parameters to update the state of the model. This model not only retains the advantages of
the variable parameter average value model to accurately predict the output voltage drop
phenomenon, but also avoids the work of parameter scanning before modeling, which has
high fidelity and high computational efficiency.
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5. Whole System Modeling and Signal Transmission Logic Analysis

The overall modeling and signal transmission logic analysis of the WRSSG in the
generating state involves two main aspects:

• Nonlinear modeling and analysis of the controller;
• Signal transmission logic analysis of the whole system.

In Sections 3 and 4, the signal transmission logic between the motor and the rectifier
circuit was shown in Figure 5. This section mainly focuses on the nonlinear modeling of
the controller and its combination with other parts. The WRSSG in its generating state is a
closed-loop and is regulated by a controller, which determines the power supply quality
of the system. In the power generation state, the working principle of the controller is
as follows: first, the output phase voltage of the MG is measured and the three channel
voltage signals are averaged after taking the RMS value. Then, the voltage deviation is
obtained by comparing it with the reference voltage. This deviation signal is then input to
the PWM signal generator after passing through the PI controller. The switch tube, which is
connected in-series with the field winding of the ME, is controlled by the PWM Signal. The
whole system is regulated by controlling the field voltage on the field winding of the ME to
ensure that the output of the system meets aviation standards MIL-STD-704F. According
to the working principle of the controller, the logic diagram of the whole system signal
transmission displayed in Figure 8 is established.
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When the controller is regulating the voltage on the field winding of the ME, to avoid
any impact on the circuit caused by sudden increases and decreases in current, the WRSSG
has a freewheeling diode in the field winding of the ME in reverse parallel connection. This
freewheeling diode ensures continuity of the current in the field winding and protects the
circuit. However, due to the existence of the freewheeling diode, the current and voltage
before and after the switch are inconsistent. Moreover, this introduces a new nonlinear
relationship into the system, which increases the difficulty of system modeling. The specific
circuit structure is displayed in Figure 9.
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The ME involved in Figure 9 is a rotating armature type synchronous generator. The
switching tube controlled by PWM signal is in series with the ME’s field winding and is
located on the stator side of the system. This switching tube, controlled by PWM signal,
controls the electrical signal input to the ME field winding. However, the freewheeling
diode counter-parallel on the field winding makes the voltage and current before and after
the switch tube inconsistent. To solve these problems, this paper highlights the analysis
of the actual circuit and introduces two virtual control switches as shown in Figure 8.
The actual circuit is shown in Figure 9, and the position of the virtual switch is visible in
Figure 8. When the PWM signal control switch tube is disconnected, the output voltage of
the rectifier circuit cannot be transferred to the ME’s field winding, but in order to protect
the winding and avoid excessive current change on the winding, the reverse parallel diode
is introduced in actual circuit. The presence of the anti-parallel diode makes the field
current still exist in the field winding, but the disconnection of the switching tube makes
the current signal not transmitted to the rectifier circuit. When the PWM signal control
switch tube is switched on, the rectifier circuit outputs voltage to the ME’s field winding,
and the output current of the rectifier circuit is consistent with the ME’s field current. At
this time, the freewheeling diode does not function. Based on the above analysis, this paper
introduces two virtual switches into the model, as shown in Figure 8. The virtual switch is
controlled by PWM signal to solve the problem of inconsistent electrical signals in front and
back circuits. Furthermore, the controller regulates the field voltage on the field winding of
the ME according to the three-phase AC output of the MG to realize closed-loop control of
the system in the generating state.

The overall modeling logic of the WRSSG in the generating state mainly relies on
the connection logic of the motor and the rectifier circuit. Each motor stage is excited
by the voltage output of the rectifier circuit connected to the front end or the permanent
magnet, which generates the EMF on the armature winding and outputs to the rectifier
circuit (or load circuit) connected to the back end. The properties of the EMF and the
back-end connection circuit determine the armature current on the armature winding,
which generates the armature magnetic field. Together, the armature and field magnetic
fields determine the EMF generated on each winding. In this paper, park transform and
inverse park transform are used to connect different kinds of loads on the load side of the
MG model. After continuous iteration, the system reaches equilibrium. By measuring the
output of the system, the controller uses the switch tube to control the field voltage applied
on the field winding of the ME to achieve closed-loop control of the system in generating
state. According to the motor nonlinear modeling conducted in Section 3, the improved
variable parameter AVM in Section 4, and the whole system signal transmission logic in
Figure 8, the nonlinear modeling of the WRSSG in the generating state is completed.

6. Validation and Analysis of the Model Based on the RT-LAB Real-Time Simulator

The validity verification and analysis of the model are divided into two parts: fidelity
and control ability. In the validation and analysis of the system, MIL-STD-704F aviation
standard is used in this paper. The specific requirements of the standard are as follows:

Table 2 shows the power supply quality requirements for aircraft power generation
systems. For the aircraft power generation system, it is mainly to control the output AC of
the MG to meet the corresponding quality requirements. The requirements in Table 2 are
for the MG output voltage. Based on MIL-STD-704F, the effectiveness and control ability of
the proposed model are verified and analyzed in this paper.
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Table 2. The MIL-STD-704F aviation standard.

Parameter Limits

Steady-state voltage 108.0 to 118.0 V RMS
Voltage unbalance 3.0 V

Voltage modulation 2.5 V RMS maximum
Voltage phase difference 116◦ to 124◦

Distortion factor 0.05 maximum
Crest factor 1.31 to 1.51

DC component +0.10 to −0.10 V
Steady-state frequency 393 Hz to 407 Hz
Frequency modulation 4 Hz

Peak characteristics ±271.8 V

In this paper, the RT-LAB real-time simulator is used to verify and analysis the WRSSG
nonlinear model.

6.1. Implementation of WRSSG Nonlinear Model Based on RT-LAB Real Time Simulator

The application of hardware-in-the-loop technology can solve the problems of high
cost and long cycle of current product development, and hardware-in-the-loop technology
is the most effective and feasible way to study irreversible and uncontrollable faults. The
successful compilation of nonlinear models in real-time simulators is a necessary step
toward build hardware-in-the-loop platforms. For aircraft WRSSGs in the generating state,
the fault diagnosis and condition monitoring of the system directly determine the working
state of the aircraft and affects the generation of combat effectiveness. The RR and the MG
field winding are the two parts with the highest failure rate and the highest failure cost.
Because they are located on the rotating shaft driven by the engine, the electrical parameters
related to their state cannot be measured directly. When the electrical parameters of other
positions are used, the state information that can reflect the above faults will be blurred due
to the influence of nonlinear factors in the signal transmission process. Therefore, research
of system condition monitoring and fault diagnosis has been slow. The establishment of
a hardware-in-the-loop test platforms for aircraft WRSSGs can make use of digital twins,
intelligent algorithms, and other technologies to study the status monitoring and fault
diagnosis of aircraft power generation system, which is more conducive to the study of
system fault mechanism. Studies at the system level can also analyze the fault transmission
and coupling mechanism. Fault diagnosis and condition monitoring of WRSSGs in the
generating state are analyzed at the system level.

In this paper, an RT-LAB real-time digital simulation platform is used to verify the
nonlinear model of the system. It is a scientific instrument for power and electrical engi-
neering fields, which can be seamlessly integrated with a MATLAB/Simulink (Version:
R2007a) to achieve real-time interactions between Simulink models and real environments.

Figure 10 shows the basic structure of the WRSSG validation platform. In this paper,
the nonlinear model of an WRSSG in the generating state is reconstructed according to
the compiling rules of RT-LAB. In order to make better use of the performance of the
machine, the system is divided into seven parts (SE, rectifier circuit, ME, RR, MG, SGCU,
and human–computer interaction). Each part transmits signals through the OpComm
module. Apart from the human–computer interaction part, which is in the upper computer,
the rest of the parts are respectively called a core in the RT-LAB machine for calculation,
so that the calculation force can meet the requirements of the nonlinear model. The whole
operation is carried out in the MATLAB/Simulink (Version: R2007a) environment. During
the test, a fixed step solver is used. The calculation step is 50 microseconds, which takes
into account the output voltage frequency of the WRSSG, and also ensures that the test
platform can complete the calculation task of the specified time. The duration is permanent
and the system is stopped manually by the operator. The execution of the nonlinear model
meets our expectations, and there is no time-out throughout the whole process.
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6.2. Fidelity Verification and Analysis

In order to verify the validity of the nonlinear model and the accuracy of the theory,
the results of the FEA were compared with those of the real time simulator. Herein, actual
WRSSG parameters provided by the plant were used to establish the dynamic model in the
commercial FEA software (Version: 19.0) (ANSYS Electronics Desktop). Combined with
the FEA, the proposed WRSSG model was verified. The verification results of the motor in
the WRSSG are as follows:

Figure 11 shows the output voltage waveforms of different motors under different
working conditions by means of global and local coordination. Figure 11 shows the state
changes of the whole process of the component using the global diagram and the relevant
details using the local enlarged diagram. The same representation method is used in the
subsequent correlation result figure. Figure 11 demonstrates that the three motor parts in
the established nonlinear model of the WRSSG in generating state achieved high fidelity
when the system worked as a closed loop. During [0 s, T], the system output voltage was
less than the rated voltage and the voltage regulator did not operate. At [T, 0.1 s], the output
voltage of the system approached the rated output voltage and the voltage regulator started
to stabilize the output voltage of the system near the rated voltage. Figure 11a displays the
output result of the SE in the system, from which it is evident that the output voltage of the
proposed SE model had high phase and amplitude fidelity in both the voltage-building
and normal operation processes. Moreover, it successfully predicted the change trend and
degree of the output of the SE. Figure 11b represents the output result of the ME in the
system, from which it is evident that the proposed nonlinear model of the ME had high
fidelity in terms of both the voltage-building and the normal working state. Figure 11c
demonstrates that the output phase voltage of the proposed nonlinear model of the MG
was slightly larger than that of FEA during the process of voltage building. After the
voltage regulator started working, the proposed model achieved high fidelity and could
accurately predict the amplitude and phase of the voltage.

When the switch tube on the field winding of the ME started to be controlled on and
off, the whole system was affected accordingly. Among them, the armature winding of the
SE was connected to the field winding of the ME through the rectifier circuit. When the
switch tube was disconnected, the current in the armature winding of the SE was cut off
and the armature reaction that was originally present in the SE disappeared. The armature
winding of the SE was inductive. In normal operation, the current lagged the voltage and
the armature reaction was demagnetization. When the switch tube was disconnected, the
armature reaction disappeared and the output voltage of the SE increased accordingly, as
demonstrated in Figure 11a. When the switch tube was disconnected, the field voltage
input to the ME suddenly reduced to zero. However, because the field winding of the ME
was anti-parallel to the freeform diode, the current on the field winding of the ME exhibited
a continuous (not abrupt) change. Therefore, the output voltage of the ME fluctuated under
the action of the controller to regulate the output of the system near the rated voltage.
Finally, the output voltage of the MG was stable around the rated voltage and met the
requirements of the standard.
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Several models of RR proposed in Section 4 were verified and compared, as displayed
in Figure 12. From the figure, it is evident that the output voltage of the RR significantly
reduced due to the existence of the commutation process after the voltage construction
of the ME was completed, accompanied by voltage fluctuations. When the controller
started working, the output voltage fluctuated significantly around 15 V. To observe the
working state of the RR more intuitively, the output voltage was averaged at a frequency
of 1000 Hz. The specific phenomenon is depicted in Figure 12. The AVM with fixed
parameters could complete the simulation of RR more effectively during the process of
voltage building. However, when the RR was working stably, due to neglecting the voltage
drop in the commutation process, the fixed parameter AVM did not exhibit the voltage
drop phenomenon after the voltage building was completed and maintained a large voltage
output. Even when the controller was working, the output voltage of this model only
fluctuated slightly. The output voltage of the fixed parameter AVM was much higher than
the output voltage of the analog circuit built by software when the system was working
stably. However, this error is not acceptable in the time domain analysis of a WRSSG in the
generating state. The improved variable parameter AVM proposed in Section 4 achieved
high fidelity in both the voltage-building and stabilization processes. The improved variable
parameter AVM accurately predicted the time when output voltage sag occurred and the
amplitude of the voltage sag when the system was stable. Accordingly, compared with the
fixed parameter AVM, the improved variable parameter AVM would be more suitable for
the modeling and analysis of a WRSSG in the time domain.
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6.3. Control Capability Verification and Analysis

The voltage regulation capability of the WRSSG is the key factor that determines the
power supply quality of an aircraft power generation system. In this paper, the control
ability of the system was verified according to MIL-STD-704F.

Figure 13 reflects the working state of the system when the output power was 40 kW.
The system started to trigger the controller for voltage regulation at T1 = 0.04 s. Before T1,
since the RMS value of the system output phase voltage was much lower than the rated
voltage, the controller regulated the switch tube in the normally open state. After T1, as
the output phase voltage gradually increased, the controller regulated the duty ratio of the
switch tube to decrease the voltage accordingly. Under the action of the controller, the RMS
value of the output phase voltage of the system was 114.10 V, which was within the rated
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voltage range. Combined with MIL-STD-704F, the system was tested in more detail, and
the test results are presented in Table 3.
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Table 3. Verification of steady-state characteristics and transient characteristics based on MIL-STD-
704F.

Parameter Proposed Model Limits

Steady-state voltage 113.931 V 108.0 to 118.0 V RMS
Voltage unbalance 0.0558 V 3.0 V

Voltage modulation 0.0566 V 2.5 V RMS maximum
Voltage phase difference 120.24◦ 116◦ to 124◦

Distortion factor 0.0081 0.05 maximum
Crest factor 1.41 1.31 to 1.51

DC component −4.2372 × 10−4 V +0.10 to −0.10 V
Steady-state frequency 400 Hz 393 Hz to 407 Hz
Frequency modulation 0 Hz 4 Hz

Peak characteristics 161.0 V ±271.8 V

As displayed in Table 3, the system was tested in both steady and transient states. The
state of the system after the stable output was used in the analysis with a time range of
[0.06 s, 0.10 s]. From Table 3, it is evident that the output voltage of the system met the
MIL-STD-704F standard in all aspects. Since the output of the system was connected to a
balanced three-phase load, the voltage unbalance was significantly below the maximum
upper limit of 3.0 V. During the test process, the load was constant and the voltage modula-
tion and other parameters also met the requirements. Combined with the appeal analysis,
it was evident that the nonlinear model of the WRSSG established in this paper met the
parameter requirements of the MIL-STD-704F. It is clear that changes in load would test the
system’s voltage regulation and control capabilities. Accordingly, to further test the control
ability of the analytical model, the nonlinear model was tested for sudden load increases
and decreases, and the test results are displayed in Figures 14 and 15.
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Figure 14 reflects the state change of the system when the output power increased
abruptly from 40 to 50 kW. At time point T2, the system output power suddenly increased
and the output phase current increased accordingly. To regulate the output voltage within
the rated voltage range, the controller increased the duty ratio of the switch tube and
enhanced the excitation phenomenon of the ME. The output phase voltage remained
almost constant under the action of the controller. Owing to the output phase voltage RMS
fluctuations, there was a slight decline in the RMS output voltage. However, the output
voltage remained within the rated voltage range, meeting the supply quality standard. At
[0.08 s, 0.10 s], the duty cycle of the PWM signal increased from 69.60% to 100.00%. This
phenomenon indicated that the generation capacity of the system had been reached. Under
this set of parameters, the maximum generation power of the WRSSG was 50 kW. Figure 15
reflects the state change of the system when the output power suddenly reduced from 40 to
30 kW. Contrary to the case of the output power surge, the system reduced the field current
on the field winding of the ME by reducing the duty ratio of the switch tube from 69.90%
to 6.97% to control the output voltage of the system within the rated voltage range. The
graph of the output phase voltage indicates that the system had strong control capabilities
and could be stabilized within the range specified by the standard.
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The results above show that the proposed model performs well in RT-LAB real time
simulator, and the nonlinear model can be used in the state monitoring and fault diagnosis
of aircraft power system.

7. Conclusions

In aircrafts with WRSSGs, the nonlinear relationship of the power system in generating
state mainly originates from the internal structure of the power generation system and the
external load. In this paper, the nonlinear relationships from the internal power generation
system were analyzed. In the motor, the nonlinear relationship mainly existed in the
relationship between the current and the flux linkage. Nonlinear factors (such as magnetic
field saturation and space harmonics) were included in the relationship between the current
and the flux linkage. The use of FE analysis and neural networks accurately completed
the nonlinear modeling of the motor and solved the nonlinear problem of the current and
the flux linkage. The advantages of the proposed model (high fidelity, high computational
efficiency and strong interpretability) are verified by combining the synchronous generator
platform and FE analysis software (Version: 19.0). In the RR part, the nonlinear relationship
mainly originated from the voltage drop phenomenon during the commutation process
of the circuit. The improved variable parameter AVM proposed in this paper accurately
predicted the voltage drop phenomenon caused by the commutation process and achieved
an accurate prediction of the output voltage of the RR. At the same time, the improved
AVM of the variable parameter does not need to be scanned before running according to
the load properties, so it is more concise than the original model. In the controller part, the
nonlinear relationship mainly originated from the switching tube controlled by the PWM
signal and from the freewheeling diode. Combined with the specific circuit form, analyzing
the signal transfer logic solved the problem of signal inconsistency caused by the GCU.
In the power generation state of WRSSG, the signal transmission is progressive and the
nonlinear relationship of each part cannot be ignored. Moreover, the nonlinear modeling
effect of each part directly determines the effectiveness of the WRSSG nonlinear model.

Finally, the nonlinear model proposed in this paper has been compiled and run in
RT-LAB real time simulator without time-out, which lays a foundation for the establishment
of a hardware-on-loop platform. FEA was also used to verify the accuracy of the system.
In the test, the system met the MIL-STD-704F standard and output high power supply
quality. The nonlinear model and the presented research results can play a significant
role in the state detection and fault diagnosis of future aircraft power generation systems.
Based on this model, the hardware-in-the-loop test platform of aircraft power generation
systems can greatly reduce the cost of aircraft power generation system state research
and shorten research periods. For the main generator inter-turn short-circuit fault and
rotary rectifier fault mentioned in the introduction, the fault mechanism can be studied by
using the proposed model, and the fault diffusion mechanism can be explored by using the
signal transmission logic of the model. Later, the proposed model can also be combined
with the power amplifier to carry out partial semi-physical experiments on the aircraft
power generation system, and for the expensive part, the model and the simulator can be
used to solve the problem. The hardware-in-the-loop test platform based on this model
can promote the research of health management and state monitoring of aircraft power
generation system, as well as the research of control strategy of aircraft power generation
systems. These studies are of great significance for the formation of an aircraft smart grid.
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